organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o1049-o1050

Crystal structure of (Z)-2,3-di­chloro-1,4-bis­­(4-meth­­oxy­phen­yl)but-2-ene-1,4-dione

aDepartment of Chemistry, Indian Institute of Technology Delhi, Hauzkhas, New Delhi 110 016, India, and bDepartment of Chemistry, St Stephen's College, University Enclave, Delhi 110 007, India
*Correspondence e-mail: rktittaliitd@nitkkr.ac.in

Edited by L. Fabian, University of East Anglia, England (Received 4 July 2014; accepted 19 August 2014; online 23 August 2014)

The title compound, C18H14Cl2O4, adopts a Z conformation around the cental C=C bond. The two aromatic rings of the mol­ecule are nearly perpendicular to each other, with a dihedral angle between of 86.22 (14)°. The meth­oxy substituents lie close to the plane of the attached benzene rings. The C(ar)—C(ar)—O—C(Me) torsion angles are −2.4 (7) and 7.5 (6)°. Weak C—H⋯O inter­actions link the mol­ecules forming a three-dimensional network. The crystal packing also displays short [3.160 (3) Å] Cl⋯O halogen-bonding contacts between mol­ecules related by the screw axis. The structure exhibits disorder of one carbonyl O atom with a refined occupancy ratio of 0.21 (6):0.79 (6).

1. Related literature

For a review of radical reactions, see: Clark (2002[Clark, A. J. (2002). Chem. Soc. Rev. 31, 1-11.]); Ram & Tittal (2014a[Ram, R. N. & Tittal, R. K. (2014a). Tetrahedron Lett. 55, 4448-4451.],b[Ram, R. N. & Tittal, R. K. (2014b). Tetrahedron Lett. 55, 4342-4345.]); Pintauer & Matyjaszewski (2008[Pintauer, T. & Matyjaszewski, K. (2008). Chem. Soc. Rev. 37, 1087-1097.]). For details of the synthesis, see: Kurosawa & Yamaguchi (1981[Kurosawa, K. & Yamaguchi, K. (1981). Bull. Chem. Soc. Jpn, 54, 1757-1760.]); Ram et al. (2007[Ram, R. N., Tittal, R. K. & Upreti, S. (2007). Tetrahedron Lett. 48, 7994-7997.]). For halogen-bond inter­actions, see: Agarwal et al. (2014[Agarwal, P., Mishra, P., Gupta, N., Neelam, , Sahoo, P. & Kumar, S. (2014). Acta Cryst. E70, o418.]). For a similar structure and short aromatic contacts, see: Tittal et al. (2014[Tittal, R. K., Kumar, S. & Ram, R. N. (2014). Acta Cryst. E70, o861-o862.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C18H14Cl2O4

  • Mr = 365.19

  • Monoclinic, P 21

  • a = 8.877 (3) Å

  • b = 9.914 (3) Å

  • c = 10.294 (3) Å

  • β = 110.565 (5)°

  • V = 848.3 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 273 K

  • 0.31 × 0.23 × 0.14 mm

2.2. Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.860, Tmax = 1.000

  • 9879 measured reflections

  • 4012 independent reflections

  • 3755 reflections with I > 2σ(I)

  • Rint = 0.025

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.134

  • S = 1.17

  • 4012 reflections

  • 223 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.17 e Å−3

  • Absolute structure: Flack x determined using 1548 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])

  • Absolute structure parameter: 0.01 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O4Ai 0.93 2.49 3.23 (3) 137
C7—H7⋯O4Bi 0.93 2.62 3.245 (9) 125
C12—H12⋯O1ii 0.93 2.66 3.488 (5) 149
C14—H14⋯O1iii 0.93 2.72 3.363 (5) 127
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+1]; (ii) [-x, y-{\script{1\over 2}}, -z]; (iii) x+1, y-1, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: OLEX2, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Chemical context top

Tri­chloro­methyl groups are known to generate free radicals through homolysis of a C—Cl bond with relative ease in presence of radical initiators or UV-light or redox active metal salts (such as CuCl) or its complexes. A number of research papers are available that show radical inter­mediates produced from tri­chloro­methyl group containing compounds. For example, CuCl or its complexes with bi­pyridine or bi- or tridendentate amine ligands have been used with tri­chloro­methyl groups on a variety of organic substrates under non reducing conditions to generate free radicals. Such radicals have been reported to undergo intra­molecular and inter­molecular cyclization or addition reactions along with mono- and/or-di redution products (Clark, 2002; Ram et al.,2007). The radicals produced in these reactions can also acts as a radical initiator in ATRP (Pintauer & Matyjaszewski, 2008). However, the presence of relatively better leaving group at the β-position of the radical centre leads to predominantly rearrangement and/or fragmentation reactions through the inter­mediate formation of contact ion pairs (Ram & Tittal, 2014a,b). It is important to mention here that 2,2,2-tri­chloro­ethyl­alkyl ethers and tri­chloro­methyl carbinols with no leaving group at β-position to the tri­chloro­methyl around carbon carbon double bond undergoes 1,2-H shift under similar conditions through the inter­mediate copper-carbenoid species (Ram & Tittal, 2014b). Keeping in view the above discussion, we have decided to study the behavior of the radicals produced from substituted tri­chloro­methyl compounds with no suitably located carbon-carbon double bond and leaving group or any hydrogen atom at the β-position of the radical centre in order to restrict the inter­molecular or intra­molecular addition; ATRP; rearrangement and/or fragmentation or 1,2-H shift. The major product obtained under such conditions is reported here.

Structural commentary top

In the asymmetric unit (Fig. 1) the moleculecule adopts Z conformation about the C=C bond: C8C9. The two aromatic rings are nearly perpendicular with an inter­planar angle between the two phenyl rings of 86.22 (14)°. The two meth­oxy substituents lie close to the plane of the attached benzene rings. The C(ar)—C(ar)—O—C(Me) torsion angles are -2.4 (7)° (C21—C4—O1—C22) and 7.5 (6)° (C14—C9—O2—C20). The structure exhibits disorder of carbonyl group with a refined occupancy ratio of 0.21 (6): 0.79 (6).

Supra­molecular features top

The crystal packing is stablized by short halogen bond Cl···O inter­actions (Fig. 2) [3.160 (3)Å]. The crystal structure of also displays inter­molecular C(ar)—H···O (Table 1, Fig. 3) short contacts.

Synthesis and crystallization top

A two-neck round bottom flask fitted with a rubber septum was charged with CuCl (0.8 g, 0.008mol), 2,2'-bi­pyridine (bpy, 1.25 g, 0.008 mol) under continuous flow of nitro­gen followed by addition of 1 mL dry di­chloro­ethane (DCE) or benzene to ensure CuCl-bpy complex formation. To this reaction flask a solution of the 2,2,2-tri­chloro-1-(4-meth­oxy-phenyl)-ethanone (0.004 mol) in dry DCE or benzene (5 mL) was injected through the septum with the help of a syringe and the reaction mixture was heated at reflux with stirring under a slow and continuous flow of nitro­gen. The completion of the reaction was indicated by TLC (1-2 h). The reaction mixture was cooled and filtered through a celite pad. The filtrate was evaporated under reduced pressure and purified on a silica gel column chromatography using n-hexane and ethyl­acetate mixture as the solvent to get title compound in 60 or 70% isolated yields in DCE or benzene, respectively. Suitable single crystals were obtained from a chloro­form:henxane (3:7) mixture by slow evaporation at room temperature. Melting point 132°C, literature melting point 132-134°C (Kurosawa & Yamaguchi, 1981).

Refinement top

H atoms were placed in calculated positions and refined using riding model, with C—H 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic C—H. Methyl groups were refined as idealised rotating groups, with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C). Disorder was modeled for O4 atom of the carbonyl group over two sets of sites with minor:major occupancy ratio of 0.21 (6): 0.79 (6). Similarity restraints were used for the CO bond distances using SADI. Anisotropic displacement parameters of the minor component of oxygen atom O4 were constrained to those of the major component using EADP.

Related literature top

For a review of radical reactions, see: Clark (2002); Ram & Tittal (2014a,b); Pintauer & Matyjaszewski (2008). For details of the synthesis, see: Kurosawa & Yamaguchi (1981); Ram et al. (2007). For halogen-bond interactions, see: Agarwal et al. (2014). For a similar structure and short aromatic contacts, see: Tittal et al. (2014).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. A view of the crystal packing of the title compound. A weak C—H···O hydrogen bond is shown as a dashed line.
[Figure 3] Fig. 3. Part of the structure of the title compound showing O····Cl and C—H····O interactions.
(Z)-2,3-Dichloro-1,4-bis(4-methoxyphenyl)but-2-ene-1,4-dione top
Crystal data top
C18H14Cl2O4F(000) = 376
Mr = 365.19Dx = 1.430 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 8.877 (3) ÅCell parameters from 5754 reflections
b = 9.914 (3) Åθ = 3.2–26.1°
c = 10.294 (3) ŵ = 0.40 mm1
β = 110.565 (5)°T = 273 K
V = 848.3 (5) Å3Block, colorless
Z = 20.31 × 0.23 × 0.14 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
3755 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.025
ϕ and ω scansθmax = 28.3°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1111
Tmin = 0.860, Tmax = 1.000k = 1213
9879 measured reflectionsl = 1313
4012 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.057 w = 1/[σ2(Fo2) + (0.0741P)2 + 0.0555P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.134(Δ/σ)max < 0.001
S = 1.17Δρmax = 0.41 e Å3
4012 reflectionsΔρmin = 0.17 e Å3
223 parametersAbsolute structure: Flack x determined using 1548 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
2 restraintsAbsolute structure parameter: 0.01 (2)
Primary atom site location: structure-invariant direct methods
Crystal data top
C18H14Cl2O4V = 848.3 (5) Å3
Mr = 365.19Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.877 (3) ŵ = 0.40 mm1
b = 9.914 (3) ÅT = 273 K
c = 10.294 (3) Å0.31 × 0.23 × 0.14 mm
β = 110.565 (5)°
Data collection top
Bruker SMART APEX CCD
diffractometer
4012 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3755 reflections with I > 2σ(I)
Tmin = 0.860, Tmax = 1.000Rint = 0.025
9879 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.134Δρmax = 0.41 e Å3
S = 1.17Δρmin = 0.17 e Å3
4012 reflectionsAbsolute structure: Flack x determined using 1548 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
223 parametersAbsolute structure parameter: 0.01 (2)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.6776 (4)0.5542 (4)0.2160 (4)0.0447 (8)
C20.5707 (5)0.6341 (4)0.1270 (4)0.0443 (8)
C30.6859 (4)0.3333 (4)0.3536 (4)0.0424 (7)
C40.1894 (4)1.0044 (4)0.1824 (4)0.0456 (8)
C60.3256 (4)0.7652 (4)0.1360 (4)0.0420 (7)
C70.7162 (5)0.1437 (5)0.5065 (4)0.0505 (9)
H70.70530.10590.58540.061*
C80.7473 (4)0.2551 (4)0.2713 (3)0.0444 (8)
H80.75670.29250.19160.053*
C90.7798 (4)0.0673 (4)0.4242 (4)0.0449 (8)
C110.0916 (5)0.9011 (5)0.1102 (5)0.0544 (10)
H110.01960.91190.07690.065*
C120.1581 (4)0.7821 (4)0.0872 (4)0.0507 (9)
H120.09160.71250.03910.061*
C130.6700 (5)0.2740 (4)0.4710 (4)0.0494 (9)
H130.62710.32420.52610.059*
C140.7946 (5)0.1233 (4)0.3056 (4)0.0463 (8)
H140.83600.07250.24990.056*
C150.6357 (5)0.4749 (4)0.3229 (4)0.0535 (9)
O4A0.516 (5)0.509 (5)0.347 (7)0.088 (5)0.20 (6)
O4B0.569 (3)0.5385 (17)0.390 (2)0.088 (5)0.80 (6)
C160.3938 (5)0.6362 (4)0.1112 (5)0.0496 (9)
C180.4208 (4)0.8699 (4)0.2085 (4)0.0463 (8)
H180.53200.85980.24170.056*
C200.9065 (6)0.1371 (5)0.3997 (6)0.0724 (14)
H20A0.83720.15260.30550.109*
H20B0.93800.22210.44600.109*
H20C1.00040.08880.40030.109*
C210.3548 (4)0.9895 (4)0.2329 (4)0.0456 (8)
H210.42081.05870.28260.055*
C220.2043 (6)1.2268 (6)0.2784 (6)0.0742 (14)
H22A0.27951.25710.23670.111*
H22B0.26171.19720.37150.111*
H22C0.13371.29960.28000.111*
O10.1126 (4)1.1181 (3)0.2000 (4)0.0633 (8)
O20.8234 (4)0.0603 (3)0.4692 (3)0.0620 (8)
O30.3164 (4)0.5356 (4)0.0744 (6)0.0929 (14)
Cl10.62060 (13)0.74187 (12)0.01732 (11)0.0625 (3)
Cl20.87618 (12)0.54992 (12)0.22528 (13)0.0651 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0420 (17)0.0381 (17)0.0560 (19)0.0057 (16)0.0198 (15)0.0067 (16)
C20.0487 (19)0.0387 (18)0.0471 (19)0.0001 (15)0.0186 (16)0.0032 (14)
C30.0382 (16)0.0429 (19)0.0446 (17)0.0046 (15)0.0126 (14)0.0020 (14)
C40.0460 (18)0.0446 (19)0.048 (2)0.0078 (15)0.0193 (16)0.0042 (15)
C60.0404 (17)0.0397 (19)0.0452 (17)0.0031 (15)0.0141 (13)0.0032 (14)
C70.052 (2)0.053 (2)0.049 (2)0.0062 (18)0.0214 (17)0.0025 (17)
C80.0446 (18)0.048 (2)0.0401 (16)0.0033 (17)0.0146 (14)0.0021 (15)
C90.0390 (16)0.0403 (19)0.0507 (19)0.0057 (15)0.0098 (15)0.0021 (15)
C110.0343 (18)0.061 (3)0.064 (2)0.0039 (17)0.0122 (17)0.0033 (19)
C120.0400 (18)0.050 (2)0.058 (2)0.0061 (16)0.0123 (16)0.0080 (17)
C130.050 (2)0.052 (2)0.052 (2)0.0006 (17)0.0252 (16)0.0062 (17)
C140.0454 (19)0.0433 (19)0.0496 (19)0.0016 (16)0.0161 (16)0.0090 (16)
C150.060 (2)0.049 (2)0.056 (2)0.0144 (19)0.0261 (19)0.0014 (18)
O4A0.131 (10)0.066 (5)0.099 (8)0.046 (6)0.079 (8)0.018 (5)
O4B0.131 (10)0.066 (5)0.099 (8)0.046 (6)0.079 (8)0.018 (5)
C160.0439 (19)0.0402 (19)0.061 (2)0.0017 (16)0.0140 (17)0.0052 (17)
C180.0321 (16)0.047 (2)0.055 (2)0.0029 (15)0.0091 (15)0.0002 (16)
C200.073 (3)0.046 (2)0.086 (3)0.019 (2)0.013 (2)0.001 (2)
C210.0411 (18)0.0391 (18)0.053 (2)0.0010 (15)0.0124 (16)0.0070 (15)
C220.074 (3)0.060 (3)0.089 (3)0.014 (3)0.029 (3)0.018 (3)
O10.0521 (16)0.0538 (19)0.083 (2)0.0161 (14)0.0219 (15)0.0103 (16)
O20.072 (2)0.0416 (16)0.0703 (19)0.0056 (14)0.0220 (15)0.0056 (13)
O30.0590 (18)0.050 (2)0.166 (4)0.0067 (17)0.035 (2)0.032 (2)
Cl10.0694 (6)0.0620 (6)0.0619 (6)0.0065 (6)0.0302 (5)0.0126 (5)
Cl20.0461 (5)0.0549 (6)0.0968 (8)0.0105 (5)0.0284 (5)0.0012 (6)
Geometric parameters (Å, º) top
C1—C21.326 (5)C9—O21.356 (5)
C1—C151.502 (6)C11—H110.9300
C1—Cl21.732 (3)C11—C121.377 (6)
C2—C161.521 (5)C12—H120.9300
C2—Cl11.722 (4)C13—H130.9300
C3—C81.393 (5)C14—H140.9300
C3—C131.395 (6)C15—O4A1.219 (13)
C3—C151.473 (6)C15—O4B1.229 (8)
C4—C111.379 (6)C16—O31.195 (5)
C4—C211.383 (5)C18—H180.9300
C4—O11.362 (5)C18—C211.384 (6)
C6—C121.402 (5)C20—H20A0.9600
C6—C161.476 (5)C20—H20B0.9600
C6—C181.380 (5)C20—H20C0.9600
C7—H70.9300C20—O21.417 (6)
C7—C91.395 (6)C21—H210.9300
C7—C131.367 (6)C22—H22A0.9600
C8—H80.9300C22—H22B0.9600
C8—C141.380 (6)C22—H22C0.9600
C9—C141.389 (6)C22—O11.419 (6)
C2—C1—C15121.2 (3)C7—C13—H13119.4
C2—C1—Cl2121.4 (3)C8—C14—C9119.3 (3)
C15—C1—Cl2117.1 (3)C8—C14—H14120.4
C1—C2—C16122.9 (4)C9—C14—H14120.4
C1—C2—Cl1122.5 (3)C3—C15—C1121.4 (3)
C16—C2—Cl1114.6 (3)O4A—C15—C1117 (2)
C8—C3—C13118.3 (3)O4A—C15—C3116 (2)
C8—C3—C15123.6 (4)O4B—C15—C1115.8 (6)
C13—C3—C15118.2 (3)O4B—C15—C3122.5 (6)
C11—C4—C21120.5 (4)C6—C16—C2117.7 (3)
O1—C4—C11115.9 (3)O3—C16—C2118.7 (4)
O1—C4—C21123.6 (4)O3—C16—C6123.6 (4)
C12—C6—C16119.3 (3)C6—C18—H18119.2
C18—C6—C12118.4 (3)C6—C18—C21121.6 (3)
C18—C6—C16122.3 (3)C21—C18—H18119.2
C9—C7—H7120.0H20A—C20—H20B109.5
C13—C7—H7120.0H20A—C20—H20C109.5
C13—C7—C9119.9 (4)H20B—C20—H20C109.5
C3—C8—H8119.3O2—C20—H20A109.5
C14—C8—C3121.3 (4)O2—C20—H20B109.5
C14—C8—H8119.3O2—C20—H20C109.5
C14—C9—C7120.0 (4)C4—C21—C18119.0 (3)
O2—C9—C7115.3 (3)C4—C21—H21120.5
O2—C9—C14124.7 (4)C18—C21—H21120.5
C4—C11—H11119.9H22A—C22—H22B109.5
C12—C11—C4120.1 (3)H22A—C22—H22C109.5
C12—C11—H11119.9H22B—C22—H22C109.5
C6—C12—H12119.8O1—C22—H22A109.5
C11—C12—C6120.4 (4)O1—C22—H22B109.5
C11—C12—H12119.8O1—C22—H22C109.5
C3—C13—H13119.4C4—O1—C22119.3 (3)
C7—C13—C3121.2 (4)C9—O2—C20117.7 (4)
C1—C2—C16—C6121.1 (4)C13—C7—C9—C140.6 (6)
C1—C2—C16—O361.8 (6)C13—C7—C9—O2179.4 (4)
C2—C1—C15—C3137.3 (4)C14—C9—O2—C207.5 (6)
C2—C1—C15—O4A17 (4)C15—C1—C2—C169.4 (6)
C2—C1—C15—O4B48.1 (18)C15—C1—C2—Cl1171.9 (3)
C3—C8—C14—C90.3 (6)C15—C3—C8—C14179.1 (4)
C4—C11—C12—C60.5 (7)C15—C3—C13—C7179.1 (4)
C6—C18—C21—C40.5 (6)C16—C6—C12—C11179.4 (4)
C7—C9—C14—C80.6 (6)C16—C6—C18—C21178.9 (4)
C7—C9—O2—C20172.5 (4)C18—C6—C12—C110.7 (6)
C8—C3—C13—C71.3 (6)C18—C6—C16—C218.6 (6)
C8—C3—C15—C112.4 (6)C18—C6—C16—O3164.4 (5)
C8—C3—C15—O4A142 (4)C21—C4—C11—C120.3 (7)
C8—C3—C15—O4B173.5 (19)C21—C4—O1—C222.4 (7)
C9—C7—C13—C30.4 (6)O1—C4—C11—C12180.0 (4)
C11—C4—C21—C180.8 (6)O1—C4—C21—C18179.6 (4)
C11—C4—O1—C22177.3 (4)O2—C9—C14—C8179.4 (3)
C12—C6—C16—C2162.7 (4)Cl1—C2—C16—C660.1 (4)
C12—C6—C16—O314.2 (7)Cl1—C2—C16—O3117.0 (5)
C12—C6—C18—C210.2 (6)Cl2—C1—C2—C16177.2 (3)
C13—C3—C8—C141.3 (5)Cl2—C1—C2—Cl11.5 (5)
C13—C3—C15—C1168.0 (4)Cl2—C1—C15—C349.0 (5)
C13—C3—C15—O4A38 (4)Cl2—C1—C15—O4A157 (4)
C13—C3—C15—O4B6.1 (19)Cl2—C1—C15—O4B125.5 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O4Ai0.932.493.23 (3)137
C7—H7···O4Bi0.932.623.245 (9)125
C12—H12···O1ii0.932.663.488 (5)149
C14—H14···O1iii0.932.723.363 (5)127
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x, y1/2, z; (iii) x+1, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O4Ai0.932.493.23 (3)136.7
C7—H7···O4Bi0.932.623.245 (9)124.9
C12—H12···O1ii0.932.663.488 (5)148.5
C14—H14···O1iii0.932.723.363 (5)127.2
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x, y1/2, z; (iii) x+1, y1, z.
 

Footnotes

Present address: Departmentof Chemistry, National Institute of Technology, Kurukshetra, Haryana 136 119, India.

Acknowledgements

The authors are thankful to Shailesh Upreti for providing assistance in solving the X-ray structure.

References

First citationAgarwal, P., Mishra, P., Gupta, N., Neelam, , Sahoo, P. & Kumar, S. (2014). Acta Cryst. E70, o418.  Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClark, A. J. (2002). Chem. Soc. Rev. 31, 1–11.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKurosawa, K. & Yamaguchi, K. (1981). Bull. Chem. Soc. Jpn, 54, 1757–1760.  CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPintauer, T. & Matyjaszewski, K. (2008). Chem. Soc. Rev. 37, 1087–1097.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRam, R. N. & Tittal, R. K. (2014a). Tetrahedron Lett. 55, 4448–4451.  Web of Science CrossRef CAS Google Scholar
First citationRam, R. N. & Tittal, R. K. (2014b). Tetrahedron Lett. 55, 4342–4345.  Web of Science CrossRef CAS Google Scholar
First citationRam, R. N., Tittal, R. K. & Upreti, S. (2007). Tetrahedron Lett. 48, 7994–7997.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTittal, R. K., Kumar, S. & Ram, R. N. (2014). Acta Cryst. E70, o861–o862.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o1049-o1050
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds