

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-Methylsulfanyl-2-phenylquinazoline

Mohammed B. Alshammari,^a Keith Smith,^b Amany S. Hegazy,^b Benson M. Kariuki^b‡ and Gamal A. El-Hiti^c*

^aChemistry Department, College of Sciences and Humanities, Salman bin Abdulaziz University, PO Box 83, Al-Kharij 11942, Saudi Arabia, ^bSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK, and ^cCornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, PO Box 10219, Riyadh 11433, Saudi Arabia Correspondence e-mail: gelhiti@ksu.edu.sa

Received 2 July 2014; accepted 4 July 2014 Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.002 Å; R factor = 0.039; wR factor = 0.097; data-to-parameter ratio = 18.4.

In the title compound, $C_{15}H_{12}N_2S$, the methylthioquinazoline group is planar with the methyl C displaced by only 0.116 (3) Å from the plane of the quinazoline moiety. The dihedral angle between the phenyl ring and the quinazoline ring system is 13.95 (5)°. In the crystal, each molecule is linked by π - π stacking between to two adjacent inversion-related molecules. On one side, the inverted quinazoline groups interact with a centroid–centroid distance of 3.7105 (9) Å. On the other side, the quinazoline group interacts with the pyrimidine and phenyl rings of the second neighbour with centroid–centroid distances of 3.5287 (8) and 3.8601 (9) Å, respectively.

Related literature

For the synthesis of 4-alkythioqinazolines, see: Leonard & Curtin (1946); Hearn *et al.* (1951); Meerwein *et al.* (1956); Blatter & Lukaszewski (1964); Segarra *et al.* (1998); Smith *et al.* (2005*a*,*b*).

[‡] Additional correspondence author, e-mail: kariukib@cardiff.ac.uk.

Experimental

Crystal data

N a

h

$C_{15}H_{12}N_2S$	V = 1208.33 (6) Å ³
$A_r = 252.33$	Z = 4
Aonoclinic, $P2_1/n$	Mo $K\alpha$ radiation
$= 10.1951 (3) \text{\AA}$	$\mu = 0.25 \text{ mm}^{-1}$
= 7.3545 (2) Å	$T = 150 { m K}$
= 16.5300 (5) Å	$0.23 \times 0.18 \times 0.15$ mm
$B = 102.860 \ (3)^{\circ}$	

Data collection

Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer Absorption correction: multi-scan (*CrysAlis PRO*; Agilent, 2013) $T_{\rm min} = 0.848, T_{\rm max} = 1.000$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.097$ S = 1.083025 reflections 11140 measured reflections 3025 independent reflections 2558 reflections with $I > 2\sigma(I)$ $R_{int} = 0.030$

164 parameters H-atom parameters constrained
$$\begin{split} &\Delta \rho_{max} = 0.29 \text{ e } \text{\AA}^{-3} \\ &\Delta \rho_{min} = -0.34 \text{ e } \text{\AA}^{-3} \end{split}$$

Data collection: *CrysAlis PRO* (Agilent, 2013); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

This project was supported by the Deanship of Scientific Research at Salman bin Abdulaziz University under research project 2013/01/8.

Supporting information for this paper is available from the IUCr electronic archives (Reference: XU5801).

References

Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.

- Blatter, H. M. & Lukaszewski, H. (1964). *Tetrahedron Lett.* pp. 855–861. Hearn, J. M., Morton, R. A. & Simpson, J. C. E. (1951). *J. Chem. Soc.* pp. 3318–
- 3329.
- Leonard, N. J. & Curtin, D. Y. (1946). J. Org. Chem. 11, 349-352.
- Meerwein, H., Laasch, P., Mersch, R. & Nentwig, J. (1956). Chem. Ber. 89, 224–238.
- Segarra, V., Crespo, M. I., Pujol, F., Beleta, J., Domenech, T., Miralpeix, M., Palacios, J. M., Castro, A. & Martinez, A. (1998). *Bioorg. Med. Chem. Lett.* 8, 505–510.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Smith, K., El-Hiti, G. A. & Hegazy, A. S. (2005a). J. Sulfur Chem. 26, 121-131.
- Smith, K., El-Hiti, G. A. & Hegazy, A. S. (2005b). Synthesis, pp. 2951-2961.

supporting information

Acta Cryst. (2014). E70, o871 [doi:10.1107/S1600536814015657]

Crystal structure of 4-methylsulfanyl-2-phenylquinazoline

Mohammed B. Alshammari, Keith Smith, Amany S. Hegazy, Benson M. Kariuki and Gamal A. El-Hiti

S1. Structural commentary

In the 4-(methylthio)-2-phenylquinazoline molecule (Fig 1), the angle between the planes through the phenyl and phenylquinazoline ring systems is 13.95 (5)°. The molecules are stacked in the [010] direction with approximately parallel molecular planes. With no strong H-bond donors, one N atom accepts a long C—H…N contact linking molecules along [101]. The second N atom is not involved. 4-Methylthioquinazoline derivatives can be obtained from reaction of the potassium salt of 3*H*-quinazoline-4-thiones with iodomethane (Leonard & Curtin, 1946; Meerwein *et al.*, 1956). Quinazoline-4-thiones are produced from the corresponding 3*H*-quinazoline-4-ones using phosphorus pentasulfide (Hearn, *et al.*, 1951), Lawesson's reagent (Segarra *et al.*, 1998) or isothiocyanates (Blatter & Lukaszewski, 1964). In a continuation of our research focused on new synthetic routes towards novel substituted 4-alkylthioquinazoline derivatives (Smith *et al.*, 2005*a*,*b*) we have synthesized 4-(methylthio)-2-phenylquinazoline in a high yield (Smith *et al.*, 2005*a*).

S2. Synthesis and crystallization

To a solution of 2-phenyl-3*H*-quinazoline-4-thione (4.81 g, 20.2 mmol) in a 1:1 mixture of MeOH and water (50 ml) containing KOH (3.0 g), was added iodomethane (3.41 g, 24.0 mmol). The reaction mixture was stirred for 20 min at room temperature and the solid obtained was filtered, washed with H₂O (3 × 30 ml), dried and recrystallized from Et₂O to give 4-(methylthio)-2-phenylquinazoline (4.63 g, 18.3 mmol, 91%) as colourless crystals, m.p. 93-94 °C [lit. 94 °C (H₂O); Meerwein *et al.*, 1956). ¹H NMR (400 MHz, CDCl₃, δ , p.p.m.) 8.70-8.66 (m, 2 H, ArH), 8.10-8.03 (m, 2 H, ArH), 7.83 (app. dt, *J* = 1, 8 Hz, 1 H, H-7), 7.58-7.51 (m, 4 H, ArH), 2.85 (s, 3 H, CH₃). ¹³C NMR (100 MHz, CDCl₃, *d*, p.p.m.) 171.8 (s, C-2), 159.2 (s, C-4), 149.1 (s, C-8a), 138.5 (s, C-1 of Ph), 133.9 (d, C-7), 131.0 (d, C-4 of Ph), 129.4 (d, C-8), 129.0 (d, C-3/C-5 of Ph), 128.9 (d, C-2/C-6 of Ph), 127.1 (d, C-6), 124.1 (d, C-5), 123.0 (s, C-4a), 13.0 (q, CH₃). EI—MS (*m/z*, %): 252 (*M*⁺, 100), 251 (72), 205 (60), 102 (47), 77 (61), 51 (33). CI—MS (*m/z*, %): 253 (*MH*⁺, 100), 207 (3). HRMS (CI): Calculated for C₁₅H₁₃N₂S [*MH*] 253.0794; found, 253.0789.

S3. Refinement

H atoms were placed in calculated positions with C—H = 0.95 and 0.98 Å and refined in riding mode, $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms and $1.2U_{eq}(C)$ for aromatic H atoms.

Figure 1

A molecule showing atom labels and 50% probability displacement ellipsoids for non-H atoms.

Figure 2

Packing diagram.

4-Methylsulfanyl-2-phenylquinazoline

Crystal data

 $C_{15}H_{12}N_2S$ $M_r = 252.33$ Monoclinic, $P2_1/n$ a = 10.1951 (3) Å b = 7.3545 (2) Å c = 16.5300 (5) Å $\beta = 102.860$ (3)° V = 1208.33 (6) Å³ Z = 4 F(000) = 528 $D_x = 1.387 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2558 reflections $\theta = 3.1-29.7^{\circ}$ $\mu = 0.25 \text{ mm}^{-1}$ T = 150 KBlock, colourless $0.23 \times 0.18 \times 0.15 \text{ mm}$ Data collection

Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer	11140 measured reflections 3025 independent reflections
Radiation source: SuperNova (Mo) X-ray	2558 reflections with $I > 2\sigma(I)$
Source	$R_{\rm int} = 0.030$
Mirror monochromator	$\theta_{\rm max} = 29.7^{\circ}, \ \theta_{\rm min} = 3.1^{\circ}$
ω scans	$h = -13 \rightarrow 12$
Absorption correction: multi-scan	$k = -9 \rightarrow 10$
(CrysAlis PRO; Agilent, 2013)	$l = -17 \rightarrow 22$
$T_{\min} = 0.848, \ T_{\max} = 1.000$	
Refinement	
Refinement on F^2	Hydrogen site location: inferred from

Refinement on F^2
Least-squares matrix: full
$R[F^2 > 2\sigma(F^2)] = 0.039$
$wR(F^2) = 0.097$
S = 1.08
3025 reflections
164 parameters
0 restraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0323P)^2 + 0.6772P]$

 $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.29 \text{ e Å}^{-3}$ $\Delta \rho_{\rm min} = -0.34 \text{ e Å}^{-3}$

where $P = (F_0^2 + 2F_c^2)/3$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.09137 (15)	0.6738 (2)	-0.06125 (9)	0.0182 (3)	
C2	0.06916 (15)	0.7676 (2)	0.06700 (9)	0.0189 (3)	
C3	-0.07074 (14)	0.8041 (2)	0.03446 (9)	0.0183 (3)	
C4	-0.11800 (15)	0.7663 (2)	-0.05066 (9)	0.0196 (3)	
C5	-0.16032 (16)	0.8695 (2)	0.08196 (10)	0.0229 (3)	
H5	-0.1285	0.8950	0.1393	0.027*	
C6	-0.29284 (16)	0.8957 (2)	0.04503 (10)	0.0257 (3)	
H6	-0.3531	0.9391	0.0770	0.031*	
C7	-0.34049 (16)	0.8591 (2)	-0.03973 (11)	0.0266 (4)	
H7	-0.4328	0.8783	-0.0646	0.032*	
C8	-0.25564 (15)	0.7960 (2)	-0.08710 (10)	0.0246 (3)	
H8	-0.2892	0.7723	-0.1445	0.030*	
C9	0.18424 (15)	0.5989 (2)	-0.11089 (9)	0.0188 (3)	
C10	0.13360 (15)	0.5219 (2)	-0.18889 (9)	0.0213 (3)	
H10	0.0394	0.5222	-0.2116	0.026*	
C11	0.22001 (16)	0.4449 (2)	-0.23338 (9)	0.0237 (3)	
H11	0.1846	0.3913	-0.2860	0.028*	
C12	0.35767 (16)	0.4460 (2)	-0.20139 (10)	0.0253 (3)	
H12	0.4166	0.3939	-0.2321	0.030*	
C13	0.40914 (16)	0.5234 (2)	-0.12434 (10)	0.0250 (3)	
H13	0.5036	0.5249	-0.1025	0.030*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C14	0.32309 (15)	0.5986 (2)	-0.07900 (9)	0.0225 (3)
H14	0.3589	0.6502	-0.0260	0.027*
C15	0.30675 (16)	0.7320 (3)	0.18247 (10)	0.0289 (4)
H15A	0.3070	0.6036	0.1666	0.043*
H15B	0.3564	0.7464	0.2401	0.043*
H15C	0.3498	0.8048	0.1460	0.043*
N1	0.14809 (12)	0.70406 (17)	0.02073 (8)	0.0191 (3)
N2	-0.03494 (12)	0.70111 (17)	-0.09896 (8)	0.0200 (3)
S1	0.13627 (4)	0.80726 (6)	0.17278 (2)	0.02388 (12)

	Atomic	displ	lacement	parameters	$(Å^2)$
--	--------	-------	----------	------------	---------

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0219 (7)	0.0154 (7)	0.0174 (7)	-0.0014 (5)	0.0049 (6)	0.0015 (6)
C2	0.0237 (7)	0.0172 (7)	0.0156 (7)	-0.0014 (6)	0.0042 (6)	0.0017 (6)
C3	0.0216 (7)	0.0147 (7)	0.0191 (7)	-0.0010 (5)	0.0058 (6)	0.0020 (6)
C4	0.0218 (7)	0.0173 (7)	0.0202 (7)	-0.0011 (6)	0.0055 (6)	0.0014 (6)
C5	0.0282 (8)	0.0212 (8)	0.0208 (8)	0.0013 (6)	0.0088 (6)	0.0005 (6)
C6	0.0254 (8)	0.0229 (8)	0.0316 (9)	0.0035 (6)	0.0126 (7)	-0.0004 (7)
C7	0.0195 (7)	0.0261 (8)	0.0335 (9)	0.0018 (6)	0.0043 (6)	0.0005 (7)
C8	0.0222 (8)	0.0274 (9)	0.0231 (8)	-0.0008 (6)	0.0024 (6)	-0.0016 (7)
C9	0.0232 (7)	0.0161 (7)	0.0176 (7)	0.0008 (6)	0.0059 (6)	0.0026 (6)
C10	0.0229 (7)	0.0216 (8)	0.0195 (7)	-0.0004 (6)	0.0048 (6)	0.0022 (6)
C11	0.0318 (8)	0.0225 (8)	0.0174 (7)	-0.0004 (6)	0.0067 (6)	-0.0011 (6)
C12	0.0300 (8)	0.0234 (8)	0.0256 (8)	0.0037 (6)	0.0131 (7)	0.0006 (7)
C13	0.0226 (8)	0.0258 (9)	0.0274 (8)	0.0019 (6)	0.0071 (6)	0.0017 (7)
C14	0.0252 (8)	0.0230 (8)	0.0188 (7)	0.0001 (6)	0.0039 (6)	-0.0002 (6)
C15	0.0241 (8)	0.0406 (10)	0.0202 (8)	0.0037 (7)	0.0011 (6)	0.0014 (7)
N1	0.0209 (6)	0.0198 (6)	0.0171 (6)	-0.0007 (5)	0.0050 (5)	0.0019 (5)
N2	0.0218 (6)	0.0200 (6)	0.0185 (6)	-0.0005 (5)	0.0051 (5)	-0.0009 (5)
S1	0.0248 (2)	0.0308 (2)	0.0159 (2)	0.00122 (15)	0.00423 (15)	-0.00238 (16)

Geometric parameters (Å, °)

C1—N2	1.3153 (19)	C8—H8	0.9500
C1—N1	1.3680 (19)	C9—C14	1.396 (2)
C1—C9	1.4897 (19)	C9—C10	1.398 (2)
C2—N1	1.3134 (18)	C10-C11	1.388 (2)
C2—C3	1.433 (2)	C10—H10	0.9500
C2—S1	1.7544 (15)	C11—C12	1.385 (2)
C3—C4	1.410 (2)	C11—H11	0.9500
C3—C5	1.414 (2)	C12—C13	1.387 (2)
C4—N2	1.3730 (18)	C12—H12	0.9500
C4—C8	1.415 (2)	C13—C14	1.389 (2)
C5—C6	1.367 (2)	C13—H13	0.9500
С5—Н5	0.9500	C14—H14	0.9500
С6—С7	1.403 (2)	C15—S1	1.7970 (16)
С6—Н6	0.9500	C15—H15A	0.9800

С7—С8	1.370 (2)	C15—H15B	0.9800
С7—Н7	0.9500	C15—H15C	0.9800
			100 56 (10)
N2—C1—N1	126.73 (13)	C10—C9—C1	120.56 (13)
N2—C1—C9	118.08 (13)	C11—C10—C9	120.43 (14)
N1—C1—C9	115.18 (13)	C11—C10—H10	119.8
N1—C2—C3	122.39 (13)	С9—С10—Н10	119.8
N1—C2—S1	119.07 (11)	C12—C11—C10	120.27 (15)
C3—C2—S1	118.54 (11)	C12—C11—H11	119.9
C4—C3—C5	120.11 (14)	C10-C11-H11	119.9
C4—C3—C2	115.34 (13)	C11—C12—C13	119.80 (14)
C5—C3—C2	124.53 (14)	C11—C12—H12	120.1
N2—C4—C3	122.09 (13)	C13—C12—H12	120.1
N2-C4-C8	119.20 (14)	C12—C13—C14	120.23 (15)
C3—C4—C8	118.71 (13)	С12—С13—Н13	119.9
C6—C5—C3	119.75 (15)	C14—C13—H13	119.9
С6—С5—Н5	120.1	C13—C14—C9	120.38 (14)
С3—С5—Н5	120.1	C13—C14—H14	119.8
C5—C6—C7	120.47 (14)	C9—C14—H14	119.8
С5—С6—Н6	119.8	S1—C15—H15A	109.5
С7—С6—Н6	119.8	S1—C15—H15B	109.5
C8—C7—C6	120.88 (15)	H15A—C15—H15B	109.5
С8—С7—Н7	119.6	S1—C15—H15C	109.5
С6—С7—Н7	119.6	H15A—C15—H15C	109.5
C7—C8—C4	120.08 (15)	H15B—C15—H15C	109.5
С7—С8—Н8	120.0	C2—N1—C1	117.13 (13)
С4—С8—Н8	120.0	C1—N2—C4	116.31 (13)
C14—C9—C10	118.88 (13)	C2—S1—C15	101.10(7)
C14—C9—C1	120.52 (13)		~ /
	× /		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H…A
C15—H15 B ····N2 ⁱ	0.98	2.67	3.648 (2)	173

Symmetry code: (i) x+1/2, -y+3/2, z+1/2.