research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 8| August 2014| Pages 115-117

Crystal structure of bis­­[1-(naphthalen-1-ylmeth­yl)pyridinium] bis­­(2,2-di­cyano­ethene-1,1-di­thiol­ato-κ2S,S′)nickelate(II)

aCollege of Chemical Engineering, Huanggang Normal University, 438000 Huangzhou, People's Republic of China, and bHubei Key Laboratory for Processing and Application of Catalytic Materials, Huanggang Normal University, 438000 Huangzhou, People's Republic of China
*Correspondence e-mail: hgxiongxj@126.com

Edited by B. Kojić-Prodić, Rudjer Boskovic Institute, Croatia (Received 14 July 2014; accepted 23 July 2014; online 31 July 2014)

A new ion-pair complex, (C16H14N)2[Ni(C4N2S2)2] or (1-NaMePy)2[Ni(imnt)2], where 1-NaMePy is 1-(4-naphthyl­methyl­ene)pyridinium and imnt is 2,2-di­cyano­ethene-1,1-di­thiol­ate, was obtained by the direct reaction of NiCl2, K2imnt and (1-NaMePy)+Br in H2O. The asymmetric unit contains a [1-NaMePy]+ cation and one half of an Ni(imnt)22− anion. The NiII ion lies on an inversion centre and adopts a square-planar configuration with Ni—S bond lengths of 2.200 (1) and 2.216 (1) Å. In the [1-NaMePy]+ cation, the naphthyl ringsystem and the pyridinium ring make a dihedral angle of 90.0 (2)°. In the crystal, C—H⋯N and C—H⋯Ni hydrogen bonds, as well as ππ inter­actions between the chelate ring and the pyridinium ring [centroid–centroid distance = 3.675 (2) Å] link the ions into a three-dimensional network.

1. Chemical context

Transition metal complexes with di­thiol­ate ligands such as 2,2-di­cyano­ethene-1,1-di­thiol­ate (imnt) or 1,2-di­cyano­ethene-1,2-di­thiol­ate (mnt) are important mol­ecular materials with inter­esting electrical conductivity, superconductivity, optical and magnetic properties (Liu et al., 1996[Liu, S. G., Liu, Y. Q., Li, Y. F. & Zhu, D. B. (1996). Synth. Met. 83, 131-140.]; Robertson & Cronin, 2002[Robertson, N. & Cronin, L. (2002). Coord. Chem. Rev. 227, 93-127.]; Ni et al., 2005[Ni, Z. P., Ren, X. M., Ma, J., Xie, J. L., Ni, C. L., Chen, Z. D. & Meng, Q. J. (2005). J. Am. Chem. Soc. 127, 14330-14338.]; Ren et al., 2002[Ren, X. M., Meng, Q. J., Song, Y., Lu, C. S. & Hu, C. J. (2002). Inorg. Chem. 41, 5686-5692.]; Xie et al., 2002[Xie, J. L., Ren, X. M., Song, Y., Zhang, W. W., Liu, W. L., He, C. & Meng, Q. J. (2002). Chem. Commun. pp. 2346-2347.]; Duan et al. 2010[Duan, H. B., Ren, X. M. & Meng, Q. J. (2010). Coord. Chem. Rev. 254, 1509-1522.]). Recently, attempts have been made to extend the range of metal complexes containing the Ni(imnt)22− anion, and the topology and the size of some organic cations, such as substituted benzyl pyridinium derivatives, play an important role in tuning the stacks of anions and cations of mol­ecular materials containing the Ni(imnt)22− anion (Liu et al., 2006[Liu, M.-G., Li, X.-Y., Lin, L.-F. & Ni, C.-L. (2006). Acta Cryst. E62, m2919-m2921.]; Feng et al., 2007[Feng, C.-W., Li, X.-R., Hou, Y. & Ni, C.-L. (2007). Acta Cryst. E63, m1762.]). The title ion-pair complex, (1-NaMePy)2[Ni(imnt)2] has therefore been prepared and investigated.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound (Fig. 1[link]) consists of one [1-NaMePy]+ cation and one-half of an Ni(imnt)22− anion located about an inversion center. The NiS4 core exhibits a square-planar configuration, with Ni—S bond lengths of 2.200 (1) and 2.216 (1) Å. The S1—Ni1—S2 bond angle within the four-membered ring (Ni1/S1/C1/S2) is 78.91 (3)°. The N1 and N2 atoms of the C≡N groups deviate from the Ni1/S1/C1/S2 plane by 0.078 (3) and 0.169 (3) Å, respectively. The [1-NaMePy]+ cation adopts a conformation in which both the naphthyl ring system and the pyridinium ring are twisted with respect to the N3/C11/C10 reference plane, making dihedral angles of 10.5 (2)° and 87.3 (3)°, respectively. The naphthyl ring system and the pyridinium ring make a dihedral angle of 90.0 (2)°.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], with the atom labelling and 30% probability displacement ellipsoids for non-H atoms The other half of the anion is generated by the inversion-symmetry operation −x, y + [{1\over 2}], −z + [{1\over 2}].

3. Supra­molecular features

There are three weak inter­actions between the Ni(imnt)22− anion and [1-NaMePy]+ cation. The first is a ππ contact between the chelate ring (which is defined by atoms Ni1, S1, S2, and C1) of the anion and the pyridinium ring of the cation (Fig. 2[link]) with a distance of 3.675 (2) Å between the centroids. The second is a C—H⋯Ni hydrogen bond and the third is a C—H⋯N hydrogen bond (Table 1[link], Fig. 3[link]). The combination of these weak inter­actions consolidates the title complex into a three-dimensional network structure (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19⋯N2i 0.93 2.60 3.265 (5) 129
C20—H20⋯N1ii 0.93 2.42 3.304 (5) 160
C15—H15B⋯Ni1iii 0.97 3.07 3.508 (4) 109
Symmetry codes: (i) x, y+1, z; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
The ππ contact between the chelate ring of the anion and the pyridinium ring of the cation (shown as a dashed line).
[Figure 3]
Figure 3
The packing of the title compound, viewed down the a axis, showing the network of mol­ecules connected by C—H⋯N hydrogen bonds (dashed lines).

4. Database survey

Many ion-pair complexes containing Ni(imnt)22− anion have been reported, typical examples being [TBA]2[Ni(imnt)2] and [4NO2BzPy]2[Ni(imnt)2] [TBA is tetra­butyl­ammonium; 4NO2BzPy is 1-(4-nitro­benz­yl)pyridinium] (Liu et al., 2006[Liu, M.-G., Li, X.-Y., Lin, L.-F. & Ni, C.-L. (2006). Acta Cryst. E62, m2919-m2921.]), [4FBzPy]2[Ni(imnt)2] [4FBzPy is 1-(4-fluoro­benz­yl)pyrid­in­ium] (Zhou & Ni, 2007[Zhou, A.-Q. & Ni, C.-L. (2007). Acta Cryst. E63, m3084.]), [Bz2NH2Py]2[Ni(imnt)2] (Bz2NH2Py is 1-benzyl-2-amino­pyridinium) (Hou et al., 2007[Hou, Y., Huang, Q., Zuo, H. & Ni, C. (2007). Acta Cryst. E63, m2903.]), [BzDMAP]2[Ni(imnt)2] [BzDMAP is 1-benzyl-4-(di­methyl­amino)­pyridinium] (Feng et al., 2007[Feng, C.-W., Li, X.-R., Hou, Y. & Ni, C.-L. (2007). Acta Cryst. E63, m1762.]), [2-NaMePy]2[Ni(imnt)2] and [2-NaMe-4-MePy]2[Ni(imnt)2] [2-NaMePy is 1-(2-naphthyl­meth­yl)pyridinium; 2-NaMe-4-MePy is 1-(2-naphthyl­meth­yl)-4-methyl­pyridinium] (Huang et al., 2009[Huang, Q., Hou, Y., Zhu, H. M., Zhou, J. R., Zuo, H. R., Ni, C. L., Meng, Q. J. & Hu, X. L. (2009). J. Coord. Chem. 62, 2012-2021.]), [Bz-4-MePy]2[Ni(imnt)2] and [Bz-4-MeQl]2[Ni(imnt)2] (Bz-4-MePy is 1-benzyl-4-methyl­pyridinium; Bz-4-MeQl is 1-benzyl-4-methyl­quinolinium) (Liu et al., 2013[Liu, J. F., Liang, L. B., Dai, S. L., Huang, R. K., Guan, Q. Y., Chen, W. Q., Yang, L. M., Zhou, J. R. & Ni, C. L. (2013). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 43, 1492-1500.]). For a description of C—H⋯N and C—H⋯Ni hydrogen bonds, see: Huang et al., (2009[Huang, Q., Hou, Y., Zhu, H. M., Zhou, J. R., Zuo, H. R., Ni, C. L., Meng, Q. J. & Hu, X. L. (2009). J. Coord. Chem. 62, 2012-2021.]). For a description of ππ contacts between chelate and phenyl rings, see: Molčanov et al. (2013[Molčanov, K., Jurić, M. & Kojić-Prodić, B. (2013). Dalton Trans. 42, 15756-15765.]).

5. Synthesis and crystallization

The title ion-pair complex was prepared by the direct reaction of 1:2:2 mol equiv. of NiCl2·6H2O, K2imnt and 1-(4-naphthyl­methyl­ene)pyridinium bromide in water (Huang et al., 2009[Huang, Q., Hou, Y., Zhu, H. M., Zhou, J. R., Zuo, H. R., Ni, C. L., Meng, Q. J. & Hu, X. L. (2009). J. Coord. Chem. 62, 2012-2021.]). The brown product obtained was purified through recrystallization from a mixed solvent of methanol and water (yield: 78%). Brown block-shaped single crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol solution at room temperature after about 4 weeks.

6. Refinement

All H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.93 Å, Uiso(H) = 1.2Ueq(C) for aromatic and d(C—H) = 0.97 Å, Uiso(H) = 1.2Ueq(C) for CH2 atoms. Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula (C16H14N)2[Ni(C4N2S2)2]
Mr 779.63
Crystal system, space group Monoclinic, P21/c
Temperature (K) 291
a, b, c (Å) 11.876 (3), 9.025 (3), 17.465 (5)
β (°) 91.808 (4)
V3) 1871.0 (9)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.78
Crystal size (mm) 0.36 × 0.30 × 0.21
 
Data collection
Diffractometer Bruker SMART CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.762, 0.843
No. of measured, independent and observed [I > 2σ(I)] reflections 9345, 3283, 2228
Rint 0.031
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.102, 1.04
No. of reflections 3283
No. of parameters 232
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.21, −0.15
Computer programs: SMART and SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Chemical context top

Transition metal complexes with di­thiol­ate ligands such as 2,2-di­cyano­ethene-1,1-di­thiol­ate (imnt) or 1,2-di­cyano­ethene-1,2-di­thiol­ate (mnt) are important molecular materials with inter­esting electrical conductivity, superconductivity, optical and magnetic properties (Liu et al., 1996; Robertson & Cronin, 2002; Ni et al., 2005; Ren et al., 2002; Xie et al., 2002; Duan et al. 2010). Recently, attempts have been made to extend the range of metal complexes containing Ni(imnt)22- anion, and the topology and the size of some organic cations, such as substituted benzyl pyridinium derivatives, play an important role in tuning the stacks of anions and cations of molecular materials containing the Ni(imnt)22- anion (Liu et al., 2006; Feng et al., 2007). The title ion-pair complex, (1-NaMePy)2[Ni(imnt)2] has therefore been prepared and investigated.

Structural commentary top

The asymmetric unit of the title compound consists of one [1-NaMePy]+ cation and one-half of an Ni(imnt)2 anion located about an inversion center. The NiS4 core exhibits a square-planar configuration, with Ni—S bond lengths of 2.200 (1) and 2.216 (1) Å. The S1—Ni1—S2 bond angle within the four-membered ring (Ni1/S1/C1/S2) is 78.91 (3)°. The N1 and N2 atoms of the -CN groups deviate from the Ni1/S1/C1/S2 plane by 0.078 (3) and 0.169 (3) Å, respectively. The [1-NaMePy]+ cation adopts a conformation in which both the naphthyl ring system and the pyridinium ring are twisted with respect to the N3/C11/C10 reference plane, making dihedral angles of 10.5 (2)° and 87.3 (3)°, respectively. The naphthyl ring system and the pyridinium ring make a dihedral angle of 90.0 (2)°.

Supra­molecular features top

There are three weak inter­actions between the Ni(imnt)2 anion and [1-NaMePy]+ cation. The first is a ππ contact between the chelate ring (which is defined by atoms Ni1, S1, S2, and C1) of the anion and the pyridinium ring of the cation (Fig. 2) with a distance of 3.675 (2) Å between the centroids. The second is the C—H···Ni hydrogen bond and the third is a C—H···N hydrogen bond (Table 1, Fig. 3). The combination of these weak inter­actions consolidates the title complex into a three-dimensional network structure (Fig. 3).

Database survey top

Many ion-pair complexes containing Ni(imnt)22- anion have been reported and some typical examples are [TBA]2[Ni(imnt)2] and [4NO2BzPy]2[Ni(imnt)2] [TBA is tetra­butyl­ammonium; 4NO2BzPy is 1-(4-nitro­benzyl)­pyridinium] (Liu et al., 2006),[4FBzPy]2[Ni(imnt)2] [4FBzPy is 1-(4-fluoro­benzyl)­pyridinium] (Zhou et al., 2007), [Bz2NH2Py]2[Ni(imnt)2] (Bz2NH2Py is 1-benzyl-2-amino­pyridinium) (Hou et al., 2007), [BzDMAP]2[Ni(imnt)2] [BzDMAP is 1-benzyl-4-(di­methyl­amino)­pyridinium] (Feng et al., 2007), [2-NaMePy]2[Ni(imnt)2] and [2-NaMe-4-MePy]2[Ni(imnt)2] [2-NaMePy is 1-(2-naphthyl­methyl)­pyridinium; 2-NaMe-4-MePy is 1-(2-naphthyl­methyl)-4-methyl­pyridinium] (Huang, et al., 2009), [Bz-4-MePy]2[Ni(imnt)2] and [Bz-4-MeQl]2[Ni(imnt)2] (Bz-4-MePy is 1-benzyl-4-methyl­pyridinium; Bz-4-MeQl is 1-benzyl-4-methyl­quinolinium) (Liu et al., 2013). For a description of C—H···N and C—H···Ni hydrogen bonds, see: Huang et al., (2009). For a description of ππ contacts between chelate and phenyl rings, see: Molčanov et al. (2013).

Synthesis and crystallization top

The title ion-pair complex was prepared by the direct reaction of 1:2:2 mol equiv. of NiCl2·6H2O, K2imnt and 1-(4-naphthyl­methyl­ene)pyridinium bromide in water (Huang et al., 2009). The brown product obtained was purified through recrystallization from a mixed solvent of methanol and water (yield: 78%). Brown block-shaped single crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol solution of at room temperature after about 4 weeks.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.93 Å, Uiso(H) = 1.2Ueq(C) for aromatic and d(C—H) = 0.97 Å, Uiso(H) = 1.2Ueq(C) for CH2 atoms. Crystal data, data collection and structure refinement details are summarized in Table 2.

Related literature top

For related literature, see: Duan et al. (2010); Feng et al. (2007); Hou et al. (2007); Huang et al. (2009); Liu et al. (1996, 2006, 2013); Molčanov et al. (2013); Ni et al. (2005); Ren et al. (2002); Robertson & Cronin (2002); Xie et al. (2002); Zhou & Ni (2007).

Structure description top

Transition metal complexes with di­thiol­ate ligands such as 2,2-di­cyano­ethene-1,1-di­thiol­ate (imnt) or 1,2-di­cyano­ethene-1,2-di­thiol­ate (mnt) are important molecular materials with inter­esting electrical conductivity, superconductivity, optical and magnetic properties (Liu et al., 1996; Robertson & Cronin, 2002; Ni et al., 2005; Ren et al., 2002; Xie et al., 2002; Duan et al. 2010). Recently, attempts have been made to extend the range of metal complexes containing Ni(imnt)22- anion, and the topology and the size of some organic cations, such as substituted benzyl pyridinium derivatives, play an important role in tuning the stacks of anions and cations of molecular materials containing the Ni(imnt)22- anion (Liu et al., 2006; Feng et al., 2007). The title ion-pair complex, (1-NaMePy)2[Ni(imnt)2] has therefore been prepared and investigated.

The asymmetric unit of the title compound consists of one [1-NaMePy]+ cation and one-half of an Ni(imnt)2 anion located about an inversion center. The NiS4 core exhibits a square-planar configuration, with Ni—S bond lengths of 2.200 (1) and 2.216 (1) Å. The S1—Ni1—S2 bond angle within the four-membered ring (Ni1/S1/C1/S2) is 78.91 (3)°. The N1 and N2 atoms of the -CN groups deviate from the Ni1/S1/C1/S2 plane by 0.078 (3) and 0.169 (3) Å, respectively. The [1-NaMePy]+ cation adopts a conformation in which both the naphthyl ring system and the pyridinium ring are twisted with respect to the N3/C11/C10 reference plane, making dihedral angles of 10.5 (2)° and 87.3 (3)°, respectively. The naphthyl ring system and the pyridinium ring make a dihedral angle of 90.0 (2)°.

There are three weak inter­actions between the Ni(imnt)2 anion and [1-NaMePy]+ cation. The first is a ππ contact between the chelate ring (which is defined by atoms Ni1, S1, S2, and C1) of the anion and the pyridinium ring of the cation (Fig. 2) with a distance of 3.675 (2) Å between the centroids. The second is the C—H···Ni hydrogen bond and the third is a C—H···N hydrogen bond (Table 1, Fig. 3). The combination of these weak inter­actions consolidates the title complex into a three-dimensional network structure (Fig. 3).

Many ion-pair complexes containing Ni(imnt)22- anion have been reported and some typical examples are [TBA]2[Ni(imnt)2] and [4NO2BzPy]2[Ni(imnt)2] [TBA is tetra­butyl­ammonium; 4NO2BzPy is 1-(4-nitro­benzyl)­pyridinium] (Liu et al., 2006),[4FBzPy]2[Ni(imnt)2] [4FBzPy is 1-(4-fluoro­benzyl)­pyridinium] (Zhou et al., 2007), [Bz2NH2Py]2[Ni(imnt)2] (Bz2NH2Py is 1-benzyl-2-amino­pyridinium) (Hou et al., 2007), [BzDMAP]2[Ni(imnt)2] [BzDMAP is 1-benzyl-4-(di­methyl­amino)­pyridinium] (Feng et al., 2007), [2-NaMePy]2[Ni(imnt)2] and [2-NaMe-4-MePy]2[Ni(imnt)2] [2-NaMePy is 1-(2-naphthyl­methyl)­pyridinium; 2-NaMe-4-MePy is 1-(2-naphthyl­methyl)-4-methyl­pyridinium] (Huang, et al., 2009), [Bz-4-MePy]2[Ni(imnt)2] and [Bz-4-MeQl]2[Ni(imnt)2] (Bz-4-MePy is 1-benzyl-4-methyl­pyridinium; Bz-4-MeQl is 1-benzyl-4-methyl­quinolinium) (Liu et al., 2013). For a description of C—H···N and C—H···Ni hydrogen bonds, see: Huang et al., (2009). For a description of ππ contacts between chelate and phenyl rings, see: Molčanov et al. (2013).

For related literature, see: Duan et al. (2010); Feng et al. (2007); Hou et al. (2007); Huang et al. (2009); Liu et al. (1996, 2006, 2013); Molčanov et al. (2013); Ni et al. (2005); Ren et al. (2002); Robertson & Cronin (2002); Xie et al. (2002); Zhou & Ni (2007).

Synthesis and crystallization top

The title ion-pair complex was prepared by the direct reaction of 1:2:2 mol equiv. of NiCl2·6H2O, K2imnt and 1-(4-naphthyl­methyl­ene)pyridinium bromide in water (Huang et al., 2009). The brown product obtained was purified through recrystallization from a mixed solvent of methanol and water (yield: 78%). Brown block-shaped single crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol solution of at room temperature after about 4 weeks.

Refinement details top

All H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.93 Å, Uiso(H) = 1.2Ueq(C) for aromatic and d(C—H) = 0.97 Å, Uiso(H) = 1.2Ueq(C) for CH2 atoms. Crystal data, data collection and structure refinement details are summarized in Table 2.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SMART (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom labelling and 30% probability displacement ellipsoids for non-H atoms The other half of the molecular structure is generated by the inversion-symmetry operation -x, y + 1/2, -z + 1/2.
[Figure 2] Fig. 2. The ππ contact between the chelate ring of the anion and the pyridinium ring of the cation (shown as a dashed line).
[Figure 3] Fig. 3. The packing of the title compound, viewed down the b axis, showing the network of molecules connected by C—H···N hydrogen bonds (dashed lines).
Bis[1-(naphthalen-1-ylmethyl)pyridinium] bis(2,2-dicyanoethene-1,1-dithiolato-κ2S,S')nickelate(II) top
Crystal data top
(C16H14N)2[Ni(C4N2S2)2]F(000) = 804
Mr = 779.63Dx = 1.384 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1994 reflections
a = 11.876 (3) Åθ = 2.5–22.7°
b = 9.025 (3) ŵ = 0.78 mm1
c = 17.465 (5) ÅT = 291 K
β = 91.808 (4)°Block, brown
V = 1871.0 (9) Å30.36 × 0.30 × 0.21 mm
Z = 2
Data collection top
Bruker SMART CCD area detector
diffractometer
3283 independent reflections
Radiation source: fine-focus sealed tube2228 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
φ and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1314
Tmin = 0.762, Tmax = 0.843k = 910
9345 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.046P)2 + 0.1262P]
where P = (Fo2 + 2Fc2)/3
3283 reflections(Δ/σ)max < 0.001
232 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
(C16H14N)2[Ni(C4N2S2)2]V = 1871.0 (9) Å3
Mr = 779.63Z = 2
Monoclinic, P21/cMo Kα radiation
a = 11.876 (3) ŵ = 0.78 mm1
b = 9.025 (3) ÅT = 291 K
c = 17.465 (5) Å0.36 × 0.30 × 0.21 mm
β = 91.808 (4)°
Data collection top
Bruker SMART CCD area detector
diffractometer
3283 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2228 reflections with I > 2σ(I)
Tmin = 0.762, Tmax = 0.843Rint = 0.031
9345 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.04Δρmax = 0.21 e Å3
3283 reflectionsΔρmin = 0.15 e Å3
232 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.00000.00000.00000.06043 (19)
S10.03025 (7)0.02841 (8)0.12405 (4)0.0697 (2)
S20.08762 (7)0.21679 (9)0.00355 (4)0.0709 (2)
N10.2232 (3)0.5408 (4)0.11604 (17)0.1156 (12)
N20.1247 (3)0.2483 (3)0.29836 (16)0.0963 (9)
N30.2381 (2)0.7148 (3)0.42980 (16)0.0805 (7)
C10.0909 (2)0.1950 (3)0.10140 (14)0.0616 (7)
C20.1329 (2)0.2957 (3)0.15460 (14)0.0628 (7)
C30.1819 (3)0.4313 (4)0.13254 (16)0.0792 (9)
C40.1274 (3)0.2685 (3)0.23417 (17)0.0704 (8)
C50.4644 (3)0.7646 (4)0.4864 (2)0.1009 (11)
H50.44080.79810.43820.121*
C60.5731 (3)0.8033 (5)0.5164 (3)0.1080 (13)
H60.62120.86040.48750.130*
C70.6062 (3)0.7565 (4)0.5872 (2)0.1045 (12)
H70.67680.78430.60690.125*
C80.5373 (3)0.6678 (4)0.6314 (2)0.0817 (9)
C90.5710 (3)0.6177 (4)0.7054 (2)0.0983 (11)
H90.64100.64670.72550.118*
C100.5068 (4)0.5308 (5)0.7473 (3)0.1114 (13)
H100.53140.49920.79560.134*
C110.4017 (4)0.4881 (5)0.7169 (3)0.1169 (14)
H110.35630.42660.74550.140*
C120.3642 (3)0.5342 (4)0.6470 (2)0.0957 (11)
H120.29330.50470.62860.115*
C130.4307 (3)0.6261 (3)0.6015 (2)0.0769 (9)
C140.3947 (3)0.6786 (4)0.5280 (2)0.0812 (9)
C150.2770 (3)0.6348 (4)0.4999 (2)0.1096 (13)
H15A0.27590.52920.48950.131*
H15B0.22460.65390.54020.131*
C160.2514 (4)0.6590 (5)0.3620 (3)0.1198 (14)
H160.28660.56760.35730.144*
C170.2150 (5)0.7315 (7)0.2989 (3)0.1362 (19)
H170.22640.69170.25060.163*
C180.1615 (4)0.8632 (6)0.3060 (3)0.1177 (15)
H180.13460.91360.26270.141*
C190.1477 (3)0.9203 (4)0.3761 (3)0.1004 (11)
H190.11181.01090.38210.120*
C200.1868 (3)0.8436 (4)0.43750 (19)0.0822 (9)
H200.17750.88210.48630.099*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0607 (3)0.0696 (4)0.0503 (3)0.0003 (3)0.0087 (2)0.0033 (2)
S10.0793 (5)0.0764 (5)0.0527 (4)0.0091 (4)0.0100 (4)0.0017 (4)
S20.0824 (5)0.0771 (5)0.0528 (4)0.0074 (4)0.0057 (4)0.0001 (4)
N10.173 (3)0.094 (2)0.080 (2)0.040 (2)0.010 (2)0.0011 (17)
N20.130 (3)0.097 (2)0.0603 (16)0.0021 (18)0.0146 (16)0.0046 (15)
N30.0765 (18)0.083 (2)0.0818 (19)0.0104 (15)0.0064 (15)0.0020 (16)
C10.0571 (16)0.0696 (18)0.0577 (15)0.0041 (14)0.0062 (13)0.0005 (14)
C20.0666 (18)0.0695 (19)0.0517 (16)0.0009 (15)0.0079 (13)0.0009 (14)
C30.100 (3)0.081 (2)0.0552 (18)0.008 (2)0.0128 (17)0.0031 (17)
C40.076 (2)0.072 (2)0.0625 (19)0.0008 (16)0.0157 (15)0.0052 (16)
C50.079 (2)0.106 (3)0.118 (3)0.009 (2)0.004 (2)0.026 (2)
C60.068 (2)0.118 (3)0.139 (4)0.026 (2)0.012 (2)0.022 (3)
C70.079 (3)0.111 (3)0.122 (3)0.014 (2)0.011 (2)0.005 (3)
C80.065 (2)0.071 (2)0.109 (3)0.0020 (17)0.005 (2)0.004 (2)
C90.084 (3)0.102 (3)0.108 (3)0.007 (2)0.015 (2)0.006 (2)
C100.103 (3)0.127 (3)0.104 (3)0.017 (3)0.005 (3)0.019 (3)
C110.097 (3)0.120 (3)0.133 (4)0.010 (3)0.003 (3)0.047 (3)
C120.070 (2)0.100 (3)0.117 (3)0.000 (2)0.002 (2)0.028 (2)
C130.064 (2)0.0643 (19)0.103 (2)0.0054 (16)0.0043 (19)0.0066 (18)
C140.063 (2)0.077 (2)0.103 (2)0.0091 (17)0.0005 (18)0.0121 (19)
C150.086 (3)0.119 (3)0.122 (3)0.025 (2)0.024 (2)0.046 (3)
C160.143 (4)0.103 (3)0.114 (3)0.002 (3)0.019 (3)0.020 (3)
C170.184 (5)0.153 (5)0.073 (3)0.048 (4)0.010 (3)0.032 (3)
C180.117 (4)0.140 (4)0.094 (3)0.035 (3)0.030 (3)0.034 (3)
C190.095 (3)0.095 (3)0.111 (3)0.003 (2)0.007 (2)0.012 (3)
C200.088 (2)0.086 (2)0.072 (2)0.013 (2)0.0014 (18)0.0120 (19)
Geometric parameters (Å, º) top
Ni1—S1i2.2000 (9)C8—C91.415 (5)
Ni1—S12.2000 (9)C9—C101.329 (5)
Ni1—S2i2.2160 (9)C9—H90.9300
Ni1—S22.2160 (9)C10—C111.395 (6)
S1—C11.718 (3)C10—H100.9300
S2—C11.719 (3)C11—C121.353 (5)
N1—C31.144 (4)C11—H110.9300
N2—C41.137 (3)C12—C131.409 (4)
N3—C161.300 (5)C12—H120.9300
N3—C201.321 (4)C13—C141.420 (4)
N3—C151.482 (4)C14—C151.519 (4)
C1—C21.382 (4)C15—H15A0.9700
C2—C31.414 (4)C15—H15B0.9700
C2—C41.415 (4)C16—C171.342 (6)
C5—C141.361 (4)C16—H160.9300
C5—C61.421 (5)C17—C181.355 (6)
C5—H50.9300C17—H170.9300
C6—C71.353 (5)C18—C191.344 (5)
C6—H60.9300C18—H180.9300
C7—C81.395 (5)C19—C201.346 (5)
C7—H70.9300C19—H190.9300
C8—C131.406 (4)C20—H200.9300
S1i—Ni1—S1180.00 (4)C9—C10—H10120.8
S1i—Ni1—S2i78.91 (3)C11—C10—H10120.8
S1—Ni1—S2i101.09 (3)C12—C11—C10121.6 (4)
S1i—Ni1—S2101.09 (3)C12—C11—H11119.2
S1—Ni1—S278.91 (3)C10—C11—H11119.2
S2i—Ni1—S2180.00 (4)C11—C12—C13121.1 (4)
C1—S1—Ni186.09 (9)C11—C12—H12119.5
C1—S2—Ni185.56 (10)C13—C12—H12119.5
C16—N3—C20120.2 (3)C8—C13—C12117.5 (3)
C16—N3—C15121.3 (4)C8—C13—C14119.2 (3)
C20—N3—C15118.5 (3)C12—C13—C14123.2 (3)
C2—C1—S1124.5 (2)C5—C14—C13120.1 (3)
C2—C1—S2126.1 (2)C5—C14—C15122.9 (3)
S1—C1—S2109.42 (15)C13—C14—C15117.0 (3)
C1—C2—C3121.9 (2)N3—C15—C14113.6 (3)
C1—C2—C4121.3 (3)N3—C15—H15A108.8
C3—C2—C4116.8 (3)C14—C15—H15A108.8
N1—C3—C2178.5 (4)N3—C15—H15B108.8
N2—C4—C2178.7 (4)C14—C15—H15B108.8
C14—C5—C6120.3 (4)H15A—C15—H15B107.7
C14—C5—H5119.9N3—C16—C17120.9 (4)
C6—C5—H5119.9N3—C16—H16119.5
C7—C6—C5119.6 (3)C17—C16—H16119.5
C7—C6—H6120.2C16—C17—C18119.4 (4)
C5—C6—H6120.2C16—C17—H17120.3
C6—C7—C8121.7 (4)C18—C17—H17120.3
C6—C7—H7119.1C19—C18—C17119.4 (4)
C8—C7—H7119.1C19—C18—H18120.3
C7—C8—C13119.0 (3)C17—C18—H18120.3
C7—C8—C9122.3 (3)C18—C19—C20118.7 (4)
C13—C8—C9118.6 (3)C18—C19—H19120.7
C10—C9—C8122.7 (4)C20—C19—H19120.7
C10—C9—H9118.6N3—C20—C19121.3 (3)
C8—C9—H9118.6N3—C20—H20119.3
C9—C10—C11118.4 (4)C19—C20—H20119.3
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19···N2ii0.932.603.265 (5)129
C20—H20···N1iii0.932.423.304 (5)160
C15—H15B···Ni1iv0.973.073.508 (4)109
Symmetry codes: (ii) x, y+1, z; (iii) x, y+3/2, z+1/2; (iv) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19···N2i0.9302.6003.265 (5)129.0
C20—H20···N1ii0.9302.4203.304 (5)160.0
C15—H15B···Ni1iii0.973.073.508 (4)109
Symmetry codes: (i) x, y+1, z; (ii) x, y+3/2, z+1/2; (iii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula(C16H14N)2[Ni(C4N2S2)2]
Mr779.63
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)11.876 (3), 9.025 (3), 17.465 (5)
β (°) 91.808 (4)
V3)1871.0 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.78
Crystal size (mm)0.36 × 0.30 × 0.21
Data collection
DiffractometerBruker SMART CCD area detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.762, 0.843
No. of measured, independent and
observed [I > 2σ(I)] reflections
9345, 3283, 2228
Rint0.031
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.102, 1.04
No. of reflections3283
No. of parameters232
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.15

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank the Doctor's Foundation of Huanggong Normal University (10CD001) and the Educational Commission of Hubei Province of China (Q20112902) for financial support.

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDuan, H. B., Ren, X. M. & Meng, Q. J. (2010). Coord. Chem. Rev. 254, 1509–1522.  Web of Science CrossRef CAS Google Scholar
First citationFeng, C.-W., Li, X.-R., Hou, Y. & Ni, C.-L. (2007). Acta Cryst. E63, m1762.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHou, Y., Huang, Q., Zuo, H. & Ni, C. (2007). Acta Cryst. E63, m2903.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHuang, Q., Hou, Y., Zhu, H. M., Zhou, J. R., Zuo, H. R., Ni, C. L., Meng, Q. J. & Hu, X. L. (2009). J. Coord. Chem. 62, 2012–2021.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, M.-G., Li, X.-Y., Lin, L.-F. & Ni, C.-L. (2006). Acta Cryst. E62, m2919–m2921.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLiu, J. F., Liang, L. B., Dai, S. L., Huang, R. K., Guan, Q. Y., Chen, W. Q., Yang, L. M., Zhou, J. R. & Ni, C. L. (2013). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 43, 1492–1500.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, S. G., Liu, Y. Q., Li, Y. F. & Zhu, D. B. (1996). Synth. Met. 83, 131–140.  CrossRef CAS Web of Science Google Scholar
First citationMolčanov, K., Jurić, M. & Kojić-Prodić, B. (2013). Dalton Trans. 42, 15756–15765.  Web of Science PubMed Google Scholar
First citationNi, Z. P., Ren, X. M., Ma, J., Xie, J. L., Ni, C. L., Chen, Z. D. & Meng, Q. J. (2005). J. Am. Chem. Soc. 127, 14330–14338.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRen, X. M., Meng, Q. J., Song, Y., Lu, C. S. & Hu, C. J. (2002). Inorg. Chem. 41, 5686–5692.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRobertson, N. & Cronin, L. (2002). Coord. Chem. Rev. 227, 93–127.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXie, J. L., Ren, X. M., Song, Y., Zhang, W. W., Liu, W. L., He, C. & Meng, Q. J. (2002). Chem. Commun. pp. 2346–2347.  Web of Science CSD CrossRef Google Scholar
First citationZhou, A.-Q. & Ni, C.-L. (2007). Acta Cryst. E63, m3084.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 8| August 2014| Pages 115-117
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds