organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-(2-Fluorophenyl)-2-methoxy-5,6,7,8,9,10-hexahydrocycloocta[b]pyridine-3-carbonitrile

R. Vishnupriya,^a J. Suresh,^a S. Maharani,^b R. Ranjith Kumar^b and P. L. Nilantha Lakshman^c*

^aDepartment of Physics, The Madura College, Madurai 625 011, India, ^bDepartment of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India, and ^cDepartment of Food Science and Technology, University of Ruhuna, Mapalana, Kamburupitiya 81100, Sri Lanka Correspondence e-mail: plakshmannilantha@ymail.com

Received 1 May 2014; accepted 15 July 2014

Edited by O. Blacque, University of Zürich, Switzerland

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; disorder in main residue; R factor = 0.053; wR factor = 0.155; data-to-parameter ratio = 15.8.

In the title compound, $C_{19}H_{19}FN_2O$, the cyclooctene ring adopts a twisted boat–chair conformation. The dihedral angle between the plane of the fluorophenyl substituent and that of the pyridine ring is 76.39 (8)°. The F and *ortho*-H atoms of the fluorobenzene ring are disordered, with occupancy factors of 0.226 (5) and 0.774 (5). In the crystal, no significant interactions are observed between the molecules beyond van der Waals contacts.

Related literature

For the biological activities of substituted pyridine derivatives, see: Bossert & Vater (1989); Bossert *et al.* (1981); Wang *et al.* (1989); Alajarin *et al.* (1995). For similar structures, see: Ramesh *et al.* (2009*a*,*b*).

Experimental

Crystal data

C₁₉H₁₉FN₂O $M_r = 310.36$ Monoclinic, $P2_1/n$ a = 9.5219 (3) Å b = 13.8808 (4) Å c = 12.1140 (3) Å $\beta = 97.829$ (1)°

Data collection

Bruker Kappa APEXII diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{min} = 0.977, T_{max} = 0.981$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.053$ $wR(F^2) = 0.155$ S = 1.083475 reflections 220 parameters $V = 1586.20 (8) Å^{3}$ Z = 4 Mo K\alpha radiation \mu = 0.09 mm⁻¹ T = 293 K 0.28 \times 0.25 \times 0.23 mm

37690 measured reflections 3475 independent reflections 2812 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.027$

CrossMark

 $\begin{array}{l} 10 \text{ restraints} \\ \text{H-atom parameters constrained} \\ \Delta \rho_{max} = 0.65 \text{ e } \text{\AA}^{-3} \\ \Delta \rho_{min} = -0.61 \text{ e } \text{\AA}^{-3} \end{array}$

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97*.

JS and RV thank the management of Madura College for their encouragement and support. RRK thanks the University Grants Commission, New Delhi, for funds through Major Research Project F. No. 42–242/2013 (SR)

Supporting information for this paper is available from the IUCr electronic archives (Reference: ZQ2223).

References

- Alajarin, R., Vaquero, J. J., Alvarez-Builla, J., Pastor, M., Sunkel, C., de Casa-Juana, M. F., Priego, J., Statkow, P. R., Sanz-Aparicio, J. & Fonseca, I. (1995). J. Med. Chem. 38, 2830–2841.
- Bossert, F., Meyer, H. & Wehinger, E. (1981). Angew. Chem. Int. Ed. Engl. 20, 762–764.
- Bossert, F. & Vater, W. (1989). Med. Res. Rev, 9, 291-324.
- Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Ramesh, P., Subbiahpandi, A., Thirumurugan, P., Perumal, P. T. & Ponnuswamy, M. N. (2009a). Acta Cryst. E65, 0450.
- Ramesh, P., Sundaresan, S. S., Thirumurugan, P., Perumal, P. T. & Ponnuswamy, M. N. (2009b). Acta Cryst. E65, 0996–0997.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Wang, S. D., Herbette, L. G. & Rhodes, D. G. (1989). Acta Cryst. C45, 1748– 1751.

supporting information

Acta Cryst. (2014). E70, o872 [doi:10.1107/S1600536814016365]

4-(2-Fluorophenyl)-2-methoxy-5,6,7,8,9,10-hexahydrocycloocta[b]pyridine-3carbonitrile

R. Vishnupriya, J. Suresh, S. Maharani, R. Ranjith Kumar and P. L. Nilantha Lakshman

S1. Comment

The synthesis of hydrogenated compounds has been extensively studied due to their interesting biological properties. For example, derivatives of 1,4-dihydropyridine exhibit high biological activities as calcium channel blockers (Bossert *et al.*, 1981) and as calcium agonists or antagonists (Bossert & Vater, 1989; Wang *et al.*,1989; Alajarin *et al.*, 1995). Our interest in preparing pharmacologically active pyridine-related compounds led us to the title compound, derived from a 1,4-di-hydropyridine and we have undertaken X-ray crystal structure determination of substituted pyridine scaffolds in order to establish its molecular conformation.

The molecular structure of the title compound is shown in Fig 1. The cyclooctane ring (C1–C8) adopts twisted boat chair conformation. The central pyridine component is planar, with a maximum deviation from the mean plane that of 0.0207 (1) Å for atom C1. The phenyl substituent at C9 of the pyridine ring has a (+) synclinal conformation, which is evidenced by the C15–C14–C9–C10 torsion angle 77.10 (18)°. The shortening of the C–N distances [1.347 (2) and 1.312 (2) Å] and the opening of the N1–C11–C10 angle [122.98 (16)°] may be attributed to the size of the substituent at C1. There is a long Csp²–Csp¹ bond (C10–C12 =1.433 (3) Å), due to conjugation as found in similar related structures (Ramesh *et al.*, 2009*a*, 2009*b*). The dihedral angle between the pseudo-axial phenyl substituent and the plane of the pyridine ring is 76.39 (8)°. Due to conjugation, the bond length C11–O1 (1.342 (2) Å) is shorter than the bond length C13–O1 (1.434 (2) Å).

No significant intermolecular hydrogen bonds, $\pi - \pi$ stacking interactions between neighboring aromatic rings or C-H $\cdots \pi$ interactions towards them are observed.

S2. Experimental

A mixture of cyclooctanone (1 mmol), 2-fluorobenzaldehyde (1 mmol) and malononitrile (1 mmol) were taken in methanol (10 ml) to which lithium ethoxide (1 equiv) was added. The reaction mixture was heated under reflux for 2–3 h. After completion of the reaction (TLC), the reaction mixture was poured into crushed ice and extracted with ethyl acetate. The excess solvent was removed under vacuum and the residue was subjected to column chromatography using petroleum ether/ethyl acetate mixture (95:5 v/v) as eluent to obtain pure product. Melting point: 161–162 °C, yield: 67%.

S3. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms were placed in calculated positions and allowed to ride on their carrier atoms with C—H = 0.93 (aromatic CH), 0.96 (methyl CH₃) and 0.97 Å (methylene CH₂). Isotropic displacement parameters for H atoms were calculated as $U_{iso} = 1.5U_{eq}$ (C) for CH₃ groups and $U_{iso} = 1.2U_{eq}$ (carrier atom) for all other H atoms. The F and H atoms of the fluorobenzene rings are disordered over two sets of sites in the ratio 0.226(): 0.774 (5).

Figure 1

The molecular structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme.

4-(2-Fluorophenyl)-2-methoxy-5,6,7,8,9,10-hexahydrocycloocta[b]pyridine-3-carbonitrile

Crystal data	
$C_{19}H_{19}FN_2O$	F(000) = 656
$M_r = 310.36$	$D_{\rm x} = 1.300 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/n$	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 2000 reflections
a = 9.5219 (3) Å	$\theta = 2-27^{\circ}$
b = 13.8808 (4) Å	$\mu = 0.09 \mathrm{~mm^{-1}}$
c = 12.1140 (3) Å	T = 293 K
$\beta = 97.829 \ (1)^{\circ}$	Block, colourless
V = 1586.20 (8) Å ³	$0.28 \times 0.25 \times 0.23 \text{ mm}$
Z = 4	
Data collection	
Bruker Kappa APEXII	37690 measured reflections
diffractometer	3475 independent reflections
Radiation source: fine-focus sealed tube	2812 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.027$
Detector resolution: 0 pixels mm ⁻¹	$\theta_{\rm max} = 27.0^{\circ}, \ \theta_{\rm min} = 2.2^{\circ}$
ω and φ scans	$h = -12 \rightarrow 12$
Absorption correction: multi-scan	$k = -17 \rightarrow 17$
(SADABS; Sheldrick, 1996)	$l = -15 \rightarrow 15$
$T_{\min} = 0.977, \ T_{\max} = 0.981$	

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.053$	H-atom parameters constrained
$wR(F^2) = 0.155$	$w = 1/[\sigma^2(F_o^2) + (0.0648P)^2 + 0.7644P]$
S = 1.08	where $P = (F_o^2 + 2F_c^2)/3$
3475 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
220 parameters	$\Delta ho_{ m max} = 0.65 \ { m e} \ { m \AA}^{-3}$
10 restraints	$\Delta ho_{\min} = -0.61 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier map	Extinction coefficient: 0.010 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C1	0.48826 (19)	0.14942 (13)	0.47836 (14)	0.0386 (4)	
C2	0.5667 (2)	0.18410 (14)	0.38693 (15)	0.0454 (4)	
H2A	0.5635	0.1344	0.3303	0.054*	
H2B	0.6653	0.1942	0.4170	0.054*	
C3	0.5073 (2)	0.27694 (16)	0.33279 (17)	0.0537 (5)	
H3A	0.5695	0.2983	0.2806	0.064*	
H3B	0.4156	0.2631	0.2903	0.064*	
C4	0.4896 (2)	0.35887 (16)	0.41229 (19)	0.0575 (5)	
H4A	0.4163	0.3413	0.4569	0.069*	
H4B	0.4566	0.4152	0.3689	0.069*	
C5	0.6229 (3)	0.38643 (15)	0.49078 (18)	0.0566 (5)	
H5A	0.7047	0.3636	0.4588	0.068*	
H5B	0.6286	0.4562	0.4943	0.068*	
C6	0.6324 (3)	0.34781 (16)	0.60938 (18)	0.0593 (6)	
H6A	0.5458	0.3651	0.6384	0.071*	
H6B	0.7098	0.3807	0.6546	0.071*	
C7	0.6549 (2)	0.23933 (16)	0.62511 (16)	0.0496 (5)	
H7A	0.7308	0.2200	0.5839	0.059*	
H7B	0.6871	0.2274	0.7034	0.059*	
C8	0.52873 (18)	0.17526 (13)	0.58972 (14)	0.0384 (4)	
C9	0.45081 (18)	0.13641 (12)	0.66895 (14)	0.0370 (4)	
C10	0.33770 (18)	0.07500 (12)	0.63392 (14)	0.0380 (4)	
C11	0.30274 (19)	0.05759 (13)	0.51926 (14)	0.0396 (4)	

C12	0.2597 (2)	0.02745 (14)	0.71119 (15)	0.0438 (4)	
C13	0.1466 (3)	-0.01094 (17)	0.37142 (17)	0.0565 (5)	
H13A	0.0670	-0.0539	0.3596	0.085*	
H13B	0.2237	-0.0373	0.3376	0.085*	
H13C	0.1203	0.0505	0.3385	0.085*	
C14	0.48547 (16)	0.15856 (14)	0.79050 (14)	0.0421 (4)	
C15	0.55536 (16)	0.09561 (12)	0.86460 (16)	0.0557 (5)	
H15	0.5783	0.0356	0.8380	0.067*	0.226 (5)
F1B	0.3841 (3)	0.3087 (4)	0.7588 (5)	0.115 (4)	0.226 (5)
C16	0.5944 (2)	0.1143 (2)	0.97544 (19)	0.0741 (8)	
H16	0.6419	0.0686	1.0227	0.089*	
C17	0.5606 (3)	0.2033 (3)	1.0142 (2)	0.0807 (9)	
H17	0.5861	0.2185	1.0891	0.097*	
C18	0.4901 (3)	0.2696 (2)	0.9439 (2)	0.0737 (8)	
H18	0.4672	0.3296	0.9708	0.088*	
C19	0.4532 (2)	0.24716 (17)	0.83331 (18)	0.0571 (5)	
H19	0.4054	0.2926	0.7859	0.069*	0.774 (5)
F1A	0.5857 (2)	0.00848 (12)	0.82521 (14)	0.0769 (8)	0.774 (5)
N1	0.37525 (17)	0.09332 (11)	0.44417 (12)	0.0417 (4)	
N2	0.1995 (2)	-0.01308 (16)	0.77174 (16)	0.0628 (5)	
O1	0.18988 (15)	0.00092 (11)	0.48868 (11)	0.0518 (4)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0420 (9)	0.0375 (9)	0.0364 (9)	0.0037 (7)	0.0055 (7)	0.0002 (7)
C2	0.0526 (11)	0.0467 (10)	0.0383 (9)	-0.0006 (8)	0.0116 (8)	-0.0020 (8)
C3	0.0626 (12)	0.0571 (12)	0.0401 (10)	-0.0043 (10)	0.0021 (9)	0.0066 (9)
C4	0.0647 (13)	0.0491 (11)	0.0588 (13)	0.0085 (10)	0.0090 (10)	0.0078 (10)
C5	0.0719 (14)	0.0432 (10)	0.0570 (12)	-0.0088 (10)	0.0170 (10)	-0.0035 (9)
C6	0.0699 (14)	0.0607 (13)	0.0486 (11)	-0.0243 (11)	0.0127 (10)	-0.0139 (10)
C7	0.0431 (10)	0.0664 (13)	0.0378 (9)	-0.0106 (9)	0.0002 (7)	0.0045 (9)
C8	0.0380 (9)	0.0400 (9)	0.0366 (8)	0.0014 (7)	0.0025 (7)	0.0022 (7)
C9	0.0380 (9)	0.0381 (8)	0.0340 (8)	0.0039 (7)	0.0019 (6)	0.0003 (7)
C10	0.0405 (9)	0.0383 (9)	0.0349 (8)	0.0019 (7)	0.0043 (7)	0.0005 (7)
C11	0.0427 (9)	0.0374 (9)	0.0374 (9)	-0.0001 (7)	0.0010 (7)	-0.0009 (7)
C12	0.0447 (10)	0.0489 (10)	0.0377 (9)	-0.0029 (8)	0.0058 (7)	-0.0039 (8)
C13	0.0626 (13)	0.0613 (13)	0.0414 (10)	-0.0116 (10)	-0.0081 (9)	-0.0042 (9)
C14	0.0396 (9)	0.0516 (10)	0.0350 (9)	-0.0050 (8)	0.0046 (7)	-0.0034 (7)
C15	0.0576 (12)	0.0679 (14)	0.0404 (10)	0.0027 (10)	0.0024 (9)	0.0012 (9)
F1B	0.133 (8)	0.091 (6)	0.122 (7)	0.054 (5)	0.026 (6)	-0.025 (5)
C16	0.0668 (15)	0.113 (2)	0.0402 (11)	-0.0049 (15)	-0.0012 (10)	0.0109 (13)
C17	0.0796 (17)	0.123 (3)	0.0404 (12)	-0.0294 (17)	0.0112 (11)	-0.0250 (15)
C18	0.0838 (17)	0.0808 (17)	0.0614 (15)	-0.0219 (14)	0.0281 (13)	-0.0317 (14)
C19	0.0610 (13)	0.0617 (13)	0.0516 (11)	-0.0084 (10)	0.0183 (10)	-0.0141 (10)
F1A	0.1046 (16)	0.0693 (12)	0.0548 (11)	0.0386 (10)	0.0034 (9)	0.0068 (8)
N1	0.0484 (9)	0.0409 (8)	0.0350 (7)	-0.0002 (6)	0.0034 (6)	-0.0010 (6)
N2	0.0648 (12)	0.0756 (13)	0.0504 (10)	-0.0147 (10)	0.0164 (9)	0.0009 (9)

01	0.0554 (8)	0.0587 (8)	0.0388 (7)	-0.0169 (6)	-0.0025 (6)	-0.0006(6)	
	0.0001(0)	0.0007 (0)	0.0500 (7)	0.0109 (0)	0.0025 (0)		
Geome	Geometric parameters (Å, °)						
C1-N	11	1.347 (2)	C9—C14		1.496 (2)	
C1—C	28	1.398 (2)	C10-C11		1.404 (2)	
C1—C	22	1.497 (2)	C10-C12		1.433 (3)	
С2—С	23	1.520 (3)	C11—N1		1.312 (2)	
С2—Н	[2A	0.9700		C11—O1		1.342 (2)	
С2—Н	I2B	0.9700		C12—N2		1.139 (3)	
С3—С	24	1.514 (3)	C13—O1		1.434 (2)	
С3—Н	[3A	0.9700	,	C13—H13A		0.9600	
С3—Н	I3B	0.9700		C13—H13B		0.9600	
C4—C	25	1.527 (3)	C13—H13C		0.9600	
C4—H	[4A	0.9700	,	C14—C15		1.360 (3)	
C4—H	[4B	0.9700		C14—C19		1.385 (3)	
С5—С	26	1.524 (3)	C15—F1A		1.3459 (10)	
С5—Н	I5A	0.9700	,	C15—C16		1.368 (3)	
С5—Н	[5B	0.9700		С15—Н15		0.9300	
С6—С	27	1.529 (3)	F1B—C19		1.3477 (10)	
С6—Н	16A	0.9700	,	C16—C17		1.375 (4)	
С6—Н	[6B	0.9700		C16—H16		0.9300	
С7—С	28	1.509 (3)	C17—C18		1.367 (4)	
С7—Н	[7A	0.9700	- /	C17—H17		0.9300	
С7—Н	[7B	0.9700		C18—C19		1.374 (3)	
C8—C	29	1.399 (2)	C18—H18		0.9300	
С9—С	210	1.394 (2)	C19—H19		0.9300	
N1 (1 69	122.26	(16)	C_{0} C_{2} C_{7}		120 56 (15)	
NI-C	C1 - Co	123.20	(10)	C_{9}		120.30(13)	
NI - C	1 - C2	114.01	(13)	C10 - C9 - C8		119.14(13) 118.80(15)	
$C_0 - C$	$1 - C_2$	122.11	(10)	C10 - C9 - C14		110.09(13) 121.07(15)	
C1 = C	2 - C3	113.40	(10)	$C_{0} = C_{10} = C_{14}$		121.97(13) 119.40(16)	
$C_1 - C_2$	$2 - \Pi 2 A$	108.9		C9 - C10 - C11		116.40(10) 122.05(16)	
C_{1}	2—п2А У2— Ц2Р	108.9		C_{9} C_{10} C_{12} C_{11} C_{10} C_{12}		122.03(10) 110.52(16)	
C_{1}	2—п2Б У2 Ц2В	108.9		$\frac{11}{10}$		119.32(10) 120.40(16)	
U2A	2—112В С2 Ц2В	108.9		N1 - C11 - C10		120.49(10) 122.08(16)	
Γ_{12}	$-C_2$ $-I_{12}D$	107.7	(16)	$\frac{1}{10000000000000000000000000000000000$		122.98 (10)	
$C_4 - C$	23—С2 22 Ц2 Л	115.45	(10)	$V_1 = C_{11} = C_{10}$		110.33(10) 177.8(2)	
C_{4}	з—ПЗА 12 Ц2 Л	108.4		$N_2 - C_{12} - C_{10}$		177.8 (2)	
$C_2 - C_1$	23—113A 23 H3B	108.4		01—C13—H13R		109.5	
C_{4}	уд ЦЗВ	108.4			D	109.5	
	C2 U2B	108.4		$\begin{array}{c} 1113A - C13 - 1113 \\ 01 C13 H13C \end{array}$	D	109.5	
C3 C	-C5	107.3	(10)	U12A C12 U12	KC .	109.5	
$C_3 - C_3$		113.42	(17)	ніза—Сіз—піз нізв сіз ціз	C	109.5	
C5 C		100.4		11130 - C13 - H13		109.5	
$C_3 - C_3$	и нир	108.4		C15 - C14 - C19		113.90 (10)	
C5 C		100.4		C13 - C14 - C9		122.00(17) 121.26(19)	
<u> </u>	/ 4 —П4D	108.4		C19 - C14 - C9		121.30 (10)	

supporting information

H4A—C4—H4B	107.5	F1A-C15-C14	116.92 (17)
C6—C5—C4	115.89 (18)	F1A-C15-C16	118.4 (2)
С6—С5—Н5А	108.3	C14—C15—C16	124.7 (2)
C4—C5—H5A	108.3	C14—C15—H15	117.7
C6—C5—H5B	108.3	C16—C15—H15	117.7
C4—C5—H5B	108.3	C15—C16—C17	117.5 (3)
H5A—C5—H5B	107.4	С15—С16—Н16	121.3
C5—C6—C7	116.94 (17)	C17—C16—H16	121.3
С5—С6—Н6А	108.1	C18—C17—C16	120.7 (2)
С7—С6—Н6А	108.1	C18—C17—H17	119.7
С5—С6—Н6В	108.1	С16—С17—Н17	119.7
С7—С6—Н6В	108.1	C17—C18—C19	119.5 (3)
H6A—C6—H6B	107.3	C17—C18—H18	120.2
C8—C7—C6	116.88 (17)	C19—C18—H18	120.2
С8—С7—Н7А	108.1	F1B-C19-C18	123.1 (4)
С6—С7—Н7А	108.1	F1B-C19-C14	115.2 (4)
С8—С7—Н7В	108.1	C18—C19—C14	121.8 (2)
С6—С7—Н7В	108.1	C18—C19—H19	119.1
H7A—C7—H7B	107.3	C14—C19—H19	119.1
C1—C8—C9	117.45 (16)	C11—N1—C1	118.64 (15)
C1—C8—C7	121.95 (16)	C11—O1—C13	116.85 (15)
			()
N1—C1—C2—C3	87.0 (2)	C10-C9-C14-C15	77.10 (18)
C8-C1-C2-C3	-91.8(2)	C8—C9—C14—C15	-102.71(18)
C1—C2—C3—C4	52.0 (2)	C10-C9-C14-C19	-105.84(18)
C2-C3-C4-C5	54.9 (3)	C8—C9—C14—C19	74.3 (2)
C3—C4—C5—C6	-100.7(2)	C19-C14-C15-F1A	178.92 (13)
C4—C5—C6—C7	69.8 (3)	C9—C14—C15—F1A	-3.88(17)
C5—C6—C7—C8	-74.8(3)	C19—C14—C15—C16	-0.02(14)
N1-C1-C8-C9	3.2 (3)	C9—C14—C15—C16	177.18 (17)
C2-C1-C8-C9	-178.04(16)	F1A—C15—C16—C17	-179.13 (17)
N1-C1-C8-C7	-179.21(17)	C14-C15-C16-C17	-0.2(2)
$C_2 - C_1 - C_8 - C_7$	-0.4(3)	C_{15} C_{16} C_{17} C_{18}	0.4(3)
C6-C7-C8-C1	80.7 (2)	C16-C17-C18-C19	-0.3(3)
C6-C7-C8-C9	-101.8(2)	C17-C18-C19-F1B	-179.75(17)
C1 - C8 - C9 - C10	-0.3(2)	C_{17} C_{18} C_{19} C_{14}	01(3)
C7-C8-C9-C10	-177.92(17)	C_{15} C_{14} C_{19} F_{1B}	179.93 (8)
C1 - C8 - C9 - C14	179 53 (16)	C9-C14-C19-F1B	27(2)
C7-C8-C9-C14	19(3)	$C_{15} - C_{14} - C_{19} - C_{18}$	0.08(18)
C8-C9-C10-C11	-25(3)	C9-C14-C19-C18	-177 16 (17)
C_{14} C_{9} C_{10} C_{11}	177.63 (16)	01-C11-N1-C1	-179.64(16)
C_{8} C_{9} C_{10} C_{12}	175 57 (17)	C10-C11-N1-C1	-0.1(3)
C_{14} C_{9} C_{10} C_{12}	-42(3)	C8-C1-N1-C11	-30(3)
$C_{1} = C_{1} = C_{1} = C_{1} = C_{1}$	7.2(3)	C_{2} C_{1} N_{1} C_{11}	178 14 (16)
C_{12} C_{10} C_{11} N_{1}	-175 29 (17)	N1 - C11 - O1 - C13	-53(3)
$C_{12} = C_{10} = C_{11} = C_{11}$	-17758(16)	C10-C11-O1-C13	175 14 (17)
$C_{12} = C_{10} = C_{11} = C_{11}$	177.30 (10)	010-011-01-013	1/3.17(1/)
012 - 010 - 011 - 01	T.2 (J)		