organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o1071-o1072

Crystal structure of (E)-N′-benzyl­­idene-2-meth­­oxy­benzohydrazide

aAtta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor D.E., Malaysia, bFaculty of Applied Science, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor D.E., Malaysia, cSchool of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kabangsaan Malaysia, 43600 Bangi, Selangor, Malaysia, and dFaculty of Pharmacy, Universiti Tecknologi MARA, Puncak Alam, 42300 Selangor, Malaysia
*Correspondence e-mail: humera@salam.uitm.edu.my

Edited by R. F. Baggio, Comisión Nacional de Energía Atómica, Argentina (Received 18 August 2014; accepted 22 August 2014; online 30 August 2014)

In the title benzoyl­hydrazide derivative, C15H14N2O2, the dihedral angle between the planes of the two phenyl rings is 12.56 (9)°. The azomethine double bond adopts an E configuration stabilized by an N—H⋯O hydrogen bond. In the crystal, the components are linked by C—H⋯O inter­actions to form chains along the b axis.

1. Related literature

For applications and biological activities of Schiff bases, see: Taha et al. (2013[Taha, M., Baharudin, M. S., Ismail, N. H., Shah, S. A. A. & Yousuf, S. (2013). Acta Cryst. E69, o277.], 2014[Taha, M., Naz, H., Rasheed, S., Ismail, N. H., Rahman, A. A., Yousuf, S. & Choudhary, M. I. (2014). Molecules, 19, 1286-1301.]); Musharraf et al. (2012[Musharraf, S. G., Bibi, A., Shahid, N., Najam-ul-Haq, M., Khan, M., Taha, M., Mughal, U. R. & Khan, K. M. (2012). Am. J. Anal. Chem. 3, 779-789.]); Kaymakcioglu et al. (2006[Kaymakcioglu, K. B., Oruc, E. E., Unsalan, S., Kandemirli, F., Shvets, N., Rollas, S. & Anatholy, D. (2006). Eur. J. Med. Chem. 41, 1253-1261.]); Kucukguzel et al. (2003[Kucukguzel, S. G., Mazi, A., Sahin, F., Ozturk, S. & Stables, J. (2003). Eur. J. Med. Chem. 38, 1005-1013.], 2004[Kucukguzel, I., Kucukguzel, S. G., Rollas, S., Otuk-Sanis, G., Ozdemir, O., Bayrak, I., Altug, T. & Stables, J. P. (2004). Il Farmaco, 59, 839-91.]); Melnyk et al. (2006[Melnyk, P., Leroux, V., Sergheraert, C. & Grellier, P. (2006). Bioorg. Med. Chem. Lett. 16, 31-35.]); Pandeya et al. (1999[Pandeya, S. N., Sriram, D., Nath, G. & De Clercq, E. (1999). Pharm. Acta Helv. 74, 11-17.]); Tarafder et al. (2002[Tarafder, M. T., Kasbollah, A., Saravan, N., Crouse, K. A., Ali, A. M. & Tin, O. K. (2002). J. Biochem. Mol. Biol. Biophys. 6, 85-91.]); Terzioglu & Gursoy (2003[Terzioglu, N. & Gursoy, A. (2003). Eur. J. Med. Chem. 38, 781-786.]); Todeschini et al. (1998[Todeschini, A. R., de Miranda, A. L., Silva, C. M., Parrini, S. C. & Barreiro, E. J. (1998). Eur. J. Med. Chem. 33, 189-199.]). For the crystal structures of related compounds, see: Taha et al. (2013[Taha, M., Baharudin, M. S., Ismail, N. H., Shah, S. A. A. & Yousuf, S. (2013). Acta Cryst. E69, o277.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C15H14N2O2

  • Mr = 254.28

  • Orthorhombic, P b c a

  • a = 13.3135 (9) Å

  • b = 9.9581 (6) Å

  • c = 20.0278 (14) Å

  • V = 2655.2 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.50 × 0.48 × 0.31 mm

2.1.2. Data collection

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.94, Tmax = 0.97

  • 38941 measured reflections

  • 2462 independent reflections

  • 1819 reflections with I > 2σ(I)

  • Rint = 0.049

2.1.3. Refinement

  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.103

  • S = 1.08

  • 2462 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O2 0.86 1.96 2.6278 (17) 134
C7—H7A⋯O1i 0.93 2.44 3.1690 (19) 135
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z].

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Applications of benzoylhydrazones are reported in medicinal and analytical chemistry (Tarafder et al., 2002). Benzoylhydrazones having heterocyclic rings have been reported to have antiglycation (Taha et al., 2014), anticonvulsant (Kucukguzel et al.,2004), antiproliferative (Kucukguzel et al., 2003), antifungal and anti-HIV activities (Pandeya et al., 1999). Several benzoylhydrazones have also shown interesting bioactivities including antinflammatory (Todeschini et al., 1998), antibacterial (Kaymakcioglu et al., 2006), antimalarial (Melnyk et al., 2006) and anticancer (Terzioglu & Gursoy, 2003). Recently they have been suggested as an alternative in UV-laser desorption ionization (LDI) matrices for peptides analysis (Musharraf et al., 2012). The structure of the title compound (Fig. 1) is similar to (E)-2-methoxy-N'-(2,4,6-trihydroxybenzylidene) benzohydrazide (Taha et al., 2013), the difference residing in that the trihydroxyphenyl ring has been replaced by a non-substitutedphenyl ring (C1–C6). The bond lengths and angle were found to be similar to the structurally related benzohydrazide derivatives reported in Taha et al., 2013. The E configuration around the azomethine double bond is stabilized by a N2—H2A···O2 intramolecular interaction. The crystal structure is in turn stabilized by the intermolecular C7—H7A···O1 interaction to form chains along the b axis (Table 2 and Fig. 2).

Related literature top

For applications and biological activities of Schiff bases, see: Taha et al., (2013, 2014); Musharraf et al., (2012); Kaymakcioglu et al. (2006); Kucukguzel et al. (2003, 2004); Melnyk et al. (2006); Pandeya et al. (1999); Tarafder et al. (2002); Terzioglu & Gursoy (2003); Todeschini et al. (1998). For the crystal structures of related compounds, see: Taha et al. (2013).

Experimental top

The title compound was synthesized by refluxing a mixture of 2 mmol of 2-methoxybenzohydrazide (0.332 g), 2 mmol benzaldehyde (0.212 g) and catalytic amount of acetic acid in methanol (20 ml) for 3 h. The progress of the reaction was monitored by TLC. After completion of the reaction, the solvent was evaporated by vacuum to afford crude product which was further recrystallized in methanol to afford needle like pure product in 88% yield (0.447 g). All the chemicals were purchased from sigma Aldrich Germany.

Refinement top

H atoms were positioned geometrically with C—H = 0.93/0.96 Å, N-H = 0.86 Å respectively, and constrained to ride on their parent atoms with Uiso(H)= 1.2/1.5 Ueq(CH).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at 50% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound I. Only hydrogen atoms involved in hydrogen bonding are shown.
(E)-N'-Benzylidene-2-methoxybenzohydrazide top
Crystal data top
C15H14N2O2Dx = 1.272 Mg m3
Mr = 254.28Melting point = 449–451 K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
a = 13.3135 (9) ÅCell parameters from 9899 reflections
b = 9.9581 (6) Åθ = 3.0–25.5°
c = 20.0278 (14) ŵ = 0.09 mm1
V = 2655.2 (3) Å3T = 296 K
Z = 8Block, colourless
F(000) = 10720.50 × 0.48 × 0.31 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2462 independent reflections
Radiation source: fine-focus sealed tube1819 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
Detector resolution: 83.66 pixels mm-1θmax = 25.5°, θmin = 3.0°
ω scanh = 1616
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
k = 1112
Tmin = 0.94, Tmax = 0.97l = 2424
38941 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0361P)2 + 0.849P]
where P = (Fo2 + 2Fc2)/3
2462 reflections(Δ/σ)max < 0.001
174 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C15H14N2O2V = 2655.2 (3) Å3
Mr = 254.28Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 13.3135 (9) ŵ = 0.09 mm1
b = 9.9581 (6) ÅT = 296 K
c = 20.0278 (14) Å0.50 × 0.48 × 0.31 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2462 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1819 reflections with I > 2σ(I)
Tmin = 0.94, Tmax = 0.97Rint = 0.049
38941 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.08Δρmax = 0.13 e Å3
2462 reflectionsΔρmin = 0.14 e Å3
174 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.67310 (8)0.00143 (12)0.55943 (6)0.0569 (3)
O20.92308 (8)0.22579 (11)0.51387 (6)0.0575 (3)
N10.69422 (9)0.21778 (14)0.63568 (6)0.0481 (4)
N20.75847 (10)0.18784 (14)0.58377 (6)0.0486 (3)
H2A0.80860.23940.57500.058*
C10.65053 (12)0.36836 (17)0.72316 (7)0.0466 (4)
C20.66885 (14)0.4903 (2)0.75366 (10)0.0661 (5)
H2B0.72400.54140.74080.079*
C30.60545 (17)0.5369 (2)0.80336 (11)0.0797 (6)
H3A0.61830.61900.82380.096*
C40.52403 (16)0.4624 (2)0.82254 (10)0.0733 (6)
H4A0.48060.49460.85520.088*
C50.50683 (15)0.3407 (2)0.79347 (10)0.0701 (6)
H5A0.45230.28910.80710.084*
C60.56950 (13)0.29365 (18)0.74411 (9)0.0585 (5)
H6A0.55700.21050.72470.070*
C90.80953 (11)0.05112 (16)0.48857 (7)0.0434 (4)
C140.78281 (13)0.05488 (19)0.44740 (9)0.0587 (5)
H14A0.72540.10420.45730.070*
C130.83879 (16)0.0892 (2)0.39229 (10)0.0727 (6)
H13A0.81960.16090.36540.087*
C120.92326 (16)0.0164 (2)0.37740 (10)0.0730 (6)
H12A0.96130.03890.34010.088*
C110.95232 (14)0.08876 (19)0.41671 (9)0.0605 (5)
H11A1.00970.13740.40580.073*
C100.89683 (11)0.12330 (16)0.47268 (8)0.0452 (4)
C151.00920 (14)0.30448 (19)0.49805 (10)0.0662 (5)
H15A1.01650.37490.53040.099*
H15B1.00120.34310.45450.099*
H15C1.06790.24850.49860.099*
C70.71491 (11)0.32331 (17)0.66852 (7)0.0472 (4)
H7A0.77190.37260.65760.057*
C80.74169 (11)0.07632 (16)0.54683 (7)0.0431 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0488 (7)0.0567 (7)0.0652 (8)0.0047 (6)0.0131 (6)0.0040 (6)
O20.0509 (7)0.0553 (7)0.0664 (8)0.0085 (5)0.0210 (6)0.0075 (6)
N10.0414 (7)0.0615 (9)0.0413 (7)0.0032 (6)0.0088 (6)0.0011 (7)
N20.0402 (7)0.0594 (9)0.0461 (7)0.0032 (6)0.0126 (6)0.0014 (7)
C10.0436 (9)0.0579 (10)0.0383 (8)0.0066 (8)0.0003 (7)0.0039 (7)
C20.0573 (11)0.0763 (13)0.0649 (11)0.0044 (10)0.0020 (9)0.0128 (10)
C30.0799 (14)0.0884 (15)0.0708 (13)0.0113 (12)0.0001 (12)0.0298 (12)
C40.0756 (14)0.0940 (16)0.0504 (11)0.0258 (12)0.0128 (10)0.0019 (11)
C50.0690 (13)0.0747 (14)0.0665 (12)0.0094 (10)0.0263 (10)0.0095 (11)
C60.0602 (11)0.0581 (10)0.0574 (10)0.0037 (8)0.0167 (9)0.0015 (9)
C90.0390 (8)0.0476 (9)0.0435 (9)0.0065 (7)0.0018 (7)0.0047 (7)
C140.0561 (11)0.0653 (11)0.0547 (10)0.0044 (9)0.0022 (8)0.0046 (9)
C130.0794 (14)0.0804 (14)0.0584 (12)0.0032 (12)0.0064 (10)0.0198 (10)
C120.0764 (13)0.0871 (15)0.0556 (11)0.0023 (12)0.0211 (10)0.0119 (11)
C110.0577 (11)0.0671 (12)0.0569 (11)0.0002 (9)0.0193 (9)0.0003 (9)
C100.0444 (9)0.0465 (9)0.0446 (9)0.0079 (7)0.0063 (7)0.0031 (7)
C150.0567 (11)0.0658 (12)0.0762 (12)0.0137 (9)0.0166 (9)0.0003 (10)
C70.0382 (8)0.0613 (11)0.0420 (8)0.0012 (8)0.0029 (7)0.0044 (8)
C80.0357 (8)0.0489 (9)0.0447 (8)0.0063 (7)0.0019 (7)0.0078 (7)
Geometric parameters (Å, º) top
O1—C81.2236 (18)C5—H5A0.9300
O2—C101.3579 (19)C6—H6A0.9300
O2—C151.424 (2)C9—C141.386 (2)
N1—C71.270 (2)C9—C101.403 (2)
N1—N21.3790 (17)C9—C81.497 (2)
N2—C81.353 (2)C14—C131.375 (2)
N2—H2A0.8600C14—H14A0.9300
C1—C61.376 (2)C13—C121.371 (3)
C1—C21.381 (2)C13—H13A0.9300
C1—C71.461 (2)C12—C111.366 (3)
C2—C31.385 (3)C12—H12A0.9300
C2—H2B0.9300C11—C101.386 (2)
C3—C41.368 (3)C11—H11A0.9300
C3—H3A0.9300C15—H15A0.9600
C4—C51.364 (3)C15—H15B0.9600
C4—H4A0.9300C15—H15C0.9600
C5—C61.376 (2)C7—H7A0.9300
C10—O2—C15119.05 (13)C13—C14—H14A119.1
C7—N1—N2115.77 (13)C9—C14—H14A119.1
C8—N2—N1119.16 (13)C12—C13—C14119.22 (19)
C8—N2—H2A120.4C12—C13—H13A120.4
N1—N2—H2A120.4C14—C13—H13A120.4
C6—C1—C2118.61 (16)C11—C12—C13120.82 (18)
C6—C1—C7121.51 (16)C11—C12—H12A119.6
C2—C1—C7119.86 (16)C13—C12—H12A119.6
C1—C2—C3120.31 (19)C12—C11—C10120.36 (17)
C1—C2—H2B119.8C12—C11—H11A119.8
C3—C2—H2B119.8C10—C11—H11A119.8
C4—C3—C2120.2 (2)O2—C10—C11122.73 (15)
C4—C3—H3A119.9O2—C10—C9117.41 (13)
C2—C3—H3A119.9C11—C10—C9119.86 (16)
C5—C4—C3119.64 (18)O2—C15—H15A109.5
C5—C4—H4A120.2O2—C15—H15B109.5
C3—C4—H4A120.2H15A—C15—H15B109.5
C4—C5—C6120.5 (2)O2—C15—H15C109.5
C4—C5—H5A119.8H15A—C15—H15C109.5
C6—C5—H5A119.8H15B—C15—H15C109.5
C5—C6—C1120.70 (18)N1—C7—C1120.99 (15)
C5—C6—H6A119.7N1—C7—H7A119.5
C1—C6—H6A119.7C1—C7—H7A119.5
C14—C9—C10117.90 (15)O1—C8—N2122.00 (14)
C14—C9—C8115.89 (14)O1—C8—C9120.33 (15)
C10—C9—C8126.21 (14)N2—C8—C9117.66 (14)
C13—C14—C9121.84 (17)
C7—N1—N2—C8179.48 (14)C12—C11—C10—O2179.16 (17)
C6—C1—C2—C31.2 (3)C12—C11—C10—C90.9 (3)
C7—C1—C2—C3176.93 (17)C14—C9—C10—O2179.12 (14)
C1—C2—C3—C40.1 (3)C8—C9—C10—O20.2 (2)
C2—C3—C4—C51.4 (3)C14—C9—C10—C110.9 (2)
C3—C4—C5—C61.4 (3)C8—C9—C10—C11179.76 (15)
C4—C5—C6—C10.0 (3)N2—N1—C7—C1177.81 (13)
C2—C1—C6—C51.3 (3)C6—C1—C7—N14.7 (2)
C7—C1—C6—C5176.83 (16)C2—C1—C7—N1173.47 (16)
C10—C9—C14—C130.4 (3)N1—N2—C8—O12.5 (2)
C8—C9—C14—C13179.76 (17)N1—N2—C8—C9176.67 (13)
C9—C14—C13—C120.2 (3)C14—C9—C8—O16.6 (2)
C14—C13—C12—C110.3 (3)C10—C9—C8—O1172.75 (15)
C13—C12—C11—C100.3 (3)C14—C9—C8—N2172.60 (14)
C15—O2—C10—C112.2 (2)C10—C9—C8—N28.1 (2)
C15—O2—C10—C9177.76 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O20.861.962.6278 (17)134
C7—H7A···O1i0.932.443.1690 (19)135
C14—H14A···O10.932.392.730 (2)101
Symmetry code: (i) x+3/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O20.861.962.6278 (17)134
C7—H7A···O1i0.932.443.1690 (19)135
Symmetry code: (i) x+3/2, y+1/2, z.
 

Acknowledgements

The authors would like to acknowledge Universiti Teknologi MARA for the financial support under the Research Intensive Faculty Grant Scheme [reference number 600-RMI/DANA/5/3/RIF (67/2012)].

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKaymakcioglu, K. B., Oruc, E. E., Unsalan, S., Kandemirli, F., Shvets, N., Rollas, S. & Anatholy, D. (2006). Eur. J. Med. Chem. 41, 1253–1261.  Web of Science PubMed Google Scholar
First citationKucukguzel, I., Kucukguzel, S. G., Rollas, S., Otuk-Sanis, G., Ozdemir, O., Bayrak, I., Altug, T. & Stables, J. P. (2004). Il Farmaco, 59, 839–91.  PubMed Google Scholar
First citationKucukguzel, S. G., Mazi, A., Sahin, F., Ozturk, S. & Stables, J. (2003). Eur. J. Med. Chem. 38, 1005–1013.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMelnyk, P., Leroux, V., Sergheraert, C. & Grellier, P. (2006). Bioorg. Med. Chem. Lett. 16, 31–35.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMusharraf, S. G., Bibi, A., Shahid, N., Najam-ul-Haq, M., Khan, M., Taha, M., Mughal, U. R. & Khan, K. M. (2012). Am. J. Anal. Chem. 3, 779–789.  CrossRef CAS Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationPandeya, S. N., Sriram, D., Nath, G. & De Clercq, E. (1999). Pharm. Acta Helv. 74, 11–17.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaha, M., Baharudin, M. S., Ismail, N. H., Shah, S. A. A. & Yousuf, S. (2013). Acta Cryst. E69, o277.  CSD CrossRef IUCr Journals Google Scholar
First citationTaha, M., Naz, H., Rasheed, S., Ismail, N. H., Rahman, A. A., Yousuf, S. & Choudhary, M. I. (2014). Molecules, 19, 1286–1301.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTarafder, M. T., Kasbollah, A., Saravan, N., Crouse, K. A., Ali, A. M. & Tin, O. K. (2002). J. Biochem. Mol. Biol. Biophys. 6, 85–91.  CrossRef PubMed CAS Google Scholar
First citationTerzioglu, N. & Gursoy, A. (2003). Eur. J. Med. Chem. 38, 781–786.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTodeschini, A. R., de Miranda, A. L., Silva, C. M., Parrini, S. C. & Barreiro, E. J. (1998). Eur. J. Med. Chem. 33, 189–199.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o1071-o1072
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds