

OPEN a ACCESS

Crystal structure of 1-ethylpyrazolo-[3,4-d]pyrimidine-4(5H)-thione

Mohammed El Fal.^a* Youssef Ramli,^b El Mokhtar Essassi,^a Mohamed Saadi^c and Lahcen El Ammari^c

^aLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V-Agdal, Rabat, Morocco, ^bLaboratoire National de Contrôle des Médicaments, D M P, Ministère de la Santé, Madinat Al Irnane, BP 6206, Rabat, Morocco, and ^cLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco. *Correspondence e-mail: elfal_mohammed@yahoo.fr

Received 29 July 2014; accepted 9 August 2014

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

In the title compound, C7H8N4S, the methyl C atom is displaced by 1.232 (7) Å from the mean plane of the pyrazolo[3,4-d]pyrimidine ring system (r.m.s. deviation =0.007 Å). The N-N-C-C_m (m = methyl) torsion angle is -60.3 (6)°. In the crystal, molecules are linked by N-H···S hydrogen bonds, generating [010] chains, which are reinforced by $C-H \cdots N$ interactions. The chains are cross-linked by weak $C-H \cdots S$ hydrogen bonds, generating (001) sheets.

Keywords: crystal structure; pyrazolo[3,4-d]pyrimidine; biological activity; hydrogen bonding.

CCDC reference: 1018657

1. Related literature

For the biological activity of pyrazolo[3,4-d]pyrimidine derivatives, see: Rashad et al. (2008, 2011); Ballell et al. (2007). For related structures, see: El Fal et al. (2013); Radi et al. (2013); Alsubari et al. (2011).

2. Experimental 2.1. Crystal data $C_7H_8N_4S$

 $M_r = 180.23$

Monoclinic, P21 a = 4.472 (4) Å b = 5.353 (4) Å c = 17.573(12) Å $\beta = 93.71 \ (4)^{\circ}$ V = 419.8 (5) Å³

2.2. Data collection

2.3. Refinement

$R[F^2 > 2\sigma(F^2)] = 0.053$	$\Delta \rho_{\rm max} = 0.29 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.139$	$\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$
S = 1.01	Absolute structure: Flack &
1704 reflections	Bernardinelli (2000), 652 Friedel
109 parameters	pairs
1 restraint	Absolute structure parameter:
H-atom parameters constrained	-0.11(16)

Z = 2

Mo $K\alpha$ radiation

 $0.38 \times 0.34 \times 0.29 \text{ mm}$

4028 measured reflections

1704 independent reflections 1242 reflections with $I > 2\sigma(I)$

 $\mu = 0.33 \text{ mm}^{-1}$

T = 296 K

 $R_{\rm int} = 0.059$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H1 \cdots S1^{i}$	0.89	2.48	3.333 (4)	161
$C5-H5\cdots S1^{n}$	0.93	2.75	3.685 (5)	179
C3−H3···N2 ⁱⁱⁱ	0.93	2.60	3.528 (6)	174
Summature and and (i)		- 1. (;;) 1 1	1 - (33) - 1 - 1	1 -

Symmetry codes: (i) $-x, y + \frac{1}{2}, -z + 1$; (ii) x - 1, y + 1, z; (iii) x + 1, y - 1, z.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements and the University Mohammed V-Agdal, Rabat, Morocco, for financial support.

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7262).

References

- Alsubari, A., Ramli, Y., Essassi, E. M. & Zouihri, H. (2011). Acta Cryst. E67, 01926.
- Ballell, L., Field, R. A., Chung, G. A. C. & Young, R. J. (2007). Bioorg. Med. Chem. Lett. 17, 1736-1740.
- Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- El Fal, M., Ramli, Y., Essassi, E. M., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o1650.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.

- Radi, M., Bernardo, V., Vignaroli, G., Brai, A., Biava, M., Schenone, S. & Botta, M. (2013). Tetrahedron Lett. 54, 5204-5206.
- Rashad, A. E., Abeer, E. M. & Mamdouh, M. A. (2011). Eur. J. Med. Chem. **46**, 1019–1026.
- Rashad, A. E., Hegab, M. I., Abdel-Megeid, R., Micky, J. A. & Abdel-Megeid,
 F. M. E. (2008). *Bioorg. Med. Chem.* 16, 7102–7106.
 Sheldrick, G. M. (2008). *Acta Cryst.* A64, 112–122.
- Spek, A. L. (2009). Acta Cryst. D65, 148–155. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

supporting information

Acta Cryst. (2014). E70, o1005-o1006 [doi:10.1107/S160053681401825X]

Crystal structure of 1-ethylpyrazolo[3,4-d]pyrimidine-4(5H)-thione

Mohammed El Fal, Youssef Ramli, El Mokhtar Essassi, Mohamed Saadi and Lahcen El Ammari

S1. Comment

Pyrazolo [3,4-*d*] pyrimidine derivatives have attracted considerable attention from researchers due to their bioactive and pharmaceutical properties. Many members of this family are widely used as antiviral (Rashad *et al.*, 2008); anti-mycobacterial (Ballell *et al.* 2007) and anticancer agents (Rashad *et al.* 2011). The present paper is a continuation of our research work devoted to the development of pyrazolo [3,4-*d*] pyrimidine derivatives with potential pharmacological activities (El Fal *et al.*, 2013; Radi *et al.*, 2013; Alsubari *et al.*, 2011).

The molecule of the title compound is build up from two fused five- and six-membered heterocycles linked to an ethyl group and to S atom as shown in Fig.1. The pyrazolo[3,4-d]pyrimidine ring is nearly perpendicular to the ethyl group as indicated by the torsion angle C7C6N3N4 of -60.3 (6)°.

In the crystal, the molecules are linked together by a weak intermolecular N1–H1^{...}S1, C5–H5^{...}S1 and C3–H3^{...}N2 interactions, in the way to build a two-dimensional network (see Fig.2 and Table 1).

S2. Experimental

(0,54 g, 3.04 mmol) of 1-ethyl-pyrazolo [3, 4 - d] pyrimidin-4 (5H)-one and (0,84 g, 3.65 mmol) of phosphorus pentasulfide were refluxed in pyridine for 4 h. Then the solvent is evaporated under reduced pressure; the precipitate formed is washed with hot water and recrystallized from ethanol solution to afford the title compound as yellow blocks.

S3. Refinement

The H atoms were located in a difference map and treated as riding with C—H = 0.93 Å (aromatic), C—H = 0.97 Å (methylene) and C—H = 0.96 Å, (methyl). All hydrogen with $U_{iso}(H) = 1.2 U_{eq}$ (aromatic and methylene) and $U_{iso}(H) = 1.5 U_{eq}$ for the methyl.

Molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

Figure 2

Structure projection along (0 1 1) of the title compound, showing molecules linked through hydrogen bonds (dashed lines).

1-Ethylpyrazolo[3,4-d]pyrimidine-4(5H)-thione

Crystal data	
$C_7H_8N_4S$	F(000) = 188
$M_r = 180.23$	$D_{\rm x} = 1.426 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, <i>P</i> 2 ₁	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: P 2yb	Cell parameters from 1704 reflections
a = 4.472 (4) Å	$\theta = 3.5 - 27.5^{\circ}$
b = 5.353 (4) Å	$\mu = 0.33 \text{ mm}^{-1}$
c = 17.573 (12) Å	T = 296 K
$\beta = 93.71 \ (4)^{\circ}$	Block, yellow
$V = 419.8 (5) Å^3$	$0.38 \times 0.34 \times 0.29 \text{ mm}$
Z = 2	
Data collection	
Bruker X8 APEX CCD	φ and ω scans
diffractometer	Absorption correction: multi-scan
Radiation source: fine-focus sealed tube	(SADABS; Bruker, 2009)
Graphite monochromator	$T_{\rm min} = 0.578, \ T_{\rm max} = 0.746$

4028 measured reflections	$\theta_{\rm max} = 27.5^{\circ}, \theta_{\rm min} = 3.5^{\circ}$
1704 independent reflections	$h = -5 \rightarrow 5$
1242 reflections with $I > 2\sigma(I)$	$k = -6 \rightarrow 5$
$R_{\rm int} = 0.059$	$l = -22 \rightarrow 22$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.053$	H-atom parameters constrained
$wR(F^2) = 0.139$	$w = 1/[\sigma^2(F_o^2) + (0.P)^2]$
S = 1.01	where $P = (F_o^2 + 2F_c^2)/3$
1704 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
109 parameters	$\Delta \rho_{\rm max} = 0.29 \ { m e} \ { m \AA}^{-3}$
1 restraint	$\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack & Bernardinelli (2000), 652 Friedel pairs
Secondary atom site location: difference Fourier	Absolute structure parameter: -0.11 (16)
map	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against all reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on all data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.2656 (8)	0.2169 (7)	0.6200 (2)	0.0340 (9)	
C2	0.3666 (8)	0.2465 (8)	0.6972 (2)	0.0349 (9)	
C3	0.5729 (9)	0.1222 (9)	0.7490 (2)	0.0421 (10)	
H3	0.6856	-0.0166	0.7370	0.050*	
C4	0.2506 (9)	0.4396 (7)	0.7391 (2)	0.0386 (10)	
C5	-0.0448 (9)	0.5752 (8)	0.6444 (2)	0.0438 (11)	
H5	-0.1874	0.6853	0.6230	0.053*	
C6	0.3360 (13)	0.5872 (10)	0.8749 (3)	0.0669 (16)	
H6A	0.1925	0.7165	0.8595	0.080*	
H6B	0.5229	0.6675	0.8919	0.080*	
C7	0.2207 (15)	0.4383 (15)	0.9390 (3)	0.091 (3)	
H7A	0.1876	0.5471	0.9810	0.137*	
H7B	0.3652	0.3131	0.9550	0.137*	
H7C	0.0355	0.3592	0.9221	0.137*	
N1	0.0543 (7)	0.3928 (6)	0.59849 (19)	0.0407 (9)	
H1	-0.0256	0.4046	0.5509	0.049*	
N2	0.0419 (8)	0.6091 (7)	0.71546 (19)	0.0435 (9)	
N3	0.3849 (9)	0.4260 (7)	0.80986 (17)	0.0482 (10)	
N4	0.5830 (8)	0.2300 (8)	0.81616 (19)	0.0513 (10)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

supporting information

S1	0.3799 (2)		0.0022 (2)	0.55937 (5)	0.0413 (3)	
Atomic displacement parameters $(Å^2)$						
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0340 (18)	0.030(2)	0.038 (2)	-0.0022 (18)	0.0034 (16)	0.0046 (17)
C2	0.0340 (18)	0.030(2)	0.040 (2)	-0.0013 (19)	0.0000 (15)	0.0005 (18)
C3	0.046 (2)	0.039 (2)	0.040 (2)	0.011 (2)	-0.0064 (17)	0.0030 (19)
C4	0.041 (2)	0.036 (3)	0.038 (2)	-0.0003 (19)	0.0021 (16)	-0.0011 (17)
C5	0.036 (2)	0.038 (3)	0.056 (3)	0.0102 (19)	-0.0030 (18)	0.005 (2)
C6	0.089 (4)	0.067 (4)	0.045 (3)	0.002 (3)	0.005 (2)	-0.017 (2)
C7	0.094 (4)	0.128 (8)	0.053 (3)	-0.003 (5)	0.016 (3)	-0.009(3)
N1	0.0406 (18)	0.037 (2)	0.0440 (19)	0.0066 (17)	-0.0044 (15)	0.0078 (16)
N2	0.050(2)	0.034 (2)	0.046 (2)	0.0076 (18)	0.0027 (16)	-0.0015 (16)
N3	0.059(2)	0.052 (3)	0.0337 (17)	0.0086 (19)	0.0001 (15)	-0.0048 (16)
N4	0.051 (2)	0.058 (3)	0.044 (2)	0.015 (2)	-0.0072 (16)	-0.0002 (18)
S1	0.0449 (5)	0.0390 (6)	0.0388 (5)	0.0052 (6)	-0.0053 (4)	-0.0052 (5)

Geometric parameters (Å, °)

C1—N1	1.370 (5)	С5—Н5	0.9300	
C1—C2	1.410 (5)	C6—N3	1.459 (5)	
C1—S1	1.669 (4)	C6—C7	1.499 (7)	
C2—C4	1.390 (5)	C6—H6A	0.9700	
С2—С3	1.419 (6)	C6—H6B	0.9700	
C3—N4	1.312 (5)	C7—H7A	0.9600	
С3—Н3	0.9300	C7—H7B	0.9600	
C4—N3	1.347 (5)	С7—Н7С	0.9600	
C4—N2	1.348 (5)	N1—H1	0.8900	
C5—N2	1.296 (5)	N3—N4	1.373 (5)	
C5—N1	1.359 (5)			
N1—C1—C2	111.1 (3)	N3—C6—H6B	109.5	
N1-C1-S1	122.1 (3)	C7—C6—H6B	109.5	
C2—C1—S1	126.8 (3)	H6A—C6—H6B	108.1	
C4—C2—C1	119.1 (4)	C6—C7—H7A	109.5	
C4—C2—C3	104.9 (3)	C6—C7—H7B	109.5	
C1—C2—C3	136.0 (4)	H7A—C7—H7B	109.5	
N4—C3—C2	110.8 (4)	С6—С7—Н7С	109.5	
N4—C3—H3	124.6	H7A—C7—H7C	109.5	
С2—С3—Н3	124.6	H7B—C7—H7C	109.5	
N3—C4—N2	125.4 (4)	C5—N1—C1	125.2 (3)	
N3—C4—C2	106.9 (4)	C5—N1—H1	112.4	
N2—C4—C2	127.7 (3)	C1—N1—H1	122.4	
N2-C5-N1	125.7 (4)	C5—N2—C4	111.2 (3)	
N2—C5—H5	117.1	C4—N3—N4	111.2 (3)	
N1—C5—H5	117.1	C4—N3—C6	127.6 (4)	
N3—C6—C7	110.5 (5)	N4—N3—C6	121.2 (4)	

supporting information

N3—C6—H6A C7—C6—H6A	109.5 109.5		C3—N4—N3	1	06.2 (3)
Hydrogen-bond geometry (Å, '	^o)				
D—H···A		D—H	H···A	D···A	D—H··· A
N1—H1···S1 ⁱ		0.89	2.48	3.333 (4)	161
C5—H5…S1 ⁱⁱ		0.93	2.75	3.685 (5)	179
C3—H3····N2 ⁱⁱⁱ		0.93	2.60	3.528 (6)	174

Symmetry codes: (i) -*x*, *y*+1/2, -*z*+1; (ii) *x*-1, *y*+1, *z*; (iii) *x*+1, *y*-1, *z*.