data reports

OPEN 👌 ACCESS

Crystal structure of (*E*)-2-[(4-hydroxybenzylidene)azaniumyl]benzoate

M. Nawaz Tahir,^a* Abdul Haleem Khan^b and Hazoor Ahmad Shad^c

^aDepartment of Physics, University of Sargodha, Sargodha, Pakistan, ^bDepartment of Pharmacy Services, Jinnah Hospital, Lahore, Pakistan, and ^cDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan. *Correspondence e-mail: dmntahir_uos@yahoo.com

Received 5 August 2014; accepted 9 August 2014

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

The title Schiff base, $C_{14}H_{11}NO_3$, crystallizes as a zwitterion (*i.e.* proton transfer from the carboxylic acid group to the imine N atom). The dihedral angle between the aromatic rings is 19.59 (6)° and an intramolecular N-H···O hydrogen bond closes an S(6) ring. In the crystal, inversion dimers linked by pairs of O-H···O hydrogen bonds generate $R_2^4(24)$ loops. The dimers are linked by C-H···O interactions, generating (211) sheets.

Keywords: crystal structure; Schiff bases; azanium–carboxylate zwitterion; hydrogen bonding.

CCDC reference: 1018737

1. Related literature

For related structures, see: Hang *et al.* (2010); Ligtenbarg *et al.* (1999); Trzesowska-Kruszynska (2010).

2. Experimental

2.1. Crystal data C₁₄H₁₁NO₃ *M_r* = 241.24

```
Monoclinic, P2_1/n
a = 3.8612 (5) Å
```

b = 15.280 (3) Å c = 18.604 (3) Å $\beta = 90.347 (8)^{\circ}$ $V = 1097.6 (3) \text{ Å}^{3}$ Z = 4

2.2. Data collection

Bruker Kappa APEXII CCD	17364 measured reflections
diffractometer	2089 independent reflections
Absorption correction: multi-scan	1363 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2007)	$R_{\rm int} = 0.065$
$T_{\min} = 0.962, \ T_{\max} = 0.985$	

2.3. Refinement

$R[F^2 > 2\sigma(F^2)] = 0.059$ $m R(F^2) = 0.124$	H atoms treated by a mixture of
WR(F) = 0.124 S = 1.15	refinement
2089 reflections 169 parameters	$\Delta \rho_{\text{max}} = 0.18 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.23 \text{ e } \text{\AA}^{-3}$

Table 1				
Hydrogen-bond	geometry	(Å,	°).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O3-H3A\cdotsO1^{i}$	0.95 (4)	1.71 (4)	2.656 (3)	173 (3)
$N1 - H1 \cdots O1$	1.00(3)	1.62 (3)	2.522 (3)	148 (2)
$C6-H6\cdots O2^{ii}$	0.93	2.51	3.397 (4)	160

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) $-x - \frac{1}{2}$, $y + \frac{1}{2}$, $-z + \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and *PLATON* (Spek, 2009); software used to prepare material for publication: *WinGX* (Farrugia, 2012) and *PLATON* (Spek, 2009).

Acknowledgements

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7268).

References

- Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Hang, Z.-X., Dong, B. & Wang, X.-W. (2010). Acta Cryst. E66, 01776.
- Ligtenbarg, A. G. J., Hage, R., Meetsma, A. & Feringa, B. L. (1999). J. Chem. Soc. Perkin Trans. 2, pp. 807–812.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Trzesowska-Kruszynska, A. (2010). Struct. Chem. 21, 131–138.

Mo $K\alpha$ radiation

 $0.38 \times 0.17 \times 0.15 \text{ mm}$

 $\mu = 0.10 \text{ mm}^{-1}$

T = 296 K

supporting information

Acta Cryst. (2014). E70, o1008 [doi:10.1107/S1600536814018273]

Crystal structure of (E)-2-[(4-hydroxybenzylidene)azaniumyl]benzoate

M. Nawaz Tahir, Abdul Haleem Khan and Hazoor Ahmad Shad

S1. Comment

The title compound (I), (Fig. 1) has been synthesized for forming different metal complexes.

The crystal structures of *N*-(2-Carboxyphenyl)salicylidenimine (Ligtenbarg *et al.*, 1999), 2-((4-(dimethylamino)benzylidene)ammonio) benzoate pentahydrate (Trzesowska-Kruszynska, 2010) and 2-[(2-hydroxy-4-methoxybenzylidene)azaniumyl]benzoate monohydrate (Hang, *et al.*, 2010) have been published which are related to the title compound (I).

The title compound has been crystalized in the zwitterion form. In (I) the moieties of 2-aminobenzoic acid A (C1— C7/N1/O1/O2) and the 4-hydroxybenzalehyde B (C8—C14/O3) are planar with r.m.s. deviation of 0.0133 and 0.0219 Å, respectively. The dihedral angle between A/B is 19.589 (58)°. In (I), *S*(6) ring motif is present due to H-bonding of N— H…O type (Table 1, Fig. 1). The molecules are dimerized from end to end due to H-bondings of O—H…O type (Table 1, Fig. 2) and form R_2^4 (24) loop. The dimers are further interlinked due to C—H…O bonds.

S2. Experimental

Equimolar quantities of 2-aminobenzoic acid and 4-hydroxybenzaldehyde were refluxed in methanol along with few drops of acetic acid as catalyst for 2 h. The resulting solution was kept at room temperature which afforded yellow needles after two days.

S3. Refinement

The coordinates of H1 and H3A were refined. The H-atoms were positioned geometrically (C–H = 0.93 Å) and refined as riding with $U_{iso}(H) = xU_{eq}(C, N, O)$, where x = 1.5 for hydroxy & x = 1.2 for other H-atoms.

Figure 1

View of the title compound with displacement ellipsoids drawn at the 50% probability level. The dotted line represents the intramolecular H-bond.

Figure 2

The partial packing, which shows that molecules form dimers which are interlinked.

(E)-2-[(4-hydroxybenzylidene)azaniumyl]benzoate

Crystal data

C₁₄H₁₁NO₃ $M_r = 241.24$ Monoclinic, $P2_1/n$ a = 3.8612 (5) Å b = 15.280 (3) Å c = 18.604 (3) Å $\beta = 90.347$ (8)° V = 1097.6 (3) Å³ Z = 4 F(000) = 504 $D_x = 1.460 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1363 reflections $\theta = 1.8-26.0^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 296 KCut needle, yellow $0.38 \times 0.17 \times 0.15 \text{ mm}$ Data collection

Bruker Kappa APEXII CCD diffractometer Radiation source: fine-focus sealed tube	17364 measured reflections 2089 independent reflections 1363 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.065$
Detector resolution: 8.00 pixels mm ⁻¹	$\theta_{\text{max}} = 26.0^{\circ}, \theta_{\text{min}} = 1.7^{\circ}$
ω scans	$h = -4 \rightarrow 4$
Absorption correction: multi-scan	$k = -18 \rightarrow 18$
(SADABS; Bruker, 2007)	$l = -22 \rightarrow 22$
$T_{\min} = 0.962, \ T_{\max} = 0.985$	
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.059$	Hydrogen site location: inferred from
$wR(F^2) = 0.124$	neighbouring sites
<i>S</i> = 1.15	H atoms treated by a mixture of independent
2089 reflections	and constrained refinement
169 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0187P)^2 + 1.0858P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{ m max} < 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.18 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.23 \ { m e} \ { m \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.1341 (6)	-0.08844 (13)	0.32981 (10)	0.0469 (6)	
O2	0.0144 (7)	-0.18735 (14)	0.24574 (12)	0.0580 (7)	
03	0.6380 (6)	0.22716 (14)	0.59807 (11)	0.0489 (6)	
H3A	0.701 (9)	0.177 (2)	0.6251 (19)	0.073*	
N1	-0.0068 (6)	0.07058 (16)	0.30803 (13)	0.0360 (6)	
H1	0.067 (7)	0.016 (2)	0.3337 (15)	0.043*	
C1	0.0114 (8)	-0.1120 (2)	0.26817 (16)	0.0394 (7)	
C2	-0.1414 (7)	-0.04003 (18)	0.22116 (14)	0.0328 (7)	
C3	-0.2813 (8)	-0.0637 (2)	0.15519 (15)	0.0398 (7)	
Н3	-0.2817	-0.1223	0.1417	0.048*	
C4	-0.4196 (8)	-0.0021 (2)	0.10915 (16)	0.0460 (8)	
H4	-0.5103	-0.0192	0.0649	0.055*	
C5	-0.4233 (8)	0.0847 (2)	0.12868 (16)	0.0461 (8)	
H5	-0.5171	0.1261	0.0975	0.055*	
C6	-0.2890 (8)	0.1107 (2)	0.19417 (16)	0.0416 (8)	

H6	-0.2931	0.1694	0.2074	0.050*	
C7	-0.1485 (7)	0.04873 (18)	0.23973 (14)	0.0332 (7)	
C8	0.0590 (7)	0.14802 (19)	0.33225 (15)	0.0370 (7)	
H8	0.0125	0.1955	0.3025	0.044*	
C9	0.1993 (7)	0.16514 (18)	0.40216 (15)	0.0342 (7)	
C10	0.2987 (7)	0.25053 (19)	0.41916 (16)	0.0384 (7)	
H10	0.2674	0.2947	0.3854	0.046*	
C11	0.4416 (8)	0.27050 (19)	0.48472 (16)	0.0397 (7)	
H11	0.5063	0.3278	0.4950	0.048*	
C12	0.4901 (8)	0.20511 (19)	0.53595 (15)	0.0365 (7)	
C13	0.3814 (7)	0.12005 (18)	0.52047 (15)	0.0375 (7)	
H13	0.4051	0.0764	0.5550	0.045*	
C14	0.2400 (8)	0.10038 (19)	0.45483 (15)	0.0376 (7)	
H14	0.1700	0.0433	0.4451	0.045*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0702 (15)	0.0380 (12)	0.0324 (12)	0.0036 (11)	-0.0144 (11)	0.0019 (9)
O2	0.0942 (19)	0.0323 (12)	0.0474 (14)	0.0034 (13)	-0.0117 (13)	-0.0025 (11)
O3	0.0679 (16)	0.0367 (13)	0.0419 (13)	-0.0001 (11)	-0.0187 (11)	-0.0015 (10)
N1	0.0437 (15)	0.0313 (14)	0.0329 (13)	0.0036 (11)	-0.0026 (11)	-0.0010 (11)
C1	0.0498 (19)	0.0336 (17)	0.0347 (17)	-0.0006 (14)	0.0009 (15)	0.0032 (14)
C2	0.0340 (16)	0.0343 (16)	0.0300 (15)	0.0000 (13)	0.0007 (13)	0.0007 (12)
C3	0.0438 (18)	0.0382 (18)	0.0374 (17)	-0.0019 (14)	-0.0049 (14)	-0.0030 (14)
C4	0.0479 (19)	0.056 (2)	0.0344 (18)	0.0010 (16)	-0.0085 (15)	-0.0005 (15)
C5	0.050(2)	0.048 (2)	0.0400 (18)	0.0060 (16)	-0.0051 (16)	0.0115 (16)
C6	0.0443 (19)	0.0354 (17)	0.0452 (19)	0.0038 (14)	-0.0015 (15)	0.0032 (14)
C7	0.0370 (17)	0.0347 (17)	0.0278 (15)	-0.0001 (13)	-0.0005 (13)	0.0003 (12)
C8	0.0401 (17)	0.0319 (16)	0.0390 (17)	0.0000 (13)	-0.0009 (14)	0.0033 (14)
C9	0.0350 (16)	0.0313 (16)	0.0362 (16)	0.0019 (13)	-0.0024 (13)	-0.0017 (13)
C10	0.0439 (18)	0.0305 (16)	0.0407 (18)	0.0027 (14)	-0.0066 (14)	0.0064 (13)
C11	0.0461 (18)	0.0271 (16)	0.0457 (19)	-0.0011 (13)	-0.0075 (15)	-0.0018 (14)
C12	0.0389 (17)	0.0359 (17)	0.0345 (16)	0.0020 (13)	-0.0027 (14)	-0.0028 (13)
C13	0.0472 (19)	0.0289 (16)	0.0365 (17)	0.0018 (14)	0.0006 (14)	0.0047 (13)
C14	0.0442 (18)	0.0280 (16)	0.0404 (17)	-0.0022 (13)	0.0000 (14)	-0.0035 (13)

Geometric parameters (Å, °)

01—C1	1.289 (3)	С5—Н5	0.9300	
O2—C1	1.225 (3)	C6—C7	1.380 (4)	
O3—C12	1.329 (3)	C6—H6	0.9300	
O3—H3A	0.95 (4)	C8—C9	1.430 (4)	
N1—C8	1.291 (3)	C8—H8	0.9300	
N1—C7	1.420 (3)	C9—C10	1.396 (4)	
N1—H1	1.00 (3)	C9—C14	1.401 (4)	
C1—C2	1.522 (4)	C10-C11	1.370 (4)	
C2—C3	1.386 (4)	C10—H10	0.9300	

C_2 C_7	1 400 (4)	C11 C12	1 202 (4)
$C_2 = C_1$	1.400(4)		1.393 (4)
$C_3 = C_4$	1.578 (4)		0.9300
	0.9300		1.395 (4)
C4—C5	1.375 (4)		1.368 (4)
C4—H4	0.9300	С13—Н13	0.9300
C5—C6	1.380 (4)	C14—H14	0.9300
С12—О3—НЗА	111 (2)	C6—C7—N1	122.4 (3)
C8—N1—C7	1270(3)	C2-C7-N1	1161(2)
C8—N1—H1	122.7 (16)	N1—C8—C9	123.9(3)
C7—N1—H1	109.9 (16)	N1-C8-H8	118.0
$0^{2}-C^{1}-O^{1}$	124 2 (3)	C9-C8-H8	118.0
02 - C1 - C2	1192(3)	C_{10} C_{9} C_{14}	118.2(3)
01 - C1 - C2	116.6 (3)	C10-C9-C8	110.2(3)
C_{3} C_{2} C_{7}	117.6 (3)	C14-C9-C8	123.2(3)
C_{3} C_{2} C_{1}	117.0(3)	$C_{11} = C_{10} = C_{9}$	123.2(3) 121.2(3)
C_{7} C_{2} C_{1}	117.5(3) 124 5 (2)	$C_{11} = C_{10} = H_{10}$	110.4
$C_{4} - C_{3} - C_{2}$	124.3(2) 1214(3)	C_{10} H_{10}	119.4
C4 - C3 - H3	110.3	C_{10} C_{11} C_{12}	119.4 120.1 (3)
C_{2} C_{3} H_{3}	119.5	$C_{10} = C_{11} = C_{12}$	120.1 (3)
$C_2 - C_3 - H_3$	119.5	C_{10} C_{11} H_{11}	120.0
$C_{5} = C_{4} = C_{5}$	119.9 (3)	$C_{12} = C_{11} = I_{11}$	120.0 117.0(3)
$C_3 = C_4 = H_4$	120.0	03 - C12 - C11	117.9(3)
$C_3 = C_4 = H_4$	120.0	03-012-013	122.9(3)
C4 = C5 = U5	120.5 (5)	C14 - C12 - C13	119.2(3)
C4—C5—H5	119.8	C14 - C13 - C12	120.3 (3)
C6-C5-H5	119.8	C12 C12 H12	119.8
$C_{2} = C_{0} = C_{1}$	119.2 (3)	C12—C13—H13	119.8
С5—С6—Н6	120.4	C13 - C14 - C9	120.8 (3)
C/C6H6	120.4	C13—C14—H14	119.6
C6C7C2	121.4 (3)	C9—C14—H14	119.6
O2—C1—C2—C3	1.9 (4)	C8—N1—C7—C6	-11.1 (5)
O1—C1—C2—C3	-178.8 (3)	C8—N1—C7—C2	169.5 (3)
O2—C1—C2—C7	-177.6 (3)	C7—N1—C8—C9	179.4 (3)
O1—C1—C2—C7	1.7 (4)	N1-C8-C9-C10	172.3 (3)
C7—C2—C3—C4	0.6 (4)	N1—C8—C9—C14	-8.1 (5)
C1—C2—C3—C4	-179.0 (3)	C14—C9—C10—C11	1.9 (4)
C2—C3—C4—C5	-0.6 (5)	C8—C9—C10—C11	-178.6(3)
C3—C4—C5—C6	0.1 (5)	C9-C10-C11-C12	0.0 (5)
C4—C5—C6—C7	0.4 (5)	C10-C11-C12-O3	178.3 (3)
C5—C6—C7—C2	-0.4 (4)	C10-C11-C12-C13	-2.1 (4)
C5—C6—C7—N1	-179.7(3)	O3-C12-C13-C14	-178.0(3)
$C_3 - C_2 - C_7 - C_6$	0.0 (4)	$C_{11} - C_{12} - C_{13} - C_{14}$	2.3 (4)
C1 - C2 - C7 - C6	179.5 (3)	C12-C13-C14-C9	-0.5(4)
C_{3} C_{2} C_{7} N_{1}	179 3 (3)	C10-C9-C14-C13	-1.6(4)
C1 - C2 - C7 - N1	-12(4)	C_{8} C_{9} C_{14} C_{13}	178 8 (3)
$C_1 C_2 = C_1 = 141$	1.2 (ד)	0 0 0 01 01	170.0 (3)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A	
O3—H3A…O1 ⁱ	0.95 (4)	1.71 (4)	2.656 (3)	173 (3)	
N1—H1…O1	1.00 (3)	1.62 (3)	2.522 (3)	148 (2)	
C6—H6…O2 ⁱⁱ	0.93	2.51	3.397 (4)	160	

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) -*x*+1, -*y*, -*z*+1; (ii) -*x*-1/2, *y*+1/2, -*z*+1/2.