organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o968-o969
ADDENDA AND ERRATA

A correction has been published for this article. To view the correction, click here.

Crystal structure of 2-(2-bromo­phen­yl)-4-(1H-indol-3-yl)-6-(thio­phen-2-yl)pyridine-3-carbo­nitrile

aDepartment of Physics, The Madura College, Madurai 625 011, India, bDepartment of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India, and cDepartment of Food Science and Technology, University of Ruhuna, Mapalana, Kamburupitiya 81100, Sri Lanka
*Correspondence e-mail: plakshmannilantha@ymail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 24 July 2014; accepted 25 July 2014; online 1 August 2014)

In the title compound, C24H14BrN3S, the dihedral angles between the planes of the pyridine ring and the pendant thio­phene ring, the indole ring system (r.m.s. deviation = 0.022 Å) and the bromo­benzene ring are 9.37 (17), 21.90 (12) and 69.01 (15)°, respectively. The approximate coplanarity of the central ring and the indole ring system is supported by two intra­molecular C—H⋯N inter­actions. In the crystal, inversion dimers linked by pairs of N—H⋯N hydrogen bonds generate R22(16) loops and the dimers are linked by C—H⋯π and aromatic ππ stacking [shortest centroid–centroid separation = 3.729 (3) Å] into a three-dimensional network.

1. Related literature

For the biological activity of pyridine-3-carbo­nitrile derivatives, see: Kim et al. (2005[Kim, K.-R., Rhee, S.-D., Kim, H. Y., Jung, W. H., Yang, S.-D., Kim, S. S., Ahn, J. H. & Cheon, H. G. (2005). Eur. J. Pharmacol. 518, 63-70.]); Ji et al. (2007[Ji, J., Bunnelle, W. H., Anderson, D. J., Faltynek, C., Dyhring, T., Ahring, P. K., Rueter, L. E., Curzon, P., Buckley, M. J., Marsh, K. C., Kempf-Grote, A. & Meyer, M. D. (2007). Biochem. Pharmacol. 74, 1253-1262.]); Brandt et al. (2010[Brandt, W., Mologni, L., Preu, L., Lemcke, T., Gambacorti-Passerini, C. & Kunick, C. (2010). Eur. J. Med. Chem. 45, 2919-2927.]); El-Sayed et al. (2011[El-Sayed, H. A., Moustafa, A. H., Haikal, A. E.-F. Z., Abu-El-Halawa, R. & Ashry, E. S. H. E. (2011). Eur. J. Med. Chem. 46, 2948-2954.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C24H14BrN3S

  • Mr = 456.35

  • Monoclinic, P 21 /c

  • a = 10.470 (5) Å

  • b = 21.353 (5) Å

  • c = 9.292 (5) Å

  • β = 107.710 (5)°

  • V = 1978.9 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.20 mm−1

  • T = 293 K

  • 0.52 × 0.23 × 0.17 mm

2.2. Data collection

  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.]) Tmin = 0.958, Tmax = 0.986

  • 17079 measured reflections

  • 4305 independent reflections

  • 2837 reflections with I > 2σ(I)

  • Rint = 0.041

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.121

  • S = 1.02

  • 4305 reflections

  • 262 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the benzene ring of the indole moiety.

D—H⋯A D—H H⋯A DA D—H⋯A
C53—H53⋯N1 0.93 2.58 3.069 (4) 114
C58—H58⋯N2 0.93 2.55 3.278 (4) 135
N3—H3⋯N2i 0.86 2.17 3.008 (4) 165
C32—H32⋯Cg1ii 0.93 2.89 3.761 (4) 157
Symmetry codes: (i) -x, -y+1, -z; (ii) -x, -y, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

3-Cyanopyridine derivatives have been reported for their wide range of applications such as in antimicrobial, analgesic, anti-hyperglycemic, antiproliferative and antitumor activities (Brandt et al., 2010; El-Sayed et al., 2011; Ji et al., 2007; Kim et al., 2005). As part of our studies in this area, the title compound was investigated.

The deviation of the nitrile atoms (C41,N2) from the mean plane of the pyridine ring system is -0.013 (1) Å and -0.020 (5) Å. The shortening of the C—N distances [1.346 (3) and 1.345 (3) Å] and the opening of the N1–C11–C10 angle [122.83 (2)°] may be attributed to the size of the substituent at C1, correlating well with the values observed in the ortho-substituted derivative.

The crystal structure features a intermolecular N—H···N interaction between inverse related molecules generating a graph set ring motif R22 (16) which are linked into chains through C—H···Cg1 interation (Cg1 is the centroid of the benzene ring of the indole moiety) and by π···π stacking interaction involving adjacent pyridine and pyrrole rings of the symmetry related molecule at (-x, -y, -z), with a centroid-to-centroid distance of 3.729 (3) Å·(Fig 2).

Related literature top

For the biological activity of pyridine-3-carbonitrile derivatives, see: Kim et al. (2005); Ji et al. (2007); Brandt et al. (2010); El-Sayed et al. (2011).

Experimental top

A mixture of 3-(1H-indol-3-yl)-3-oxopropanenitrile 1 (1 mmol), 4,4,4-trifluoro-1-(thiophen-2-yl)butane-1,3-dione 2 (1 mmol) and 2-bromo benzaldehyde 3 (1 mmol) in the presence of ammonium acetate (400 mmol) under solvent-free condition was heated at 110 °C for 7 h. After completion of the reaction (TLC), the reaction mixture was poured into water and extracted with dichloromethane. After removal of the solvent, the residue was chromatographed over silica gel (230–400 mesh) using petroleum ether-ethyl acetate mixture (7:3 v/v), which afforded the pure compound. Melting point 282°C, yield: 67%.

Refinement top

H atoms were placed at calculated positions and allowed to ride on their carrier atoms with C—H = 0.93–0.98 Å and with Uiso = 1.2Ueq(C, N) for N, CH2 and CH atoms and Uiso = 1.5Ueq(C) for CH3 atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Partial packing view of the compound showing molecules interconnected through a C—H···π stacking interaction (dotted lines; symmetry code: (i) 1/2 - x, 1/2 + y, 1/2 - z)
2-(2-Bromophenyl)-4-(1H-indol-3-yl)-6-(thiophen-2-yl)pyridine-3-carbonitrile top
Crystal data top
C24H14BrN3SF(000) = 920
Mr = 456.35Dx = 1.532 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2000 reflections
a = 10.470 (5) Åθ = 2–27°
b = 21.353 (5) ŵ = 2.20 mm1
c = 9.292 (5) ÅT = 293 K
β = 107.710 (5)°Block, colourless
V = 1978.9 (15) Å30.52 × 0.23 × 0.17 mm
Z = 4
Data collection top
Bruker Kappa APEXII
diffractometer
4305 independent reflections
Radiation source: fine-focus sealed tube2837 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 0 pixels mm-1θmax = 27.0°, θmin = 1.9°
ω and ϕ scansh = 1213
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 2727
Tmin = 0.958, Tmax = 0.986l = 1111
17079 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0618P)2 + 0.4334P]
where P = (Fo2 + 2Fc2)/3
4305 reflections(Δ/σ)max < 0.001
262 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C24H14BrN3SV = 1978.9 (15) Å3
Mr = 456.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.470 (5) ŵ = 2.20 mm1
b = 21.353 (5) ÅT = 293 K
c = 9.292 (5) Å0.52 × 0.23 × 0.17 mm
β = 107.710 (5)°
Data collection top
Bruker Kappa APEXII
diffractometer
4305 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2837 reflections with I > 2σ(I)
Tmin = 0.958, Tmax = 0.986Rint = 0.041
17079 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.02Δρmax = 0.48 e Å3
4305 reflectionsΔρmin = 0.35 e Å3
262 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2640 (3)0.50193 (12)0.7417 (3)0.0386 (7)
C20.3077 (3)0.44165 (13)0.7289 (3)0.0425 (7)
H20.35430.41940.81490.051*
C30.2818 (3)0.41458 (12)0.5880 (3)0.0390 (7)
C40.2078 (3)0.45002 (12)0.4630 (3)0.0368 (6)
C50.1664 (3)0.51133 (12)0.4822 (3)0.0371 (6)
C110.2890 (3)0.53182 (14)0.8898 (3)0.0432 (7)
C120.3376 (3)0.50426 (15)1.0315 (3)0.0481 (8)
H120.36250.46241.04840.058*
C130.3439 (4)0.54874 (19)1.1471 (3)0.0622 (9)
H130.37450.53931.24960.075*
C140.3011 (4)0.60608 (18)1.0930 (4)0.0651 (10)
H140.29950.64051.15380.078*
C310.3330 (3)0.35097 (13)0.5742 (3)0.0402 (7)
C320.2810 (4)0.30034 (14)0.6331 (3)0.0555 (8)
H320.21080.30680.67330.067*
C330.3322 (4)0.24105 (16)0.6326 (4)0.0697 (11)
H330.29580.20780.67160.084*
C340.4351 (5)0.23060 (17)0.5759 (4)0.0736 (11)
H340.46950.19040.57740.088*
C350.4892 (4)0.27918 (16)0.5159 (4)0.0650 (10)
H350.55970.27210.47660.078*
C360.4366 (3)0.33884 (13)0.5151 (3)0.0466 (7)
C410.1792 (3)0.42163 (13)0.3172 (3)0.0451 (7)
C510.0943 (3)0.55225 (13)0.3593 (3)0.0380 (6)
C520.0877 (3)0.61968 (13)0.3648 (3)0.0404 (7)
C530.1419 (3)0.66595 (14)0.4726 (3)0.0497 (8)
H530.19320.65500.56990.060*
C540.1186 (4)0.72736 (15)0.4329 (4)0.0614 (9)
H540.15610.75810.50410.074*
C550.0405 (4)0.74537 (17)0.2892 (4)0.0657 (10)
H550.02530.78770.26690.079*
C560.0136 (4)0.70208 (16)0.1814 (4)0.0581 (9)
H560.06500.71400.08490.070*
C570.0104 (3)0.63913 (14)0.2198 (3)0.0451 (7)
C580.0214 (3)0.53562 (14)0.2152 (3)0.0452 (7)
H580.00820.49480.17910.054*
N10.1961 (2)0.53636 (10)0.6215 (2)0.0386 (6)
N20.1568 (3)0.39821 (12)0.2015 (3)0.0630 (8)
N30.0283 (3)0.58711 (12)0.1335 (3)0.0500 (7)
H30.07730.58700.04050.060*
S0.25060 (12)0.60852 (4)0.90204 (10)0.0706 (3)
Br0.51614 (4)0.404354 (16)0.43368 (4)0.06285 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0378 (18)0.0460 (16)0.0330 (14)0.0027 (13)0.0123 (13)0.0018 (13)
C20.049 (2)0.0473 (17)0.0288 (14)0.0025 (14)0.0084 (13)0.0054 (12)
C30.0397 (18)0.0415 (15)0.0365 (15)0.0016 (13)0.0128 (13)0.0067 (12)
C40.0403 (18)0.0393 (14)0.0298 (14)0.0037 (13)0.0094 (12)0.0000 (12)
C50.0362 (17)0.0420 (15)0.0330 (14)0.0041 (13)0.0103 (12)0.0019 (12)
C110.0382 (18)0.0517 (17)0.0380 (16)0.0058 (14)0.0093 (13)0.0024 (13)
C120.054 (2)0.0600 (18)0.0271 (14)0.0014 (15)0.0083 (14)0.0045 (14)
C130.059 (2)0.088 (3)0.0347 (17)0.005 (2)0.0078 (16)0.0043 (17)
C140.076 (3)0.075 (2)0.0419 (18)0.001 (2)0.0139 (18)0.0232 (17)
C310.0467 (19)0.0402 (15)0.0285 (14)0.0000 (13)0.0038 (13)0.0009 (12)
C320.062 (2)0.0500 (19)0.0537 (19)0.0032 (16)0.0163 (17)0.0094 (15)
C330.087 (3)0.0421 (19)0.071 (2)0.0048 (19)0.012 (2)0.0172 (17)
C340.086 (3)0.046 (2)0.080 (3)0.011 (2)0.013 (2)0.0019 (18)
C350.070 (3)0.057 (2)0.066 (2)0.0158 (18)0.0176 (19)0.0031 (18)
C360.051 (2)0.0464 (17)0.0392 (16)0.0005 (15)0.0082 (15)0.0002 (13)
C410.054 (2)0.0375 (15)0.0383 (17)0.0044 (14)0.0051 (14)0.0058 (14)
C510.0384 (18)0.0446 (15)0.0318 (14)0.0001 (13)0.0119 (13)0.0035 (12)
C520.0407 (18)0.0457 (15)0.0389 (16)0.0046 (14)0.0182 (14)0.0090 (13)
C530.056 (2)0.0463 (17)0.0477 (18)0.0001 (15)0.0179 (16)0.0005 (14)
C540.072 (3)0.0451 (18)0.073 (2)0.0003 (17)0.031 (2)0.0008 (17)
C550.076 (3)0.0490 (19)0.078 (3)0.0099 (18)0.032 (2)0.0204 (19)
C560.057 (2)0.061 (2)0.058 (2)0.0113 (18)0.0199 (17)0.0262 (18)
C570.0436 (19)0.0540 (18)0.0409 (16)0.0052 (15)0.0177 (14)0.0119 (14)
C580.045 (2)0.0494 (17)0.0402 (16)0.0037 (14)0.0111 (14)0.0024 (14)
N10.0424 (15)0.0416 (13)0.0316 (12)0.0021 (11)0.0107 (11)0.0006 (10)
N20.089 (2)0.0508 (16)0.0405 (15)0.0127 (14)0.0065 (15)0.0049 (12)
N30.0488 (18)0.0617 (17)0.0330 (13)0.0058 (13)0.0024 (12)0.0085 (12)
S0.0982 (9)0.0602 (5)0.0497 (5)0.0089 (5)0.0167 (5)0.0073 (4)
Br0.0616 (3)0.0661 (3)0.0687 (3)0.00767 (17)0.0314 (2)0.00167 (16)
Geometric parameters (Å, º) top
C1—N11.345 (3)C33—H330.9300
C1—C21.383 (4)C34—C351.378 (5)
C1—C111.466 (4)C34—H340.9300
C2—C31.380 (4)C35—C361.387 (4)
C2—H20.9300C35—H350.9300
C3—C41.405 (4)C36—Br1.899 (3)
C3—C311.480 (4)C41—N21.143 (4)
C4—C51.408 (4)C51—C581.371 (4)
C4—C411.431 (4)C51—C521.443 (4)
C5—N11.346 (3)C52—C531.399 (4)
C5—C511.454 (4)C52—C571.407 (4)
C11—C121.390 (4)C53—C541.364 (4)
C11—S1.698 (3)C53—H530.9300
C12—C131.420 (4)C54—C551.391 (5)
C12—H120.9300C54—H540.9300
C13—C141.347 (5)C55—C561.354 (5)
C13—H130.9300C55—H550.9300
C14—S1.691 (4)C56—C571.394 (4)
C14—H140.9300C56—H560.9300
C31—C361.381 (4)C57—N31.358 (4)
C31—C321.395 (4)C58—N31.347 (4)
C32—C331.376 (5)C58—H580.9300
C32—H320.9300N3—H30.8600
C33—C341.354 (6)
N1—C1—C2122.8 (2)C35—C34—H34119.8
N1—C1—C11116.1 (2)C34—C35—C36118.8 (4)
C2—C1—C11121.1 (2)C34—C35—H35120.6
C3—C2—C1119.8 (3)C36—C35—H35120.6
C3—C2—H2120.1C31—C36—C35121.9 (3)
C1—C2—H2120.1C31—C36—Br120.9 (2)
C2—C3—C4117.3 (3)C35—C36—Br117.2 (3)
C2—C3—C31119.7 (2)N2—C41—C4179.1 (3)
C4—C3—C31123.1 (2)C58—C51—C52105.9 (2)
C3—C4—C5120.6 (2)C58—C51—C5127.8 (3)
C3—C4—C41117.3 (2)C52—C51—C5126.2 (2)
C5—C4—C41122.0 (2)C53—C52—C57117.9 (3)
N1—C5—C4120.1 (2)C53—C52—C51135.8 (3)
N1—C5—C51115.4 (2)C57—C52—C51106.3 (2)
C4—C5—C51124.5 (2)C54—C53—C52119.0 (3)
C12—C11—C1127.9 (3)C54—C53—H53120.5
C12—C11—S111.8 (2)C52—C53—H53120.5
C1—C11—S120.3 (2)C53—C54—C55122.0 (3)
C11—C12—C13110.6 (3)C53—C54—H54119.0
C11—C12—H12124.7C55—C54—H54119.0
C13—C12—H12124.7C56—C55—C54120.9 (3)
C14—C13—C12113.1 (3)C56—C55—H55119.6
C14—C13—H13123.5C54—C55—H55119.6
C12—C13—H13123.5C55—C56—C57117.8 (3)
C13—C14—S112.5 (3)C55—C56—H56121.1
C13—C14—H14123.8C57—C56—H56121.1
S—C14—H14123.8N3—C57—C56129.7 (3)
C36—C31—C32117.3 (3)N3—C57—C52107.8 (3)
C36—C31—C3123.8 (3)C56—C57—C52122.4 (3)
C32—C31—C3118.8 (3)N3—C58—C51110.1 (3)
C33—C32—C31120.8 (3)N3—C58—H58124.9
C33—C32—H32119.6C51—C58—H58124.9
C31—C32—H32119.6C1—N1—C5119.4 (2)
C34—C33—C32120.7 (3)C58—N3—C57109.9 (3)
C34—C33—H33119.7C58—N3—H3125.1
C32—C33—H33119.7C57—N3—H3125.1
C33—C34—C35120.5 (3)C14—S—C1192.04 (16)
C33—C34—H34119.8
N1—C1—C2—C30.0 (5)C34—C35—C36—C310.8 (5)
C11—C1—C2—C3179.6 (3)C34—C35—C36—Br179.2 (3)
C1—C2—C3—C41.7 (4)N1—C5—C51—C58161.3 (3)
C1—C2—C3—C31177.8 (3)C4—C5—C51—C5820.3 (5)
C2—C3—C4—C52.1 (4)N1—C5—C51—C5220.1 (4)
C31—C3—C4—C5177.3 (3)C4—C5—C51—C52158.3 (3)
C2—C3—C4—C41179.0 (3)C58—C51—C52—C53177.4 (3)
C31—C3—C4—C411.6 (4)C5—C51—C52—C531.5 (5)
C3—C4—C5—N10.8 (4)C58—C51—C52—C570.4 (3)
C41—C4—C5—N1179.7 (3)C5—C51—C52—C57178.4 (3)
C3—C4—C5—C51177.5 (3)C57—C52—C53—C540.4 (4)
C41—C4—C5—C511.4 (4)C51—C52—C53—C54176.3 (3)
N1—C1—C11—C12169.4 (3)C52—C53—C54—C551.2 (5)
C2—C1—C11—C1210.2 (5)C53—C54—C55—C561.3 (5)
N1—C1—C11—S7.5 (4)C54—C55—C56—C570.7 (5)
C2—C1—C11—S172.9 (2)C55—C56—C57—N3178.0 (3)
C1—C11—C12—C13178.3 (3)C55—C56—C57—C520.0 (5)
S—C11—C12—C131.2 (4)C53—C52—C57—N3178.3 (3)
C11—C12—C13—C140.5 (4)C51—C52—C57—N30.7 (3)
C12—C13—C14—S0.5 (4)C53—C52—C57—C560.2 (4)
C2—C3—C31—C36108.6 (3)C51—C52—C57—C56177.8 (3)
C4—C3—C31—C3670.8 (4)C52—C51—C58—N30.1 (3)
C2—C3—C31—C3266.9 (4)C5—C51—C58—N3178.8 (3)
C4—C3—C31—C32113.7 (3)C2—C1—N1—C51.3 (4)
C36—C31—C32—C330.4 (5)C11—C1—N1—C5178.3 (2)
C3—C31—C32—C33175.3 (3)C4—C5—N1—C10.9 (4)
C31—C32—C33—C340.5 (5)C51—C5—N1—C1179.3 (2)
C32—C33—C34—C350.8 (6)C51—C58—N3—C570.4 (4)
C33—C34—C35—C360.2 (6)C56—C57—N3—C58177.6 (3)
C32—C31—C36—C351.1 (4)C52—C57—N3—C580.6 (4)
C3—C31—C36—C35174.4 (3)C13—C14—S—C111.0 (3)
C32—C31—C36—Br179.4 (2)C12—C11—S—C141.3 (3)
C3—C31—C36—Br3.9 (4)C1—C11—S—C14178.6 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the benzene ring of the indole moiety.
D—H···AD—HH···AD···AD—H···A
C53—H53···N10.932.583.069 (4)114
C58—H58···N20.932.553.278 (4)135
N3—H3···N2i0.862.173.008 (4)165
C32—H32···Cg1ii0.932.893.761 (4)157
Symmetry codes: (i) x, y+1, z; (ii) x, y, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the benzene ring of the indole moiety.
D—H···AD—HH···AD···AD—H···A
C53—H53···N10.932.583.069 (4)114
C58—H58···N20.932.553.278 (4)135
N3—H3···N2i0.862.173.008 (4)165
C32—H32···Cg1ii0.932.893.761 (4)157
Symmetry codes: (i) x, y+1, z; (ii) x, y, z.
 

Acknowledgements

JS and RV thank the management of the Madura College for their encouragement and support. SP thanks the Department of Science and Technology, New Delhi, for a major research project (SR/S1/OC/-50/2011) and the University Grants Commission, New Delhi, for the award of a BSR Faculty Fellowship

References

First citationBrandt, W., Mologni, L., Preu, L., Lemcke, T., Gambacorti-Passerini, C. & Kunick, C. (2010). Eur. J. Med. Chem. 45, 2919–2927.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl-Sayed, H. A., Moustafa, A. H., Haikal, A. E.-F. Z., Abu-El-Halawa, R. & Ashry, E. S. H. E. (2011). Eur. J. Med. Chem. 46, 2948–2954.  Web of Science CAS PubMed Google Scholar
First citationJi, J., Bunnelle, W. H., Anderson, D. J., Faltynek, C., Dyhring, T., Ahring, P. K., Rueter, L. E., Curzon, P., Buckley, M. J., Marsh, K. C., Kempf-Grote, A. & Meyer, M. D. (2007). Biochem. Pharmacol. 74, 1253–1262.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKim, K.-R., Rhee, S.-D., Kim, H. Y., Jung, W. H., Yang, S.-D., Kim, S. S., Ahn, J. H. & Cheon, H. G. (2005). Eur. J. Pharmacol. 518, 63–70.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o968-o969
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds