research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 8| August 2014| Pages 98-100

Crystal structure of Cs2[Th(NO3)6]

aAG Fluorchemie, Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
*Correspondence e-mail: florian.kraus@tum.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 3 July 2014; accepted 8 July 2014; online 19 July 2014)

Dicaesium hexa­nitratothorate(IV), Cs2[Th(NO3)6], was synthesized in the form of colourless crystals by reaction of thorium nitrate and caesium nitrate in aqueous solution. The Th atom is located on an inversion centre and is coordinated by six chelating nitrate anions. The resulting ThO12 coordination polyhedron is best described as a slightly distorted icosa­hedron. The Cs atom also has a coordination number of 12, but its coordination polyhedron is considerably more distorted. The crystal packing can be derived from an hexa­gonal dense packing (hcp) of idealized spherical CsO12 and ThO12 units. The CsO12 units form a distorted hcp arrangement and half of the octa­hedral sites are occupied by the ThO12 units.

1. Chemical context

Nitrato complexes of the actinoids (Ryan, 1961[Ryan, J. L. (1961). J. Phys. Chem. 65, 1099-1107.]; Strnad & Kohler, 1989[Strnad, J. & Kohler, H.-H. (1989). Ber. Bunsen. Phys. Chem. 93, 1429-1432.]) play an important role in the production of nuclear fuel as well as in its reprocessing. Moreover, multinary thorium nitrate compounds are of potential inter­est as anhydrous starting materials for further chemical conversion.

2. Structural commentary

The thorium atom, Th1, occupies Wyckoff position 2c and has site symmetry [\overline{1}]. It is coordinated by six chelating nitrate anions in general positions. The resulting ThO12 polyhedron can be best described as a slightly distorted icosa­hedron. The [Th(NO3)6]2−-anion is shown in Fig. 1[link]. Its Th—O distances are in a rather narrow range from 2.541 (2) to 2.581 (2) Å and compare quite well with Th—O distances of other reported thorium nitrate structures. In Th(NO3)4(H2O)4, they range from 2.54 (1) to 2.61 (1) Å (Charpin et al., 1987[Charpin, P., Chevrier, G., Lance, M., Nierlich, M., Vigner, D., Livet, J. & Musikas, C. (1987). Acta Cryst. C43, 1239-1241.]), in Th(NO3)4(H2O)5 from 2.50 (1) to 2.62 (1) Å (Ueki et al., 1966[Ueki, T., Zalkin, A. & Templeton, D. H. (1966). Acta Cryst. 20, 836-841.]; Taylor et al., 1966[Taylor, J. C., Mueller, M. H. & Hitterman, R. L. (1966). Acta Cryst. 20, 842-851.]), and in the cubic structure of K2[Th(NO3)6] Th—O distances ranging from 2.535 (2) to 2.581 (2) Å were reported (Sigmon & Burns, 2010[Sigmon, G. E. & Burns, P. C. (2010). J. Solid State Chem. 183, 1604-1608.]).

[Figure 1]
Figure 1
The [Th(NO3)6]2−-anion of the title compound. Displacement ellipsoids are drawn at the 70% probability level. Labelling for symmetry-equivalent oxygen atoms is omitted for clarity. [Symmetry code: (i) −x, −y + 1, −z.]

In the nitrato ligands, the N—O distances of the metal-coordinating oxygen atoms are, as expected, elongated [1.270 (3) to 1.287 (3) Å] compared to the N—O distances of the terminal oxygen atoms [1.210 (3) to 1.212 (3) Å]. Similar N—O distances were reported for the nitrate anions in Th(NO3)4(H2O)4 (Charpin et al., 1987[Charpin, P., Chevrier, G., Lance, M., Nierlich, M., Vigner, D., Livet, J. & Musikas, C. (1987). Acta Cryst. C43, 1239-1241.]), Th(NO3)4(H2O)5 (Ueki et al., 1966[Ueki, T., Zalkin, A. & Templeton, D. H. (1966). Acta Cryst. 20, 836-841.]; Taylor et al., 1966[Taylor, J. C., Mueller, M. H. & Hitterman, R. L. (1966). Acta Cryst. 20, 842-851.]) and K2[Th(NO3)6] (Sigmon & Burns, 2010[Sigmon, G. E. & Burns, P. C. (2010). J. Solid State Chem. 183, 1604-1608.]).

The An—O (An = Th) and N—O distances in the title compound are also comparable to the respective distances reported for the uranyl nitrate Rb(UO2)(NO3)3 (Zalkin et al., 1989[Zalkin, A., Templeton, L. K. & Templeton, D. H. (1989). Acta Cryst. C45, 810-811.]), with 2.474 (3) Å for An—O (An = U), 1.205 (6) Å for terminal N—O, and 1.268 (4) Å for the metal-coordinating oxygen atoms. The crystal chemistry of M[UO2(NO3)3] (M = K, Rb, and Cs) compounds, with M = K (Jouffret et al., 2011[Jouffret, L. J., Krivovichev, S. V. & Burns, P. C. (2011). Z. Anorg. Allg. Chem. 637, 1475-1480.]; Krivovichev & Burns, 2004[Krivovichev, S. V. & Burns, P. C. (2004). Radiochemistry, 46, 16-19.]), Rb (Barclay et al., 1965[Barclay, G. A., Sabine, T. M. & Taylor, J. C. (1965). Acta Cryst. 19, 205-209.]; Zalkin et al., 1989[Zalkin, A., Templeton, L. K. & Templeton, D. H. (1989). Acta Cryst. C45, 810-811.]) and Cs (Malcic & Ljubica, 1961[Malcic, S. S. & Ljubica, L. M. (1961). Bull. B. Kidric. Inst. Nucl. Sci. 11, 135-139.]), was discussed comparatively by Krivovichev & Burns (2004[Krivovichev, S. V. & Burns, P. C. (2004). Radiochemistry, 46, 16-19.]).

The caesium cation is surrounded by eleven NO3-anions, one of which is chelating, leading to an overall coordination number of 12. The Cs—O distances of the chelating O-atoms range from 3.150 (2) to 3.436 (3) Å, whereas the other ten Cs—O distances are between 3.090 (2) and 3.552 (2) Å.

The crystal structure of Cs2[Th(NO3)6] can be derived from a dense packing if the CsO12 and ThO12 units are idealized as spheres. The CsO12 units form a distorted hexa­gonal close-packed arrangement with the ThO12 units situated in half of the octa­hedral sites. The unit cell of Cs2[Th(NO3)6] is shown in Fig. 2[link], pointing out the pseudo-hexa­gonal arrangement.

[Figure 2]
Figure 2
Unit cell of Cs2[Th(NO3)6] viewed along [010]. Displacement ellipsoids are shown at the 70% probability level.

The structure of the title compound is assumed to be isotypic with that of Rb2[Th(NO3)6] (Walker et al., 1956[Walker, D. J., Cromer, D. T. & Staritzky, E. (1956). Anal. Chem. 28, 1635-1636.]), although atom positions have not been reported for the Rb compound so far. However, the unit cells are similar and the space group types are identical.

3. Synthesis and crystallization

0.1 g (0.18 mmol, 1 eq) Th(NO3)4·5H2O and 70 mg (0.36 mmol, 2 eq) CsNO3 were placed in a reaction flask and 100 ml water were added. The turbid solution was stirred and 1 ml of HNO3 conc. was additionally added, which led to a clear solution. The mixture was heated to 333 K and evaporated at 22 mbar in a rotary evaporator leading to a colourless powder. After dissolving the colourless solid in as little water as possible, the solution was allowed to evaporate at room temperature for one month. Single crystals of the title compound were obtained in an almost qu­anti­tative yield.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. The highest remaining electron density was found in Wyckoff position 2a. Inclusion of this density in the refinement led to unreasonable models. In the final model, this density was therefore not further considered.

Table 1
Experimental details

Crystal data
Chemical formula Cs2[Th(NO3)6]
Mr 869.92
Crystal system, space group Monoclinic, P21/c
Temperature (K) 123
a, b, c (Å) 8.1259 (14), 7.1873 (12), 15.583 (3)
β (°) 120.631 (10)
V3) 783.1 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 14.22
Crystal size (mm) 0.09 × 0.07 × 0.06
 
Data collection
Diffractometer Bruker Kappa APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.374, 0.498
No. of measured, independent and observed [I > 2σ(I)] reflections 31379, 3684, 2913
Rint 0.043
(sin θ/λ)max−1) 0.831
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.047, 1.04
No. of reflections 3684
No. of parameters 124
Δρmax, Δρmin (e Å−3) 2.14, −1.35
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXLE (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]), DIAMOND (Brandenburg, 2012[Brandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Chemical context top

Nitrato complexes of the actinoids (Ryan, 1961; Strnad & Kohler, 1989) play an important role in the production of nuclear fuel as well as in its reprocessing. Moreover, multinary thorium nitrate compounds are of potential inter­est as anhydrous starting materials for further chemical conversion.

Structural commentary top

The thorium atom, Th1, occupies Wyckoff position 2c and has site symmetry 1. It is coordinated by six chelating nitrate anions in general positions. The resulting ThO12 polyhedron can be best described as a slightly distorted icosahedron. The [Th(NO3)6]2--anion is shown in Fig. 1. Its Th—O distances are in a rather narrow range from 2.541 (2) to 2.581 (2) Å and compare quite well with Th—O distances of other reported thorium nitrate structures. In Th(NO3)4(H2O)4, they range from 2.54 (1) to 2.61 (1) Å (Charpin et al., 1987), in Th(NO3)4(H2O)5 from 2.50 (1) to 2.62 (1) Å (Ueki et al., 1966; Taylor et al., 1966) and in the cubic structure of K2[Th(NO3)6] Th—O, distances ranging from 2.535 (2) to 2.581 (2) Å were reported (Sigmon & Burns, 2010).

In the nitrato ligands, the N—O distances of the metal-coordinating oxygen atoms are, as expected, elongated [1.270 (3) to 1.287 (3) Å] compared to the N—O distances of the terminal oxygen atoms [1.210 (3) to 1.212 (3) Å]. Similar N—O distances were reported for the nitrate anions in Th(NO3)4(H2O)4 (Charpin et al., 1987), Th(NO3)4(H2O)5 (Ueki et al., 1966; Taylor et al., 1966) and K2[Th(NO3)6] (Sigmon & Burns, 2010).

The An—O (An = Th) and N—O distances in the title compound are also comparable to the respective distances reported for the uranyl nitrate Rb(UO2)(NO3)3 (Zalkin et al., 1989), with 2.474 (3) Å for An—O (An = U), 1.205 (6) Å for terminal N—O, and 1.268 (4) Å for the metal-coordinating oxygen atoms. The crystal chemistry of M[UO2(NO3)3] (M = K, Rb, and Cs) compounds, with M = K (Jouffret et al., 2011; Krivovichev & Burns, 2004), Rb (Barclay et al., 1965; Zalkin et al., 1989) and Cs (Malcic & Ljubica, 1961), was discussed comparatively by Krivovichev & Burns (2004).

The caesium cation is surrounded by eleven NO3-anions, one of which is chelating, leading to an overall coordination number of 12. The Cs—O distances of the chelating O-atoms range from 3.150 (2) to 3.436 (3) Å, whereas the other ten Cs—O distances are between 3.090 (2) and 3.552 (2) Å.

The crystal structure of Cs2[Th(NO3)6] can be derived from a dense packing if the CsO12 and ThO12 units are idealized as spheres. The CsO12 units form a distorted hexagonal close-packed arrangement with the ThO12 units situated in half of the o­cta­hedral sites. The unit cell of Cs2[Th(NO3)6] is shown in Fig. 2, pointing out the pseudo-hexagonal arrangement.

The structure of the title compound is assumed to be isotypic with that of Rb2[Th(NO3)6] (Walker et al., 1956), although atom positions have not been reported for the Rb compound so far. However, the unit cells are similar and the space group types are identical.

Synthesis and crystallization top

0.1 g (0.18 mmol, 1 eq) Th(NO3)4.5H2O and 70 mg (0.36 mmol, 2eq) CsNO3 were placed in a reaction flask and 100 ml water were added. The turbid solution was stirred and 1 ml of HNO3 conc. was additionally added, which led to a clear solution. The mixture was heated to 333 K and evaporated at 22 mbar in a rotary evaporator leading to a colourless powder. After dissolving the colourless solid in as little water as possible, the solution was allowed to evaporate at room temperature for one month. Single crystals of the title compound were obtained in an almost qu­anti­tative yield.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. The highest remaining electron density was found in Wyckoff position 2a. Inclusion of this density in the refinement led to unreasonable models. In the final model, this density was therefore not further considered.

Related literature top

For related literature, see: Barclay et al. (1965); Charpin et al. (1987); Jouffret et al. (2011); Krivovichev & Burns (2004); Malcic & Ljubica (1961); Ryan (1961); Sigmon & Burns (2010); Strnad & Kohler (1989); Taylor et al. (1966); Ueki et al. (1966); Walker et al. (1956); Zalkin et al. (1989).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and SHELXLE (Hübschle et al., 2011); molecular graphics: DIAMOND (Brandenburg, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The [Th(NO3)6]2--anion of the title compound. Displacement ellipsoids are drawn at the 70% probability level. Labelling for symmetry-equivalent oxygen atoms is omitted for clarity. [Symmetry code: (i) -x, -y+1, -z.]
[Figure 2] Fig. 2. Unit cell of Cs2[Th(NO3)6] viewed along [010]. Displacement ellipsoids are shown at the 70% probability level at 123 K.
Dicaesium hexanitratothorate(IV) top
Crystal data top
Cs2[Th(NO3)6]F(000) = 772
Mr = 869.92Dx = 3.689 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9806 reflections
a = 8.1259 (14) Åθ = 2.9–36.0°
b = 7.1873 (12) ŵ = 14.22 mm1
c = 15.583 (3) ÅT = 123 K
β = 120.631 (10)°Block, colourless
V = 783.1 (2) Å30.09 × 0.07 × 0.06 mm
Z = 2
Data collection top
Bruker Kappa APEXII
diffractometer
3684 independent reflections
Radiation source: fine-focus sealed tube2913 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
Detector resolution: 16 pixels mm-1θmax = 36.2°, θmin = 2.9°
ϕ and ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 1011
Tmin = 0.374, Tmax = 0.498l = 2525
31379 measured reflections
Refinement top
Refinement on F20 constraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.023Secondary atom site location: difference Fourier map
wR(F2) = 0.047 w = 1/[σ2(Fo2) + (0.0213P)2 + 0.6529P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3684 reflectionsΔρmax = 2.14 e Å3
124 parametersΔρmin = 1.35 e Å3
0 restraints
Crystal data top
Cs2[Th(NO3)6]V = 783.1 (2) Å3
Mr = 869.92Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.1259 (14) ŵ = 14.22 mm1
b = 7.1873 (12) ÅT = 123 K
c = 15.583 (3) Å0.09 × 0.07 × 0.06 mm
β = 120.631 (10)°
Data collection top
Bruker Kappa APEXII
diffractometer
3684 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2913 reflections with I > 2σ(I)
Tmin = 0.374, Tmax = 0.498Rint = 0.043
31379 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.023124 parameters
wR(F2) = 0.0470 restraints
S = 1.04Δρmax = 2.14 e Å3
3684 reflectionsΔρmin = 1.35 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Th10.00000.50000.00000.00841 (3)
Cs10.65173 (2)0.75443 (3)0.162303 (12)0.01352 (4)
N10.2073 (4)0.7544 (4)0.17622 (17)0.0131 (4)
O10.2995 (3)0.8680 (4)0.24064 (17)0.0209 (5)
O20.2851 (3)0.6068 (3)0.16636 (15)0.0138 (4)
O30.0296 (3)0.7724 (3)0.11416 (15)0.0151 (4)
N20.3383 (3)0.2500 (4)0.06501 (18)0.0132 (4)
O40.4570 (3)0.1358 (4)0.07556 (18)0.0216 (5)
O50.3172 (3)0.4028 (3)0.01760 (16)0.0152 (4)
O60.2249 (3)0.2274 (3)0.09779 (16)0.0151 (4)
N30.1193 (3)0.2394 (4)0.10851 (18)0.0119 (4)
O70.1394 (3)0.1225 (3)0.15830 (16)0.0174 (4)
O80.1830 (3)0.2212 (3)0.01536 (15)0.0146 (4)
O90.0265 (3)0.3910 (3)0.14759 (15)0.0139 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Th10.00943 (5)0.00874 (7)0.00772 (5)0.00017 (5)0.00486 (4)0.00012 (5)
Cs10.01532 (8)0.01297 (9)0.01191 (7)0.00162 (6)0.00667 (6)0.00070 (6)
N10.0167 (10)0.0129 (12)0.0101 (9)0.0014 (9)0.0071 (8)0.0003 (8)
O10.0273 (12)0.0148 (12)0.0158 (10)0.0061 (9)0.0076 (9)0.0058 (8)
O20.0136 (9)0.0135 (11)0.0143 (9)0.0002 (7)0.0070 (8)0.0007 (7)
O30.0145 (9)0.0172 (12)0.0119 (9)0.0006 (8)0.0055 (7)0.0025 (8)
N20.0119 (10)0.0151 (13)0.0116 (9)0.0032 (9)0.0051 (8)0.0006 (9)
O40.0168 (10)0.0203 (13)0.0247 (11)0.0088 (9)0.0086 (9)0.0010 (9)
O50.0156 (9)0.0164 (12)0.0151 (9)0.0021 (8)0.0089 (8)0.0023 (8)
O60.0157 (9)0.0154 (12)0.0165 (9)0.0014 (7)0.0098 (8)0.0021 (8)
N30.0111 (9)0.0123 (12)0.0130 (10)0.0023 (8)0.0066 (8)0.0032 (8)
O70.0226 (11)0.0143 (12)0.0200 (10)0.0010 (8)0.0142 (9)0.0063 (8)
O80.0159 (9)0.0177 (12)0.0101 (8)0.0033 (8)0.0065 (7)0.0021 (7)
O90.0177 (9)0.0143 (11)0.0116 (9)0.0028 (8)0.0088 (8)0.0015 (7)
Geometric parameters (Å, º) top
Th1—O92.541 (2)N1—O11.212 (3)
Th1—O9i2.541 (2)N1—O31.270 (3)
Th1—O52.547 (2)N1—O21.283 (3)
Th1—O5i2.547 (2)O1—Cs1iv3.090 (2)
Th1—O22.561 (2)O2—Cs1ii3.523 (2)
Th1—O2i2.561 (2)O3—Cs1viii3.515 (2)
Th1—O32.573 (2)N2—O41.212 (3)
Th1—O3i2.573 (2)N2—O61.271 (3)
Th1—O8i2.578 (2)N2—O51.285 (3)
Th1—O82.578 (2)N2—Cs1v3.584 (2)
Th1—O6i2.581 (2)O4—Cs1ix3.109 (3)
Th1—O62.581 (2)O4—Cs1v3.436 (3)
Cs1—O1ii3.090 (2)O5—Cs1v3.150 (2)
Cs1—O4iii3.109 (3)O6—Cs1ii3.347 (2)
Cs1—O9iv3.134 (2)N3—O71.210 (3)
Cs1—O5v3.150 (2)N3—O81.275 (3)
Cs1—O7vi3.161 (2)N3—O91.287 (3)
Cs1—O23.194 (2)N3—Cs1ii3.657 (2)
Cs1—O6iv3.347 (2)O7—Cs1x3.161 (2)
Cs1—O8i3.385 (2)O7—Cs1ii3.624 (2)
Cs1—O4v3.436 (3)O8—Cs1i3.385 (2)
Cs1—O3vii3.515 (2)O9—Cs1ii3.134 (2)
Cs1—O2iv3.523 (2)O9—Cs1viii3.785 (2)
Cs1—O53.552 (2)
O9—Th1—O9i180.0O2—Cs1—O4v111.59 (5)
O9—Th1—O5111.46 (7)O6iv—Cs1—O4v169.89 (6)
O9i—Th1—O568.54 (7)O8i—Cs1—O4v62.74 (5)
O9—Th1—O5i68.54 (7)O1ii—Cs1—O3vii103.26 (6)
O9i—Th1—O5i111.46 (7)O4iii—Cs1—O3vii100.43 (6)
O5—Th1—O5i180.0O9iv—Cs1—O3vii69.90 (5)
O9—Th1—O268.05 (7)O5v—Cs1—O3vii49.34 (5)
O9i—Th1—O2111.95 (7)O7vi—Cs1—O3vii55.17 (6)
O5—Th1—O268.25 (7)O2—Cs1—O3vii160.35 (5)
O5i—Th1—O2111.75 (7)O6iv—Cs1—O3vii116.33 (5)
O9—Th1—O2i111.95 (7)O8i—Cs1—O3vii124.39 (5)
O9i—Th1—O2i68.05 (7)O4v—Cs1—O3vii62.21 (5)
O5—Th1—O2i111.75 (7)O1ii—Cs1—O2iv110.03 (6)
O5i—Th1—O2i68.25 (7)O4iii—Cs1—O2iv62.67 (6)
O2—Th1—O2i180.0O9iv—Cs1—O2iv50.38 (5)
O9—Th1—O368.29 (7)O5v—Cs1—O2iv152.33 (5)
O9i—Th1—O3111.72 (7)O7vi—Cs1—O2iv62.66 (5)
O5—Th1—O3113.67 (7)O2—Cs1—O2iv90.06 (4)
O5i—Th1—O366.33 (7)O6iv—Cs1—O2iv49.46 (5)
O2—Th1—O349.78 (7)O8i—Cs1—O2iv104.56 (5)
O2i—Th1—O3130.22 (7)O4v—Cs1—O2iv120.70 (6)
O9—Th1—O3i111.72 (7)O3vii—Cs1—O2iv109.23 (5)
O9i—Th1—O3i68.28 (7)O1ii—Cs1—O562.42 (6)
O5—Th1—O3i66.33 (7)O4iii—Cs1—O5107.22 (6)
O5i—Th1—O3i113.67 (7)O9iv—Cs1—O5152.10 (5)
O2—Th1—O3i130.22 (7)O5v—Cs1—O564.03 (6)
O2i—Th1—O3i49.78 (7)O7vi—Cs1—O5145.89 (5)
O3—Th1—O3i180.0O2—Cs1—O549.93 (5)
O9—Th1—O8i130.00 (7)O6iv—Cs1—O5111.39 (5)
O9i—Th1—O8i50.00 (7)O8i—Cs1—O548.65 (5)
O5—Th1—O8i67.87 (7)O4v—Cs1—O577.61 (6)
O5i—Th1—O8i112.13 (7)O3vii—Cs1—O5111.10 (5)
O2—Th1—O8i66.04 (7)O2iv—Cs1—O5139.61 (5)
O2i—Th1—O8i113.96 (7)O1—N1—O3123.0 (3)
O3—Th1—O8i67.52 (7)O1—N1—O2121.4 (3)
O3i—Th1—O8i112.48 (7)O3—N1—O2115.6 (2)
O9—Th1—O850.00 (7)O1—N1—Th1171.90 (19)
O9i—Th1—O8130.00 (7)O3—N1—Th158.37 (14)
O5—Th1—O8112.13 (7)O2—N1—Th157.86 (13)
O5i—Th1—O867.87 (7)O1—N1—Cs180.78 (16)
O2—Th1—O8113.96 (7)O3—N1—Cs1135.65 (16)
O2i—Th1—O866.04 (7)O2—N1—Cs156.08 (13)
O3—Th1—O8112.48 (7)Th1—N1—Cs193.18 (6)
O3i—Th1—O867.52 (7)N1—O1—Cs1iv151.9 (2)
O8i—Th1—O8180.0N1—O1—Cs180.51 (16)
O9—Th1—O6i114.04 (7)Cs1iv—O1—Cs1115.37 (7)
O9i—Th1—O6i65.96 (7)N1—O2—Th197.02 (15)
O5—Th1—O6i130.17 (7)N1—O2—Cs1104.44 (16)
O5i—Th1—O6i49.83 (7)Th1—O2—Cs1116.83 (7)
O2—Th1—O6i111.92 (7)N1—O2—Cs1ii113.20 (15)
O2i—Th1—O6i68.08 (7)Th1—O2—Cs1ii105.02 (7)
O3—Th1—O6i67.62 (7)Cs1—O2—Cs1ii118.46 (6)
O3i—Th1—O6i112.38 (7)N1—O3—Th196.77 (16)
O8i—Th1—O6i67.90 (7)N1—O3—Cs1viii127.70 (16)
O8—Th1—O6i112.10 (7)Th1—O3—Cs1viii109.60 (7)
O9—Th1—O665.96 (7)O4—N2—O6123.3 (3)
O9i—Th1—O6114.04 (7)O4—N2—O5121.3 (2)
O5—Th1—O649.83 (7)O6—N2—O5115.4 (2)
O5i—Th1—O6130.17 (7)O4—N2—Th1169.0 (2)
O2—Th1—O668.08 (7)O6—N2—Th158.96 (13)
O2i—Th1—O6111.92 (7)O5—N2—Th157.49 (13)
O3—Th1—O6112.38 (7)O4—N2—Cs1v73.20 (16)
O3i—Th1—O667.62 (7)O6—N2—Cs1v141.44 (17)
O8i—Th1—O6112.11 (7)O5—N2—Cs1v60.20 (13)
O8—Th1—O667.90 (7)Th1—N2—Cs1v98.63 (7)
O6i—Th1—O6180.0N2—O4—Cs1ix148.2 (2)
O1ii—Cs1—O4iii156.25 (6)N2—O4—Cs1v87.06 (17)
O1ii—Cs1—O9iv89.90 (6)Cs1ix—O4—Cs1v117.75 (7)
O4iii—Cs1—O9iv99.74 (6)N2—O5—Th197.33 (15)
O1ii—Cs1—O5v93.71 (6)N2—O5—Cs1v99.06 (16)
O4iii—Cs1—O5v100.55 (6)Th1—O5—Cs1v122.56 (8)
O9iv—Cs1—O5v118.27 (5)N2—O5—Cs1114.09 (16)
O1ii—Cs1—O7vi145.66 (6)Th1—O5—Cs1106.16 (7)
O4iii—Cs1—O7vi54.04 (6)Cs1v—O5—Cs1115.97 (6)
O9iv—Cs1—O7vi58.91 (6)N2—O6—Th196.08 (16)
O5v—Cs1—O7vi89.74 (6)N2—O6—Cs1ii125.14 (16)
O1ii—Cs1—O265.17 (6)Th1—O6—Cs1ii109.54 (7)
O4iii—Cs1—O291.62 (6)O7—N3—O8123.3 (3)
O9iv—Cs1—O2123.54 (5)O7—N3—O9121.5 (2)
O5v—Cs1—O2113.40 (5)O8—N3—O9115.2 (2)
O7vi—Cs1—O2142.57 (6)O7—N3—Th1169.82 (18)
O1ii—Cs1—O6iv60.69 (6)O8—N3—Th158.82 (13)
O4iii—Cs1—O6iv109.47 (6)O9—N3—Th157.20 (12)
O9iv—Cs1—O6iv50.84 (5)O7—N3—Cs1ii78.86 (16)
O5v—Cs1—O6iv149.23 (6)O8—N3—Cs1ii137.03 (15)
O7vi—Cs1—O6iv102.26 (6)O9—N3—Cs1ii56.39 (13)
O2—Cs1—O6iv73.15 (5)Th1—N3—Cs1ii93.37 (6)
O1ii—Cs1—O8i104.90 (6)N3—O7—Cs1x147.48 (19)
O4iii—Cs1—O8i59.16 (6)N3—O7—Cs1ii82.01 (16)
O9iv—Cs1—O8i154.64 (5)Cs1x—O7—Cs1ii126.22 (7)
O5v—Cs1—O8i81.81 (5)N3—O8—Th196.14 (16)
O7vi—Cs1—O8i109.40 (6)N3—O8—Cs1i124.10 (15)
O2—Cs1—O8i50.29 (5)Th1—O8—Cs1i110.23 (7)
O6iv—Cs1—O8i119.24 (5)N3—O9—Th197.60 (15)
O1ii—Cs1—O4v129.25 (6)N3—O9—Cs1ii103.60 (16)
O4iii—Cs1—O4v62.25 (7)Th1—O9—Cs1ii117.54 (7)
O9iv—Cs1—O4v122.67 (6)N3—O9—Cs1viii110.88 (15)
O5v—Cs1—O4v38.31 (6)Th1—O9—Cs1viii102.81 (7)
O7vi—Cs1—O4v68.42 (6)Cs1ii—O9—Cs1viii121.84 (6)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y1/2, z+1/2; (iii) x, y+1, z; (iv) x+1, y+1/2, z+1/2; (v) x+1, y+1, z; (vi) x+1, y+1, z; (vii) x+1, y, z; (viii) x1, y, z; (ix) x, y1, z; (x) x1, y1, z.

Experimental details

Crystal data
Chemical formulaCs2[Th(NO3)6]
Mr869.92
Crystal system, space groupMonoclinic, P21/c
Temperature (K)123
a, b, c (Å)8.1259 (14), 7.1873 (12), 15.583 (3)
β (°) 120.631 (10)
V3)783.1 (2)
Z2
Radiation typeMo Kα
µ (mm1)14.22
Crystal size (mm)0.09 × 0.07 × 0.06
Data collection
DiffractometerBruker Kappa APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.374, 0.498
No. of measured, independent and
observed [I > 2σ(I)] reflections
31379, 3684, 2913
Rint0.043
(sin θ/λ)max1)0.831
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.047, 1.04
No. of reflections3684
No. of parameters124
Δρmax, Δρmin (e Å3)2.14, 1.35

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and SHELXLE (Hübschle et al., 2011), DIAMOND (Brandenburg, 2012), publCIF (Westrip, 2010).

 

Acknowledgements

FK thanks the Deutsche Forschungsgemeinschaft for his Heisenberg fellowship. PW would like to thank the Deutsche Forschungsgemeinschaft for financial support.

References

First citationBarclay, G. A., Sabine, T. M. & Taylor, J. C. (1965). Acta Cryst. 19, 205–209.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBrandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCharpin, P., Chevrier, G., Lance, M., Nierlich, M., Vigner, D., Livet, J. & Musikas, C. (1987). Acta Cryst. C43, 1239–1241.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJouffret, L. J., Krivovichev, S. V. & Burns, P. C. (2011). Z. Anorg. Allg. Chem. 637, 1475–1480.  Web of Science CrossRef CAS Google Scholar
First citationKrivovichev, S. V. & Burns, P. C. (2004). Radiochemistry, 46, 16–19.  CrossRef CAS Google Scholar
First citationMalcic, S. S. & Ljubica, L. M. (1961). Bull. B. Kidric. Inst. Nucl. Sci. 11, 135–139.  CAS Google Scholar
First citationRyan, J. L. (1961). J. Phys. Chem. 65, 1099–1107.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSigmon, G. E. & Burns, P. C. (2010). J. Solid State Chem. 183, 1604-1608.  Web of Science CrossRef CAS Google Scholar
First citationStrnad, J. & Kohler, H.-H. (1989). Ber. Bunsen. Phys. Chem. 93, 1429–1432.  CrossRef CAS Google Scholar
First citationTaylor, J. C., Mueller, M. H. & Hitterman, R. L. (1966). Acta Cryst. 20, 842–851.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationUeki, T., Zalkin, A. & Templeton, D. H. (1966). Acta Cryst. 20, 836–841.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationWalker, D. J., Cromer, D. T. & Staritzky, E. (1956). Anal. Chem. 28, 1635–1636.  CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZalkin, A., Templeton, L. K. & Templeton, D. H. (1989). Acta Cryst. C45, 810–811.  CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 8| August 2014| Pages 98-100
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds