

OPEN access

Crystal structure of (E)-N'-benzylidene-2-methoxybenzohydrazide

Muhammad Taha,^{a,b} M. Syukri Baharudin,^a Hamizah Mohd Zaki,^{a,b} Bohari M. Yamin^c and Humera Naz^{a,d}*

^aAtta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor D.E., Malaysia, ^bFaculty of Applied Science, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor D.E., Malaysia, ^cSchool of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kabangsaan Malaysia, 43600 Bangi, Selangor, Malaysia, and ^dFaculty of Pharmacy, Universiti Tecknologi MARA, Puncak Alam, 42300 Selangor, Malaysia. *Correspondence e-mail: humera@salam.uitm.edu.my

Received 18 August 2014; accepted 22 August 2014

Edited by R. F. Baggio, Comisión Nacional de Energía Atómica, Argentina

In the title benzoylhydrazide derivative, C15H14N2O2, the dihedral angle between the planes of the two phenyl rings is 12.56 (9)°. The azomethine double bond adopts an Econfiguration stabilized by an N-H···O hydrogen bond. In the crystal, the components are linked by C-H...O interactions to form chains along the b axis.

Keywords: crystal structure; benzohydrazide; Schiff base; hydrogen bonding.

CCDC reference: 1020647

1. Related literature

For applications and biological activities of Schiff bases, see: Taha et al. (2013, 2014); Musharraf et al. (2012); Kaymakcioglu et al. (2006); Kucukguzel et al. (2003, 2004); Melnyk et al. (2006); Pandeya et al. (1999); Tarafder et al. (2002); Terzioglu & Gursov (2003); Todeschini et al. (1998). For the crystal structures of related compounds, see: Taha et al. (2013).

V = 2655.2 (3) Å³

Mo $K\alpha$ radiation $\mu = 0.09 \text{ mm}^{-1}$

 $0.50 \times 0.48 \times 0.31 \text{ mm}$

38941 measured reflections

2462 independent reflections

1819 reflections with $I > 2\sigma(I)$

Z = 8

T = 296 K

 $R_{\rm int} = 0.049$

2. Experimental

2.1. Crystal data

C15H14N2O2 $M_r = 254.28$ Orthorhombic, Pbca a = 13.3135 (9) Å b = 9.9581 (6) Å c = 20.0278 (14) Å

2.2. Data collection

Bruker SMART APEX CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2000) $T_{\rm min}=0.94,\ T_{\rm max}=0.97$

2.3. Refinement

$R[F^2 > 2\sigma(F^2)] = 0.038$	174 parameters
$wR(F^2) = 0.103$	H-atom parameters constrained
S = 1.08	$\Delta \rho_{\rm max} = 0.13 \ {\rm e} \ {\rm \AA}^{-3}$
2462 reflections	$\Delta \rho_{\rm min} = -0.14 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N2-H2A···O2	0.86	1.96	2.6278 (17)	134
$C7-H7A\cdots O1^{i}$	0.93	2.44	3.1690 (19)	135

Symmetry code: (i) $-x + \frac{3}{2}, y + \frac{1}{2}, z$.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Acknowledgements

The authors would like to acknowledge Universiti Teknologi MARA for the financial support under the Research Intensive Faculty Grant Scheme [reference number 600-RMI/DANA/5/ 3/RIF (67/2012)].

Supporting information for this paper is available from the IUCr electronic archives (Reference: BG2535).

References

- Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Kaymakcioglu, K. B., Oruc, E. E., Unsalan, S., Kandemirli, F., Shvets, N., Rollas, S. & Anatholy, D. (2006). Eur. J. Med. Chem. 41, 1253–1261.
- Kucukguzel, I., Kucukguzel, S. G., Rollas, S., Otuk-Sanis, G., Ozdemir, O., Bayrak, I., Altug, T. & Stables, J. P. (2004). Il Farmaco, 59, 839–91.
- Kucukguzel, S. G., Mazi, A., Sahin, F., Ozturk, S. & Stables, J. (2003). Eur. J. Med. Chem. 38, 1005–1013.
- Melnyk, P., Leroux, V., Sergheraert, C. & Grellier, P. (2006). Bioorg. Med. Chem. Lett. 16, 31-35.
- Musharraf, S. G., Bibi, A., Shahid, N., Najam-ul-Haq, M., Khan, M., Taha, M., Mughal, U. R. & Khan, K. M. (2012). *Am. J. Anal. Chem.* **3**, 779–789.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.

- Pandeya, S. N., Sriram, D., Nath, G. & De Clercq, E. (1999). *Pharm. Acta Helv.* **74**, 11–17.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Taha, M., Baharudin, M. S., Ismail, N. H., Shah, S. A. A. & Yousuf, S. (2013). Acta Cryst. E69, 0277.
- Taha, M., Naz, H., Rasheed, S., Ismail, N. H., Rahman, A. A., Yousuf, S. & Choudhary, M. I. (2014). *Molecules*, 19, 1286–1301.
- Tarafder, M. T., Kasbollah, A., Saravan, N., Crouse, K. A., Ali, A. M. & Tin, O. K. (2002). J. Biochem. Mol. Biol. Biophys. 6, 85–91.
- Terzioglu, N. & Gursoy, A. (2003). Eur. J. Med. Chem. 38, 781-786.
- Todeschini, A. R., de Miranda, A. L., Silva, C. M., Parrini, S. C. & Barreiro, E. J. (1998). *Eur. J. Med. Chem.* **33**, 189–199.

supporting information

Acta Cryst. (2014). E70, o1071-o1072 [doi:10.1107/S1600536814019011]

Crystal structure of (E)-N'-benzylidene-2-methoxybenzohydrazide

Muhammad Taha, M. Syukri Baharudin, Hamizah Mohd Zaki, Bohari M. Yamin and Humera Naz

S1. Comment

Applications of benzoylhydrazones are reported in medicinal and analytical chemistry (Tarafder *et al.*, 2002). Benzoylhydrazones having heterocyclic rings have been reported to have antiglycation (Taha *et al.*, 2014), anticonvulsant (Kucukguzel *et al.*,2004), antiproliferative (Kucukguzel *et al.*, 2003), antifungal and anti-HIV activities (Pandeya *et al.*, 1999). Several benzoylhydrazones have also shown interesting bioactivities including antinflammatory (Todeschini *et al.*, 1998), antibacterial (Kaymakcioglu *et al.*, 2006), antimalarial (Melnyk *et al.*, 2006) and anticancer (Terzioglu & Gursoy, 2003). Recently they have been suggested as an alternative in UV-laser desorption ionization (LDI) matrices for peptides analysis (Musharraf *et al.*, 2012). The structure of the title compound (Fig. 1) is similar to (*E*)-2-methoxy-*N*'-(2,4,6-trihydroxybenzylidene) benzohydrazide (Taha *et al.*, 2013), the difference residing in that the trihydroxyphenyl ring has been replaced by a non-substitutedphenyl ring (C1–C6). The bond lengths and angle were found to be similar to the structurally related benzohydrazide derivatives reported in Taha *et al.*, 2013. The *E* configuration around the azomethine double bond is stabilized by a N2—H2A···O2 intramolecular interaction. The crystal structure is in turn stabilized by the intermolecular C7—H7A···O1 interaction to form chains along the *b* axis (Table 2 and Fig. 2).

S2. Experimental

The title compound was synthesized by refluxing a mixture of 2 mmol of 2-methoxybenzohydrazide (0.332 g), 2 mmol benzaldehyde (0.212 g) and catalytic amount of acetic acid in methanol (20 ml) for 3 h. The progress of the reaction was monitored by TLC. After completion of the reaction, the solvent was evaporated by vacuum to afford crude product which was further recrystallized in methanol to afford needle like pure product in 88% yield (0.447 g). All the chemicals were purchased from sigma Aldrich Germany.

S3. Refinement

H atoms were positioned geometrically with C—H = 0.93/0.96 Å, N-H = 0.86 Å respectively, and constrained to ride on their parent atoms with $U_{iso}(H) = 1.2/1.5 U_{eq}(CH)$.

Figure 1

The molecular structure of (I) with displacement ellipsoids drawn at 50% probability level.

Figure 2

The crystal packing of the title compound I. Only hydrogen atoms involved in hydrogen bonding are shown.

(E)-N'-Benzylidene-2-methoxybenzohydrazide

Crystal data

C₁₅H₁₄N₂O₂ $M_r = 254.28$ Orthorhombic, *Pbca* a = 13.3135 (9) Å b = 9.9581 (6) Å c = 20.0278 (14) Å V = 2655.2 (3) Å³ Z = 8F(000) = 1072

Data collection

Bruker SMART APEX CCD area-detector	38941 measured reflections
diffractometer	2462 independent reflections
Radiation source: fine-focus sealed tube	1819 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.049$
Detector resolution: 83.66 pixels mm ⁻¹	$\theta_{\rm max} = 25.5^{\circ}, \theta_{\rm min} = 3.0^{\circ}$
ωscan	$h = -16 \rightarrow 16$
Absorption correction: multi-scan	$k = -11 \rightarrow 12$
(SADABS; Bruker, 2000)	$l = -24 \rightarrow 24$
$T_{\min} = 0.94, \ T_{\max} = 0.97$	
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.038$	Hydrogen site location: inferred from
$wR(F^2) = 0.103$	neighbouring sites

 $D_{\rm x} = 1.272 \text{ Mg m}^{-3}$

 $\theta = 3.0-25.5^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$

Block. colourless

 $0.50 \times 0.48 \times 0.31 \text{ mm}$

T = 296 K

Melting point = 449–451 K Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å

Cell parameters from 9899 reflections

$wR(F^2) = 0.103$	neighbouring sites
S = 1.08	H-atom parameters constrained
2462 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0361P)^2 + 0.849P]$
174 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{ m max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.13 \ m e \ m \AA^{-3}$
direct methods	$\Delta ho_{ m min} = -0.14$ e Å ⁻³
2462 reflections174 parameters0 restraintsPrimary atom site location: structure-invariant direct methods	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0361P)^{2} + 0.849P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.13 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.14 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
0.67310 (8)	-0.00143 (12)	0.55943 (6)	0.0569 (3)	
0.92308 (8)	0.22579 (11)	0.51387 (6)	0.0575 (3)	
0.69422 (9)	0.21778 (14)	0.63568 (6)	0.0481 (4)	
0.75847 (10)	0.18784 (14)	0.58377 (6)	0.0486 (3)	
	x 0.67310 (8) 0.92308 (8) 0.69422 (9) 0.75847 (10)	x y 0.67310 (8) -0.00143 (12) 0.92308 (8) 0.22579 (11) 0.69422 (9) 0.21778 (14) 0.75847 (10) 0.18784 (14)	x y z 0.67310 (8) -0.00143 (12) 0.55943 (6) 0.92308 (8) 0.22579 (11) 0.51387 (6) 0.69422 (9) 0.21778 (14) 0.63568 (6) 0.75847 (10) 0.18784 (14) 0.58377 (6)	xyz U_{iso}^*/U_{eq} 0.67310 (8)-0.00143 (12)0.55943 (6)0.0569 (3)0.92308 (8)0.22579 (11)0.51387 (6)0.0575 (3)0.69422 (9)0.21778 (14)0.63568 (6)0.0481 (4)0.75847 (10)0.18784 (14)0.58377 (6)0.0486 (3)

H2A	0.8086	0.2394	0.5750	0.058*
C1	0.65053 (12)	0.36836 (17)	0.72316 (7)	0.0466 (4)
C2	0.66885 (14)	0.4903 (2)	0.75366 (10)	0.0661 (5)
H2B	0.7240	0.5414	0.7408	0.079*
C3	0.60545 (17)	0.5369 (2)	0.80336 (11)	0.0797 (6)
H3A	0.6183	0.6190	0.8238	0.096*
C4	0.52403 (16)	0.4624 (2)	0.82254 (10)	0.0733 (6)
H4A	0.4806	0.4946	0.8552	0.088*
C5	0.50683 (15)	0.3407 (2)	0.79347 (10)	0.0701 (6)
H5A	0.4523	0.2891	0.8071	0.084*
C6	0.56950 (13)	0.29365 (18)	0.74411 (9)	0.0585 (5)
H6A	0.5570	0.2105	0.7247	0.070*
С9	0.80953 (11)	0.05112 (16)	0.48857 (7)	0.0434 (4)
C14	0.78281 (13)	-0.05488 (19)	0.44740 (9)	0.0587 (5)
H14A	0.7254	-0.1042	0.4573	0.070*
C13	0.83879 (16)	-0.0892 (2)	0.39229 (10)	0.0727 (6)
H13A	0.8196	-0.1609	0.3654	0.087*
C12	0.92326 (16)	-0.0164 (2)	0.37740 (10)	0.0730 (6)
H12A	0.9613	-0.0389	0.3401	0.088*
C11	0.95232 (14)	0.08876 (19)	0.41671 (9)	0.0605 (5)
H11A	1.0097	0.1374	0.4058	0.073*
C10	0.89683 (11)	0.12330 (16)	0.47268 (8)	0.0452 (4)
C15	1.00920 (14)	0.30448 (19)	0.49805 (10)	0.0662 (5)
H15A	1.0165	0.3749	0.5304	0.099*
H15B	1.0012	0.3431	0.4545	0.099*
H15C	1.0679	0.2485	0.4986	0.099*
C7	0.71491 (11)	0.32331 (17)	0.66852 (7)	0.0472 (4)
H7A	0.7719	0.3726	0.6576	0.057*
C8	0.74169 (11)	0.07632 (16)	0.54683 (7)	0.0431 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0488 (7)	0.0567 (7)	0.0652 (8)	-0.0047 (6)	0.0131 (6)	0.0040 (6)
O2	0.0509 (7)	0.0553 (7)	0.0664 (8)	-0.0085 (5)	0.0210 (6)	-0.0075 (6)
N1	0.0414 (7)	0.0615 (9)	0.0413 (7)	0.0032 (6)	0.0088 (6)	0.0011 (7)
N2	0.0402 (7)	0.0594 (9)	0.0461 (7)	-0.0032 (6)	0.0126 (6)	-0.0014 (7)
C1	0.0436 (9)	0.0579 (10)	0.0383 (8)	0.0066 (8)	-0.0003 (7)	0.0039 (7)
C2	0.0573 (11)	0.0763 (13)	0.0649 (11)	-0.0044 (10)	0.0020 (9)	-0.0128 (10)
C3	0.0799 (14)	0.0884 (15)	0.0708 (13)	0.0113 (12)	0.0001 (12)	-0.0298 (12)
C4	0.0756 (14)	0.0940 (16)	0.0504 (11)	0.0258 (12)	0.0128 (10)	-0.0019 (11)
C5	0.0690 (13)	0.0747 (14)	0.0665 (12)	0.0094 (10)	0.0263 (10)	0.0095 (11)
C6	0.0602 (11)	0.0581 (10)	0.0574 (10)	0.0037 (8)	0.0167 (9)	0.0015 (9)
C9	0.0390 (8)	0.0476 (9)	0.0435 (9)	0.0065 (7)	0.0018 (7)	0.0047 (7)
C14	0.0561 (11)	0.0653 (11)	0.0547 (10)	-0.0044 (9)	0.0022 (8)	-0.0046 (9)
C13	0.0794 (14)	0.0804 (14)	0.0584 (12)	-0.0032 (12)	0.0064 (10)	-0.0198 (10)
C12	0.0764 (13)	0.0871 (15)	0.0556 (11)	0.0023 (12)	0.0211 (10)	-0.0119 (11)
C11	0.0577 (11)	0.0671 (12)	0.0569 (11)	0.0002 (9)	0.0193 (9)	0.0003 (9)

supporting information

C10	0.0444 (0)	0.04(5.(0)	0.0446 (0)	0.0070 (7)	0.00(2.(7)	0.0021 (7)
C10	0.0444 (9)	0.0465 (9)	0.0446 (9)	0.0079(7)	0.0003(7)	0.0031(7)
C15	0.0567 (11)	0.0658 (12)	0.0762 (12)	-0.0137 (9)	0.0166 (9)	-0.0003 (10)
C7	0.0382 (8)	0.0613 (11)	0.0420 (8)	0.0012 (8)	0.0029 (7)	0.0044 (8)
C8	0.0357 (8)	0.0489 (9)	0.0447 (8)	0.0063 (7)	0.0019 (7)	0.0078 (7)

Geometric parameters (Å, °)

01—C8	1.2236 (18)	C5—H5A	0.9300
O2—C10	1.3579 (19)	C6—H6A	0.9300
O2—C15	1.424 (2)	C9—C14	1.386 (2)
N1C7	1.270 (2)	C9—C10	1.403 (2)
N1—N2	1.3790 (17)	C9—C8	1.497 (2)
N2—C8	1.353 (2)	C14—C13	1.375 (2)
N2—H2A	0.8600	C14—H14A	0.9300
C1—C6	1.376 (2)	C13—C12	1.371 (3)
C1—C2	1.381 (2)	C13—H13A	0.9300
C1—C7	1.461 (2)	C12—C11	1.366 (3)
С2—С3	1.385 (3)	C12—H12A	0.9300
C2—H2B	0.9300	C11—C10	1.386 (2)
C3—C4	1.368 (3)	C11—H11A	0.9300
С3—НЗА	0.9300	C15—H15A	0.9600
C4—C5	1.364 (3)	C15—H15B	0.9600
C4—H4A	0.9300	C15—H15C	0.9600
C5—C6	1.376 (2)	C7—H7A	0.9300
C10-02-C15	119.05 (13)	C13—C14—H14A	119.1
C7—N1—N2	115.77 (13)	C9—C14—H14A	119.1
C8—N2—N1	119.16 (13)	C12—C13—C14	119.22 (19)
C8—N2—H2A	120.4	C12—C13—H13A	120.4
N1—N2—H2A	120.4	C14—C13—H13A	120.4
C6—C1—C2	118.61 (16)	C11—C12—C13	120.82 (18)
C6—C1—C7	121.51 (16)	C11—C12—H12A	119.6
C2—C1—C7	119.86 (16)	C13—C12—H12A	119.6
C1—C2—C3	120.31 (19)	C12—C11—C10	120.36 (17)
C1—C2—H2B	119.8	C12—C11—H11A	119.8
С3—С2—Н2В	119.8	C10-C11-H11A	119.8
C4—C3—C2	120.2 (2)	O2-C10-C11	122.73 (15)
С4—С3—НЗА	119.9	O2—C10—C9	117.41 (13)
С2—С3—НЗА	119.9	C11—C10—C9	119.86 (16)
C5—C4—C3	119.64 (18)	O2—C15—H15A	109.5
С5—С4—Н4А	120.2	O2—C15—H15B	109.5
С3—С4—Н4А	120.2	H15A—C15—H15B	109.5
C4—C5—C6	120.5 (2)	O2—C15—H15C	109.5
С4—С5—Н5А	119.8	H15A—C15—H15C	109.5
С6—С5—Н5А	119.8	H15B—C15—H15C	109.5
C5—C6—C1	120.70 (18)	N1—C7—C1	120.99 (15)
С5—С6—Н6А	119.7	N1—C7—H7A	119.5
C1—C6—H6A	119.7	C1—C7—H7A	119.5

C14—C9—C10 C14—C9—C8 C10—C9—C8 C13—C14—C9	117.90 (15) 115.89 (14) 126.21 (14) 121.84 (17)	O1—C8—N2 O1—C8—C9 N2—C8—C9	122.00 (14) 120.33 (15) 117.66 (14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	179.48 (14) -1.2 (3) 176.93 (17) -0.1 (3) 1.4 (3) -1.4 (3) 0.0 (3) 1.3 (3) -176.83 (16) -0.4 (3) -179.76 (17) -0.2 (3) 0.3 (3) 0.3 (3) 2.2 (2) -177.76 (15)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 179.16\ (17)\\ -0.9\ (3)\\ -179.12\ (14)\\ 0.2\ (2)\\ 0.9\ (2)\\ -179.76\ (15)\\ 177.81\ (13)\\ 4.7\ (2)\\ -173.47\ (16)\\ -2.5\ (2)\\ 176.67\ (13)\\ 6.6\ (2)\\ -172.75\ (15)\\ -172.60\ (14)\\ 8.1\ (2) \end{array}$

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
N2—H2A…O2	0.86	1.96	2.6278 (17)	134
C7—H7A···O1 ⁱ	0.93	2.44	3.1690 (19)	135
C14—H14A…O1	0.93	2.39	2.730 (2)	101

Symmetry code: (i) -x+3/2, y+1/2, z.