organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,12-Dimeth­­oxy-5,6,9,10-tetra­hydro-[5]helicene-7,8-dicarbo­nitrile

aNational Metal and Materials Technology Center (MTEC), 114 Thailand Science Park, Paholyothin Rd, Klong Luang, Pathumthani 12120, Thailand
*Correspondence e-mail: somboons@mtec.or.th

(Received 27 May 2014; accepted 25 June 2014; online 2 July 2014)

The complete molecule of the title compound, C26H20N2O2, is generated by a crystallographic twofold axis. The torsion angle between the terminal and central benzene rings is −32.5 (2)°. The torsion angle along the inner helical rim of the molecule is −18.8 (2)° with each other. The C⋯C distance between the terminal rings is 3.016 (2) Å. In the crystal, weak C—H⋯N hydrogen bonds are observed.

Keywords: crystal structure.

Related literature

For the application of a penta­helicene derivative as an emitter in an organic light-emitting diode, see: Sahasithiwat et al. (2010[Sahasithiwat, S., Mophuang, T., Menbangpung, L., Kamtonwong, S. & Sooksimuang, S. (2010). Synth. Met. 160, 1148-1152.]). For related structures, see: McIntosh et al. (1954[McIntosh, A. O., Robertson, J. M. & Vand, V. (1954). J. Chem. Soc. pp. 1661-1668.]); Wang et al. (1997[Wang, Z. Y., Qi, Y., Bender, T. P. & Gao, J. P. (1997). Macromolecules, 30, 764-769.]); Stammel et al. (1999[Stammel, C., Fröhlich, R., Wolff, C., Wenck, H., Meijere, A. & Mattay, J. (1999). Eur. J. Org. Chem. 7, 1709-1718.]); Ogawa et al. (2003[Ogawa, Y., Toyama, M., Karikomi, M., Seki, K., Haga, K. & Uyehara, T. (2003). Tetrahedron Lett. 44, 2167-2170.]); Rajapakse et al. (2011[Rajapakse, A., Barnes, C. L. & Gates, K. S. (2011). J. Chem. Crystallogr. 41, 1712-1716.]). For the synthesis of the title compound, see: Mandal et al. (2006[Mandal, B. K., Sooksimuang, T., Lee, C. H. & Wang, R. (2006). J. Porphyrins Phthalocyanines, 10, 140-146.]). For general information and applications of helicenes, see: Shen & Chen (2012[Shen, Y. & Chen, C. F. (2012). Chem. Rev. 122, 1463-1535.]); Gingras (2013[Gingras, M. (2013). Chem. Soc. Rev. 42, 1051-1095.]).

[Scheme 1]

Experimental

Crystal data
  • C26H20N2O2

  • Mr = 392.44

  • Monoclinic, C 2/c

  • a = 17.9533 (7) Å

  • b = 13.5533 (7) Å

  • c = 8.1417 (4) Å

  • β = 95.785 (2)°

  • V = 1971.00 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.67 × 0.44 × 0.26 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2012[Bruker (2012). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.70, Tmax = 0.75

  • 10904 measured reflections

  • 2204 independent reflections

  • 1674 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.137

  • S = 1.07

  • 2204 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯N1i 0.93 2.79 3.466 (2) 131
C4—H4⋯N1ii 0.93 2.86 3.742 (2) 160
Symmetry codes: (i) -x, -y, -z; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Helicenes are polycyclic aromatic hydro­carbons (PAHs) that consist of ortho-fused aromatic rings arranged in helical chiraliry. Applications of helicenes are ranging from catalyst to molecular machines. (Shen et al., 2012; Gingras, 2013). The title compound is a derivative of penta­helicene in which two electron donor and two electron acceptor groups are added into the structure in order to improve its fluorescence quantum yield. Moreover, two rings connected to the central benzene ring are not fully aromatized and in a twist conformation. An application of a similar compound as an emitter for a light-emitting diode was reported (Sahasithiwat et al., 2010).

The geometric parameters of the title molecule agree well with reported similar structures (McIntosh et al., 1954; Wang et al., 1997; Stammel et al., 1999; Rajapakse et al., 2011). Half a molecule of the title compound belongs to asymmetric unit and a molecule is completed by the crystallographic twofold axis as shown in Figure 1. The dihedral angles [C1—C8—C10—C10i and C1i—C8i—C10i—C10] between a terminal and a central benzene ring are -32.5 (2)°. The two non-fully aromatized rings make a dihedral angle [C8—C10—C10i—C8i] of -18.8 (2)° with each other. The distance of the terminal rings as defined by C1···C1i distance of 3.016 (2)Å is causing by steric repultion of hydrogens on these carbons.

The crystal packing as shown in Figure 2 reveals that the molecules are linked through a network of weak C—H···N [C1—H1···N1(-x,-y,-z)] inter­molecular inter­action yielding racemic columns. Moreover, the other weak C—H···N [C4—H4···N1(-x+1/2,y,-z+1/2)] inter­molecular inter­actions resulted in holding the columns together as exhibited in Figure 3.

Experimental top

A mixture of 6,6'-di­meth­oxy-3,4,3',4'-tetra­hydro­[1,1']binaphthalenyl (9.761 g, 30.7 mmol) and fumaro­nitrile (3.594 g, 46.0 mmol) was stirred and heated at 110 °C under argon atmosphere for 12 h. The resulting mixture was purified by column chromatography (SiO2, 7734, 3:2 CH2Cl2-hexane, 1.8 L) to give a yellow foam of pure Diels-Alder adduct (6.673 g, 55% yield, mp. 139-141 °C). The Diels-Alder product (6.535 g, 16.6 mmol), 2,3-di­chloro-5,6-di­cyano-1,4-benzo­quinone­(8.280 g, 36.5 mmol) and xylene (120 ml) was stirred and refluxed for 6 h. The mixture was cooled to room temperature and filtered off. Filtrate was evaporated to give crude product which was purified by column chromatography (SiO2, 7734, toluene, 1.2 L) to give a yellow solid product (3.934 g, 61% yield, mp. 263-264 °C). This compound was characterized by FTIR, 1H-NMR, and 13C-NMR. Crystals of the title compound suitable for X-ray analysis was obtained by slow evaporation of a chloro­form-hexane solution.

Refinement top

All hydrogen atoms were placed in calculated positions and treated as riding atoms with C—H distances of 0.93 Å,0.97 Å, and 0.96 Å for aryl, methyl­ene, and methyl H atoms, respectively. The H atoms were assigned Uiso = 1.2 Ueq(C) for aryl H, Uiso = 1.2 Ueq(C) for methyl­ene H, and Uiso = 1.5 Ueq(C) for methyl H.

Related literature top

For the application of a pentahelicene derivative as an emitter in an organic light-emitting diode, see: Sahasithiwat et al. (2010). For related structures, see: McIntosh et al. (1954); Wang et al. (1997); Stammel et al. (1999); Ogawa et al. (2003); Rajapakse et al. (2011). For the synthesis of the title compound, see: Mandal et al. (2006). For general information and applications of helicenes, see: Shen & Chen (2012); Gingras (2013).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms. Symmetry code: (i) -x,y,1/2 - z.
[Figure 2] Fig. 2. Packing diagram of the title compound projected down the b axis showing hydrogen bonds as dashed lines.
[Figure 3] Fig. 3. Packing diagram of the title compound projected down the c axis showing hydrogen bonds as dashed lines.
3,12-Dimethoxy-5,6,9,10-tetrahydro-[5]helicene-7,8-dicarbonitrile top
Crystal data top
C26H20N2O2F(000) = 824
Mr = 392.44Dx = 1.322 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 17.9533 (7) ÅCell parameters from 3787 reflections
b = 13.5533 (7) Åθ = 2.3–27.1°
c = 8.1417 (4) ŵ = 0.08 mm1
β = 95.785 (2)°T = 296 K
V = 1971.00 (16) Å3Block, green
Z = 40.67 × 0.44 × 0.26 mm
Data collection top
Bruker APEXII CCD
diffractometer
1674 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.025
ϕ and ω scansθmax = 27.3°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 2321
Tmin = 0.70, Tmax = 0.75k = 1717
10904 measured reflectionsl = 1010
2204 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.137 w = 1/[σ2(Fo2) + (0.0693P)2 + 0.772P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2204 reflectionsΔρmax = 0.18 e Å3
136 parametersΔρmin = 0.19 e Å3
Crystal data top
C26H20N2O2V = 1971.00 (16) Å3
Mr = 392.44Z = 4
Monoclinic, C2/cMo Kα radiation
a = 17.9533 (7) ŵ = 0.08 mm1
b = 13.5533 (7) ÅT = 296 K
c = 8.1417 (4) Å0.67 × 0.44 × 0.26 mm
β = 95.785 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
2204 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
1674 reflections with I > 2σ(I)
Tmin = 0.70, Tmax = 0.75Rint = 0.025
10904 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.07Δρmax = 0.18 e Å3
2204 reflectionsΔρmin = 0.19 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C40.18794 (7)0.30146 (11)0.13412 (18)0.0409 (3)
H40.23990.30470.14790.049*
C100.03622 (7)0.12362 (10)0.22237 (18)0.0374 (3)
C20.06956 (8)0.37374 (11)0.03575 (19)0.0419 (4)
H20.04210.42470.01740.050*
C80.07336 (7)0.21339 (10)0.16691 (17)0.0370 (3)
O10.18785 (6)0.46083 (8)0.02479 (16)0.0572 (3)
C90.15209 (7)0.21797 (10)0.18425 (17)0.0382 (3)
C10.03382 (7)0.29099 (10)0.08781 (18)0.0399 (3)
H10.01810.28700.06950.048*
C60.15632 (8)0.03662 (11)0.1795 (2)0.0465 (4)
H6A0.15980.03580.06130.056*
H6B0.18190.02130.22690.056*
C70.03793 (8)0.05492 (10)0.23454 (19)0.0416 (4)
C30.14727 (8)0.38012 (10)0.06373 (18)0.0416 (4)
C110.07496 (7)0.03379 (10)0.21240 (19)0.0401 (3)
C50.19390 (7)0.12912 (11)0.2542 (2)0.0465 (4)
H5A0.19370.12800.37330.056*
H5B0.24550.13180.22870.056*
C130.07734 (8)0.14666 (11)0.2179 (2)0.0476 (4)
N10.11026 (8)0.21725 (10)0.2016 (2)0.0659 (5)
C120.14758 (12)0.54725 (14)0.0283 (3)0.0749 (6)
H12A0.18220.59810.05180.112*
H12B0.11840.56920.05720.112*
H12C0.11500.53280.12620.112*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C40.0256 (6)0.0491 (8)0.0494 (8)0.0029 (6)0.0100 (6)0.0070 (6)
C100.0260 (6)0.0394 (7)0.0466 (8)0.0002 (5)0.0033 (5)0.0005 (6)
C20.0353 (7)0.0443 (8)0.0465 (8)0.0021 (6)0.0060 (6)0.0025 (6)
C80.0259 (6)0.0396 (7)0.0460 (8)0.0002 (5)0.0068 (5)0.0018 (6)
O10.0440 (6)0.0520 (7)0.0778 (8)0.0107 (5)0.0166 (6)0.0084 (6)
C90.0268 (6)0.0440 (8)0.0446 (8)0.0016 (5)0.0068 (5)0.0044 (6)
C10.0266 (6)0.0443 (7)0.0489 (8)0.0001 (6)0.0043 (6)0.0007 (6)
C60.0294 (7)0.0446 (8)0.0664 (10)0.0074 (6)0.0086 (7)0.0007 (7)
C70.0345 (7)0.0388 (7)0.0507 (9)0.0031 (6)0.0002 (6)0.0011 (6)
C30.0370 (7)0.0448 (8)0.0447 (8)0.0063 (6)0.0128 (6)0.0021 (6)
C110.0284 (7)0.0420 (8)0.0497 (8)0.0032 (5)0.0028 (6)0.0007 (6)
C50.0251 (6)0.0520 (9)0.0623 (10)0.0043 (6)0.0043 (6)0.0005 (7)
C130.0370 (8)0.0427 (8)0.0618 (10)0.0005 (6)0.0008 (7)0.0022 (7)
N10.0529 (9)0.0487 (8)0.0946 (12)0.0102 (7)0.0004 (8)0.0082 (8)
C120.0666 (12)0.0661 (12)0.0881 (15)0.0194 (9)0.0103 (10)0.0366 (11)
Geometric parameters (Å, º) top
C4—C31.383 (2)C1—H10.9300
C4—C91.3836 (19)C6—C111.5120 (19)
C4—H40.9300C6—C51.521 (2)
C10—C111.4085 (18)C6—H6A0.9700
C10—C10i1.418 (3)C6—H6B0.9700
C10—C81.4796 (19)C7—C111.3943 (19)
C2—C11.3798 (19)C7—C7i1.410 (3)
C2—C31.393 (2)C7—C131.444 (2)
C2—H20.9300C5—H5A0.9700
C8—C11.3903 (19)C5—H5B0.9700
C8—C91.4076 (18)C13—N11.1392 (19)
O1—C31.3692 (17)C12—H12A0.9600
O1—C121.421 (2)C12—H12B0.9600
C9—C51.5005 (19)C12—H12C0.9600
C3—C4—C9120.71 (12)H6A—C6—H6B108.1
C3—C4—H4119.6C11—C7—C7i120.32 (8)
C9—C4—H4119.6C11—C7—C13119.08 (13)
C11—C10—C10i119.48 (8)C7i—C7—C13120.54 (8)
C11—C10—C8116.93 (12)O1—C3—C4116.15 (12)
C10i—C10—C8123.54 (7)O1—C3—C2123.99 (14)
C1—C2—C3119.29 (13)C4—C3—C2119.85 (13)
C1—C2—H2120.4C7—C11—C10119.56 (12)
C3—C2—H2120.4C7—C11—C6121.77 (12)
C1—C8—C9118.28 (12)C10—C11—C6118.67 (12)
C1—C8—C10122.59 (12)C9—C5—C6108.96 (12)
C9—C8—C10118.98 (12)C9—C5—H5A109.9
C3—O1—C12117.57 (12)C6—C5—H5A109.9
C4—C9—C8119.92 (13)C9—C5—H5B109.9
C4—C9—C5122.58 (12)C6—C5—H5B109.9
C8—C9—C5117.49 (12)H5A—C5—H5B108.3
C2—C1—C8121.71 (13)N1—C13—C7177.50 (18)
C2—C1—H1119.1O1—C12—H12A109.5
C8—C1—H1119.1O1—C12—H12B109.5
C11—C6—C5110.32 (12)H12A—C12—H12B109.5
C11—C6—H6A109.6O1—C12—H12C109.5
C5—C6—H6A109.6H12A—C12—H12C109.5
C11—C6—H6B109.6H12B—C12—H12C109.5
C5—C6—H6B109.6
C11—C10—C8—C1145.00 (15)C9—C4—C3—C23.0 (2)
C10i—C10—C8—C132.5 (3)C1—C2—C3—O1176.54 (14)
C11—C10—C8—C930.49 (19)C1—C2—C3—C43.8 (2)
C10i—C10—C8—C9152.05 (18)C7i—C7—C11—C100.5 (3)
C3—C4—C9—C81.3 (2)C13—C7—C11—C10177.68 (15)
C3—C4—C9—C5177.21 (14)C7i—C7—C11—C6179.84 (17)
C1—C8—C9—C44.7 (2)C13—C7—C11—C63.0 (2)
C10—C8—C9—C4179.60 (13)C10i—C10—C11—C78.9 (3)
C1—C8—C9—C5173.89 (13)C8—C10—C11—C7168.68 (14)
C10—C8—C9—C51.79 (19)C10i—C10—C11—C6170.49 (16)
C3—C2—C1—C80.3 (2)C8—C10—C11—C611.9 (2)
C9—C8—C1—C23.9 (2)C5—C6—C11—C7147.72 (15)
C10—C8—C1—C2179.43 (13)C5—C6—C11—C1031.6 (2)
C12—O1—C3—C4172.31 (16)C4—C9—C5—C6136.89 (14)
C12—O1—C3—C28.0 (2)C8—C9—C5—C641.68 (18)
C9—C4—C3—O1177.34 (13)C11—C6—C5—C957.20 (17)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···N1ii0.932.793.466 (2)131
C4—H4···N1iii0.932.863.742 (2)160
Symmetry codes: (ii) x, y, z; (iii) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···N1i0.932.793.466 (2)130.7
C4—H4···N1ii0.932.863.742 (2)159.6
Symmetry codes: (i) x, y, z; (ii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

This research was supported by the National Metal and Materials Technology Center, MTEC, (grant No. MT-B-55-POL-07-523-I).

References

First citationBruker (2008). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2012). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGingras, M. (2013). Chem. Soc. Rev. 42, 1051–1095.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMandal, B. K., Sooksimuang, T., Lee, C. H. & Wang, R. (2006). J. Porphyrins Phthalocyanines, 10, 140–146.  CrossRef CAS Google Scholar
First citationMcIntosh, A. O., Robertson, J. M. & Vand, V. (1954). J. Chem. Soc. pp. 1661–1668.  CrossRef Web of Science Google Scholar
First citationOgawa, Y., Toyama, M., Karikomi, M., Seki, K., Haga, K. & Uyehara, T. (2003). Tetrahedron Lett. 44, 2167–2170.  Web of Science CrossRef CAS Google Scholar
First citationRajapakse, A., Barnes, C. L. & Gates, K. S. (2011). J. Chem. Crystallogr. 41, 1712–1716.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSahasithiwat, S., Mophuang, T., Menbangpung, L., Kamtonwong, S. & Sooksimuang, S. (2010). Synth. Met. 160, 1148–1152.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShen, Y. & Chen, C. F. (2012). Chem. Rev. 122, 1463–1535.  Web of Science CrossRef Google Scholar
First citationStammel, C., Fröhlich, R., Wolff, C., Wenck, H., Meijere, A. & Mattay, J. (1999). Eur. J. Org. Chem. 7, 1709–1718.  CrossRef Google Scholar
First citationWang, Z. Y., Qi, Y., Bender, T. P. & Gao, J. P. (1997). Macromolecules, 30, 764–769.  CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds