organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o993-o994

Crystal structure of 4,6-di­amino-2-sulfanyl­­idene-1,2-di­hydro­pyridine-3-carbo­nitrile

aChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, bChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, dDepartment of Chemistry, University of Leicester, Leicester, England, eChemistry Department, Faculty of Science, Sohag University, 82524 Sohag, Egypt, and fKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by P. C. Healy, Griffith University, Australia (Received 18 July 2014; accepted 6 August 2014; online 9 August 2014)

The title compound, C6H6N4S, crystallizes with two independent mol­ecules, A and B, in the asymmetric unit. Both independent mol­ecules are almost planar [maximum deviations of 0.068 (6) Å in mol­ecule A and 0.079 (6) Å in mol­ecule B]. In the crystal, mol­ecules A and B are linked by N—H⋯S, N—H⋯N and C—H⋯S hydrogen bonds, forming a three-dimensional network.

1. Related literature

For the synthesis of polyfuntional pyridines, see: Attaby et al. (1995[Attaby, F. A., Eldin, S. M. & Abdel-Razik, F. M. (1995). Phosphorus Sulfur Silicon Relat. Elem. 106, 21-28.]); Asadov et al. (2003[Asadov, K. A., Burangulova, R. N., Guseninov, F. H., Gilmanov, R. Z. & Phaljachov, I. P. (2003). Chem. Heterocycl. Compd, 39, 392-393.]). For various biological properties of pyridine scaffold compounds, see: Abdel-Rahman et al. (2002[Abdel-Rahman, A., Bakhite, E. A. & Al-Laifi, E. A. (2002). J. Chin. Chem. Soc. 49, 223-231.]); Rao et al. (2006[Rao, C. S., Venkaleswarlu, V. & Achaiah, G. (2006). Bioorg. Med. Chem. Lett. 16, 2134-2138.]). For the synthesis of 3-cyano­pyridine-2(1H)-thio­nes, see: Fahmy & Mohareb (1986[Fahmy, S. M. & Mohareb, R. M. (1986). Tetrahedron, 42, 687-690.]); Schmidt & Kubitzek (1960[Schmidt, U. & Kubitzek, H. (1960). Chem. Ber. 93, 1559-1571.]). For the use of 3-cyano­pyridine-2(1H)-thi­ones in the synthesis of bio-active compounds, see: Taylor et al. (1983[Taylor, E. C., Palmer, D. C. & George, T. J. (1983). J. Org. Chem. 48, 4852-4890.]); Gangiee et al. (1991[Gangiee, A., Devraj, R. & Lin, F. (1991). J. Heterocycl. Chem. 28, 1747-1751.]); Amr et al. (2003[Amr, A. E., Mohamed, A. M. & Ibrahim, A. A. (2003). Z. Naturforsch. Teil B, 58, 861-868.]); Abu-Shanab et al. (2002[Abu-Shanab, F. A., Elkholy, Y. M. & Elnagdi, M. H. (2002). Synth. Commun. 32, 3493-3502.]); Awad et al. (1962[Awad, I. M. A., Abdel-rahman, A. E. & Bakhite, E. A. (1962). Phosphorus Sulfur Silicon Relat. Elem. 69, 213-218.]); El-Gaby (2004[El-Gaby, M. S. A. (2004). J. Chin. Chem. Soc. 51, 125-134.]); Miky & Zahkoug (1997[Miky, J. A. A. & Zahkoug, S. A. (1997). Nat. Prod. Sci. 3, 89-99.]; Guerrera et al. (1993[Guerrera, F., Salerno, L. & Sarva, M. C. (1993). Farmaco (Sci.), 48, 1725-1733.]); Krauze et al. (1999[Krauze, A., Germane, S. & Eberlins, O. (1999). Eur. J. Med. Chem. 34, 301-310.]). For a similar crystal structure, see: Eyduran et al. (2007[Eyduran, F., Özyürek, C., Dilek, N., Ocak Iskeleli, N. & Şendil, K. (2007). Acta Cryst. E63, o2415-o2417.]). For the synthesis of the title compound, see: Abu-Shanab (1999[Abu-Shanab, F. A. (1999). J. Chem. Res. (S), 7, 430-431.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C6H6N4S

  • Mr = 166.21

  • Orthorhombic, P c a 21

  • a = 26.252 (8) Å

  • b = 4.3670 (14) Å

  • c = 12.523 (4) Å

  • V = 1435.7 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.38 mm−1

  • T = 150 K

  • 0.32 × 0.12 × 0.04 mm

2.2. Data collection

  • Bruker APEX 2000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS: Bruker, 2011[Bruker (2011). SMART, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.518, Tmax = 0.928

  • 11662 measured reflections

  • 3412 independent reflections

  • 2027 reflections with I > 2σ(I)

  • Rint = 0.137

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.117

  • S = 0.87

  • 3412 reflections

  • 199 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.34 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1573 Friedel pairs

  • Absolute structure parameter: 0.01 (13)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯S1Ai 0.88 2.44 3.293 (5) 163
N1A—H1A⋯S1ii 0.88 2.80 3.579 (5) 149
N3—H31⋯N4Aiii 0.88 2.44 3.300 (8) 165
N3—H32⋯N2Aiv 0.88 2.39 3.077 (8) 135
N3A—H33⋯S1Aii 0.88 2.53 3.392 (6) 168
N3A—H34⋯N2v 0.88 2.20 2.981 (8) 148
N4—H41⋯S1Ai 0.88 2.75 3.536 (6) 149
N4—H42⋯S1vi 0.88 2.63 3.424 (6) 151
N4—H42⋯N2vi 0.88 2.62 3.083 (9) 114
N4A—H44⋯S1ii 0.88 2.53 3.353 (6) 157
C4—H4⋯S1vi 0.95 2.74 3.551 (8) 143
Symmetry codes: (i) [-x+1, -y+1, z-{\script{1\over 2}}]; (ii) [-x+1, -y+2, z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+1, z-1]; (iv) [-x+{\script{1\over 2}}, y, z-{\script{1\over 2}}]; (v) [-x+{\script{1\over 2}}, y, z+{\script{1\over 2}}]; (vi) [-x+{\script{1\over 2}}, y-1, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2011[Bruker (2011). SMART, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2011[Bruker (2011). SMART, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Polyfunctional pyridines are highly reactive reagents that have been used extensively in heterocyclic synthesis (Attaby et al., 1995; Asadov et al., 2003). 3-Cyano-pyridine-2(1H)-thiones compounds (Fahmy & Mohareb 1986; Schmidt & Kubitzek, 1960) have also gained considerable interest due to their importance as intermediates for the synthesis of the biologically active deazafolic acid and deaza amino protein ring system (Taylor et al., 1983; Gangiee et al., 1991). In addition, 3-Cyano-2(1H)-pyridinethiones and their related compounds were found to be very reactive substances for the synthesis of many different heterocyclic systems which exhibited biological activities such as antibacterial, pesticidal, antifungal, acaricidal and neurotropic activities (Amr et al., 2003; Abu-Shanab et al., 2002; Awad et al., 1962; El-Gaby, 2004; Miky & Zahkoug, 1997; Guerrera et al., 1993; Krauze et al., 1999; Abdel-Rahman et al., 2002; Rao et al., 2006). In light of these observations we report in this study the synthesis and crystal structure of the title compound.

In the title compound (Fig. 1), the asymmetric unit contains two independent molecules (A and B). Molecules A and B both are almost planar (Fig. 3), with the maximum deviations of -0.068 (6) Å for N4 in molecule A and 0.079 (6) Å for N2A in molecule B. The bond lengths of molecules A and B are comparable to those of the previously published structures (Eyduran et al., 2007; Allen et al., 1987).

In the crystal, the N—H···S, N—H···N and C—H···S hydrogen bonds connect the molecules, forming a three dimensional network (Table 1, Fig. 2). In addition, C—H···π interactions and π-π stacking interactions are not observed.

Related literature top

For the synthesis of polyfuntional pyridines, see: Attaby et al. (1995); Asadov et al. (2003). For various biological properties of pyridine scaffold compounds, see: Abdel-Rahman et al. (2002); Rao et al. (2006). For the synthesis of 3-cyanopyridine-2(1H)-thiones, see: Fahmy & Mohareb (1986); Schmidt & Kubitzek (1960). For the use of 3-cyanopyridine-2(1H)-thiones in the synthesis of bio-active compounds, see: Taylor et al. (1983); Gangiee et al. (1991); Amr et al. (2003); Abu-Shanab et al. (2002); Awad et al. (1962); El-Gaby (2004); Miky & Zahkoug (1997; Guerrera et al. (1993); Krauze et al. (1999). For a similar crystal structure, see: Eyduran et al. (2007). For the synthesis of the title compound, see: Abu-Shanab (1999). For standard bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was prepared according to the reported method (Abu-Shanab, 1999). Crystals of the product were obtained in excellent yield (79%) and recrystallized from butanol to afford yellow needles (M.p. 583 K) in a sufficient quality for X-ray diffraction studies.

Refinement top

H-atoms were placed in calculated positions (C—H = 0.95 and N—H = 0.88 Å and were included as riding contributions with isotropic displacement parameters 1.2 times those of the attached atoms.

Computing details top

Data collection: SMART (Bruker, 2011); cell refinement: SAINT (Bruker, 2011); data reduction: SAINT (Bruker, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The title molecule showing the numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing viewed down the b axis showing the hydrogen bonding as dashed lines.
4,6-Diamino-2-sulfanylidene-1,2-dihydropyridine-3-carbonitrile top
Crystal data top
C6H6N4SF(000) = 688
Mr = 166.21Dx = 1.538 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 748 reflections
a = 26.252 (8) Åθ = 2.3–23.4°
b = 4.3670 (14) ŵ = 0.38 mm1
c = 12.523 (4) ÅT = 150 K
V = 1435.7 (8) Å3Needle, pale yellow
Z = 80.32 × 0.12 × 0.04 mm
Data collection top
Bruker APEX 2000 CCD area-detector
diffractometer
3412 independent reflections
Radiation source: fine-focus sealed tube2027 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.137
phi and ω scansθmax = 28.7°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS: Bruker, 2011)
h = 3433
Tmin = 0.518, Tmax = 0.928k = 55
11662 measured reflectionsl = 1616
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.064 w = 1/[σ2(Fo2) + (0.0282P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.117(Δ/σ)max < 0.001
S = 0.87Δρmax = 0.42 e Å3
3412 reflectionsΔρmin = 0.34 e Å3
199 parametersAbsolute structure: Flack (1983), 1573 Friedel pairs
1 restraintAbsolute structure parameter: 0.01 (13)
Crystal data top
C6H6N4SV = 1435.7 (8) Å3
Mr = 166.21Z = 8
Orthorhombic, Pca21Mo Kα radiation
a = 26.252 (8) ŵ = 0.38 mm1
b = 4.3670 (14) ÅT = 150 K
c = 12.523 (4) Å0.32 × 0.12 × 0.04 mm
Data collection top
Bruker APEX 2000 CCD area-detector
diffractometer
3412 independent reflections
Absorption correction: multi-scan
(SADABS: Bruker, 2011)
2027 reflections with I > 2σ(I)
Tmin = 0.518, Tmax = 0.928Rint = 0.137
11662 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.064H-atom parameters constrained
wR(F2) = 0.117Δρmax = 0.42 e Å3
S = 0.87Δρmin = 0.34 e Å3
3412 reflectionsAbsolute structure: Flack (1983), 1573 Friedel pairs
199 parametersAbsolute structure parameter: 0.01 (13)
1 restraint
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.27967 (6)0.5692 (5)0.10895 (15)0.0332 (6)
S1A0.59399 (6)0.7628 (4)0.41599 (15)0.0279 (5)
N10.28114 (18)0.2124 (13)0.0607 (4)0.027 (2)
N20.1365 (2)0.4860 (15)0.1504 (5)0.039 (2)
N30.1288 (2)0.0258 (14)0.0735 (5)0.037 (2)
N40.2980 (2)0.1066 (15)0.2027 (5)0.040 (2)
C10.2513 (3)0.3403 (15)0.0166 (5)0.026 (2)
C20.1995 (2)0.2719 (16)0.0115 (5)0.025 (2)
C30.1797 (2)0.0835 (15)0.0684 (5)0.025 (2)
C40.2122 (2)0.0471 (17)0.1416 (6)0.030 (3)
C50.2637 (2)0.0167 (17)0.1372 (6)0.027 (3)
C60.1661 (2)0.3946 (18)0.0905 (6)0.031 (3)
N1A0.59425 (19)1.1254 (12)0.5874 (4)0.0230 (17)
N2A0.4628 (2)0.4521 (15)0.4637 (5)0.038 (2)
N3A0.45527 (19)0.8585 (13)0.7032 (4)0.0327 (19)
N4A0.6065 (2)1.4593 (13)0.7299 (4)0.0277 (19)
C1A0.5677 (3)0.9133 (16)0.5295 (5)0.025 (2)
C2A0.5201 (2)0.8249 (16)0.5670 (5)0.023 (2)
C3A0.5005 (3)0.9504 (16)0.6643 (5)0.022 (2)
C4A0.5300 (2)1.1636 (15)0.7195 (6)0.026 (2)
C5A0.5760 (2)1.2555 (16)0.6797 (5)0.026 (2)
C6A0.4896 (2)0.6151 (16)0.5089 (6)0.025 (2)
H10.313700.259400.061200.0320*
H40.199300.180600.195000.0360*
H310.116700.095000.123700.0450*
H320.108000.109300.026700.0450*
H410.330500.060700.195500.0480*
H420.288200.234000.253100.0480*
H1A0.624501.181400.564400.0270*
H4A0.518001.245400.785200.0310*
H330.444000.933000.764000.0400*
H340.436900.723900.667700.0400*
H430.596901.539300.791200.0330*
H440.635801.512000.701300.0330*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0253 (9)0.0437 (12)0.0307 (10)0.0029 (9)0.0017 (8)0.0139 (10)
S1A0.0223 (8)0.0385 (10)0.0229 (8)0.0018 (9)0.0020 (8)0.0010 (9)
N10.016 (3)0.037 (4)0.027 (4)0.001 (3)0.001 (2)0.005 (3)
N20.026 (3)0.054 (5)0.037 (4)0.002 (3)0.001 (3)0.011 (3)
N30.024 (3)0.054 (4)0.034 (4)0.004 (3)0.002 (3)0.020 (4)
N40.029 (3)0.057 (5)0.034 (4)0.009 (3)0.004 (3)0.020 (3)
C10.031 (4)0.025 (4)0.021 (4)0.003 (3)0.000 (3)0.001 (3)
C20.023 (4)0.031 (4)0.021 (4)0.005 (3)0.003 (3)0.006 (3)
C30.022 (3)0.028 (4)0.025 (4)0.002 (3)0.001 (3)0.001 (4)
C40.025 (4)0.034 (5)0.030 (4)0.005 (3)0.000 (3)0.017 (4)
C50.026 (4)0.036 (5)0.020 (4)0.003 (3)0.001 (3)0.008 (3)
C60.023 (4)0.040 (5)0.031 (5)0.001 (3)0.001 (3)0.007 (4)
N1A0.022 (3)0.027 (3)0.020 (3)0.003 (3)0.001 (2)0.002 (3)
N2A0.035 (4)0.042 (4)0.036 (4)0.009 (3)0.001 (3)0.003 (3)
N3A0.021 (3)0.049 (4)0.028 (3)0.004 (3)0.005 (3)0.012 (3)
N4A0.026 (3)0.032 (4)0.025 (3)0.003 (3)0.002 (2)0.000 (3)
C1A0.028 (4)0.023 (4)0.023 (4)0.004 (3)0.003 (3)0.001 (3)
C2A0.019 (3)0.026 (4)0.025 (4)0.002 (3)0.002 (3)0.004 (3)
C3A0.018 (3)0.026 (4)0.023 (4)0.006 (3)0.000 (3)0.003 (3)
C4A0.027 (4)0.025 (4)0.026 (4)0.002 (3)0.001 (3)0.001 (3)
C5A0.023 (4)0.026 (4)0.030 (4)0.000 (3)0.008 (3)0.009 (4)
C6A0.020 (4)0.024 (4)0.032 (4)0.006 (3)0.005 (3)0.007 (4)
Geometric parameters (Å, º) top
S1—C11.700 (7)N1A—C5A1.374 (8)
S1A—C1A1.711 (7)N1A—C1A1.367 (9)
N1—C11.365 (9)N2A—C6A1.150 (9)
N1—C51.363 (9)N3A—C3A1.345 (9)
N2—C61.151 (9)C4—H40.9500
N3—C31.361 (7)N4A—C5A1.352 (8)
N4—C51.332 (9)C1A—C2A1.390 (9)
C1—C21.394 (9)N1A—H1A0.8800
N1—H10.8800C2A—C3A1.432 (9)
C2—C31.396 (9)C2A—C6A1.418 (9)
C2—C61.426 (9)C3A—C4A1.394 (10)
C3—C41.376 (9)N3A—H340.8800
N3—H310.8800N3A—H330.8800
N3—H320.8800C4A—C5A1.367 (8)
N4—H410.8800N4A—H430.8800
N4—H420.8800N4A—H440.8800
C4—C51.382 (8)C4A—H4A0.9500
C1—N1—C5124.2 (5)C5—C4—H4120.00
S1—C1—N1118.1 (6)S1A—C1A—N1A119.7 (5)
S1—C1—C2125.8 (5)S1A—C1A—C2A122.5 (5)
N1—C1—C2116.1 (6)N1A—C1A—C2A117.9 (6)
C1—N1—H1118.00C1A—N1A—H1A118.00
C5—N1—H1118.00C5A—N1A—H1A118.00
C1—C2—C3121.5 (6)C1A—C2A—C3A120.3 (6)
C1—C2—C6119.2 (6)C1A—C2A—C6A120.9 (6)
C3—C2—C6119.3 (5)C3A—C2A—C6A118.8 (6)
N3—C3—C2120.6 (5)N3A—C3A—C2A120.8 (6)
C3—N3—H31120.00C3A—N3A—H33120.00
C3—N3—H32120.00C3A—N3A—H34120.00
H31—N3—H32120.00H33—N3A—H34120.00
C2—C3—C4119.4 (5)C2A—C3A—C4A118.6 (6)
N3—C3—C4120.0 (6)N3A—C3A—C4A120.7 (6)
C5—N4—H42120.00C5A—N4A—H44120.00
C5—N4—H41120.00C5A—N4A—H43120.00
C3—C4—C5119.8 (6)C3A—C4A—C5A120.4 (7)
H41—N4—H42120.00H43—N4A—H44120.00
N1—C5—N4117.3 (5)N1A—C5A—N4A117.2 (5)
N4—C5—C4123.8 (7)N4A—C5A—C4A123.2 (6)
N1—C5—C4118.9 (6)N1A—C5A—C4A119.6 (6)
N2—C6—C2175.5 (7)N2A—C6A—C2A176.7 (6)
C1A—N1A—C5A123.3 (5)C3A—C4A—H4A120.00
C3—C4—H4120.00C5A—C4A—H4A120.00
C5—N1—C1—S1177.7 (5)C5A—N1A—C1A—S1A179.5 (5)
C5—N1—C1—C23.0 (10)C5A—N1A—C1A—C2A0.5 (10)
C1—N1—C5—C43.5 (10)C1A—N1A—C5A—C4A2.6 (9)
C1—N1—C5—N4175.4 (6)C1A—N1A—C5A—N4A179.1 (6)
S1—C1—C2—C61.5 (10)S1A—C1A—C2A—C6A3.5 (10)
S1—C1—C2—C3179.3 (5)S1A—C1A—C2A—C3A178.0 (5)
N1—C1—C2—C30.0 (10)N1A—C1A—C2A—C3A1.1 (10)
N1—C1—C2—C6179.2 (6)N1A—C1A—C2A—C6A177.5 (6)
C1—C2—C3—N3178.3 (6)C1A—C2A—C3A—N3A177.7 (6)
C6—C2—C3—C4176.9 (7)C6A—C2A—C3A—C4A178.1 (6)
C1—C2—C3—C42.4 (10)C1A—C2A—C3A—C4A0.5 (10)
C6—C2—C3—N32.4 (10)C6A—C2A—C3A—N3A3.7 (10)
N3—C3—C4—C5178.8 (7)N3A—C3A—C4A—C5A179.8 (6)
C2—C3—C4—C51.9 (10)C2A—C3A—C4A—C5A1.6 (10)
C3—C4—C5—N4177.9 (7)C3A—C4A—C5A—N4A179.4 (6)
C3—C4—C5—N10.9 (11)C3A—C4A—C5A—N1A3.2 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S1Ai0.882.443.293 (5)163
N1A—H1A···S1ii0.882.803.579 (5)149
N3—H31···N4Aiii0.882.443.300 (8)165
N3—H32···N2Aiv0.882.393.077 (8)135
N3A—H33···S1Aii0.882.533.392 (6)168
N3A—H34···N2v0.882.202.981 (8)148
N4—H41···S1Ai0.882.753.536 (6)149
N4—H42···S1vi0.882.633.424 (6)151
N4—H42···N2vi0.882.623.083 (9)114
N4A—H44···S1ii0.882.533.353 (6)157
C4—H4···S1vi0.952.743.551 (8)143
Symmetry codes: (i) x+1, y+1, z1/2; (ii) x+1, y+2, z+1/2; (iii) x1/2, y+1, z1; (iv) x+1/2, y, z1/2; (v) x+1/2, y, z+1/2; (vi) x+1/2, y1, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S1Ai0.882.443.293 (5)163
N1A—H1A···S1ii0.882.803.579 (5)149
N3—H31···N4Aiii0.882.443.300 (8)165
N3—H32···N2Aiv0.882.393.077 (8)135
N3A—H33···S1Aii0.882.533.392 (6)168
N3A—H34···N2v0.882.202.981 (8)148
N4—H41···S1Ai0.882.753.536 (6)149
N4—H42···S1vi0.882.633.424 (6)151
N4—H42···N2vi0.882.623.083 (9)114
N4A—H44···S1ii0.882.533.353 (6)157
C4—H4···S1vi0.952.743.551 (8)143
Symmetry codes: (i) x+1, y+1, z1/2; (ii) x+1, y+2, z+1/2; (iii) x1/2, y+1, z1; (iv) x+1/2, y, z1/2; (v) x+1/2, y, z+1/2; (vi) x+1/2, y1, z1/2.
 

Acknowledgements

Manchester Metropolitan University, Erciyes University and the University of Leicester are gratefully acknowledged for supporting this study.

References

First citationAbdel-Rahman, A., Bakhite, E. A. & Al-Laifi, E. A. (2002). J. Chin. Chem. Soc. 49, 223–231.  CAS Google Scholar
First citationAbu-Shanab, F. A. (1999). J. Chem. Res. (S), 7, 430–431.  Google Scholar
First citationAbu-Shanab, F. A., Elkholy, Y. M. & Elnagdi, M. H. (2002). Synth. Commun. 32, 3493–3502.  CAS Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAmr, A. E., Mohamed, A. M. & Ibrahim, A. A. (2003). Z. Naturforsch. Teil B, 58, 861–868.  CAS Google Scholar
First citationAsadov, K. A., Burangulova, R. N., Guseninov, F. H., Gilmanov, R. Z. & Phaljachov, I. P. (2003). Chem. Heterocycl. Compd, 39, 392–393.  CrossRef CAS Google Scholar
First citationAttaby, F. A., Eldin, S. M. & Abdel-Razik, F. M. (1995). Phosphorus Sulfur Silicon Relat. Elem. 106, 21–28.  CrossRef CAS Web of Science Google Scholar
First citationAwad, I. M. A., Abdel-rahman, A. E. & Bakhite, E. A. (1962). Phosphorus Sulfur Silicon Relat. Elem. 69, 213–218.  CrossRef Web of Science Google Scholar
First citationBruker (2011). SMART, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl-Gaby, M. S. A. (2004). J. Chin. Chem. Soc. 51, 125–134.  CAS Google Scholar
First citationEyduran, F., Özyürek, C., Dilek, N., Ocak Iskeleli, N. & Şendil, K. (2007). Acta Cryst. E63, o2415–o2417.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFahmy, S. M. & Mohareb, R. M. (1986). Tetrahedron, 42, 687–690.  CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGangiee, A., Devraj, R. & Lin, F. (1991). J. Heterocycl. Chem. 28, 1747–1751.  Google Scholar
First citationGuerrera, F., Salerno, L. & Sarva, M. C. (1993). Farmaco (Sci.), 48, 1725–1733.  CAS Google Scholar
First citationKrauze, A., Germane, S. & Eberlins, O. (1999). Eur. J. Med. Chem. 34, 301–310.  Web of Science CrossRef CAS Google Scholar
First citationMiky, J. A. A. & Zahkoug, S. A. (1997). Nat. Prod. Sci. 3, 89–99.  CAS Google Scholar
First citationRao, C. S., Venkaleswarlu, V. & Achaiah, G. (2006). Bioorg. Med. Chem. Lett. 16, 2134–2138.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSchmidt, U. & Kubitzek, H. (1960). Chem. Ber. 93, 1559–1571.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaylor, E. C., Palmer, D. C. & George, T. J. (1983). J. Org. Chem. 48, 4852–4890.  CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o993-o994
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds