STRUCTURE

OPEN \bigodot ACCESS

ISSN 1600-5368

Crystal structure of 4-chloro-2-iodoaniline

Taylor R. Quinn and Joseph M. Tanski*

Department of Chemistry, Vassar College, Poughkeepsie, NY 12604, USA.
*Correspondence e-mail: jotanski@vassar.edu
Received 17 July 2014; accepted 21 July 2014

Edited by J. Jasinski, Keene State College, USA

In the crystal structure of the title compound, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CIIN}$, the amino group engages in $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonding, creating [100] chains. A $\mathrm{Cl} \cdots \mathrm{I}$ contact is observed [3.7850 (16) A]. The parallel planes of neigbouring molecules reveal highly offset π-stacking characterized by a centroidcentroid distance of 4.154 (1), a centroid-to-plane distance of 3.553 (3) and ring-offset slippage of 2.151 (6) A.

Keywords: crystal structure; halogen-halogen interaction; aniline; π stacking.

CCDC reference: 1015344

1. Related literature

For the synthesis and vibrational spectroscopic analysis of 4-chloro-2-iodoaniline, see: Hoque et al. (2013). For the dehalogenation of dihalogenated anilines in human liver microsomes, see: Zhang et al. (2011). For the crystal structures of related monohalogenated anilines, see: Trotter et al. (1966); Parkin et al. (2005) and of dihalogenated anilines, see: Xu et al. (2008). For halogen-halogen interactions, see: Pedireddi et al. (1994) and for π-stacking, see: Lueckheide et al. (2013). For van der Waals radii, see: Bondi (1964).

2. Experimental

2.1. Crystal data
 $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{ClIN}$
 $M_{r}=253.46$
 Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
 $a=4.1538$ (4) A

$b=11.3685(11) \AA$
$c=15.8550(16) \AA$
$V=748.71(13) \AA^{3}$
$Z=4$

2.2. Data collection	
Bruker APEXII CCD	11850 measured reflections
diffractometer	2281 independent reflections
Absorption correction: multi-scan	2007 reflections with $I>2 \sigma(I)$
$\quad(S A D A B S ;$ Bruker, 2007)	$R_{\text {int }}=0.066$
$T_{\min }=0.56, T_{\max }=0.81$	

2.3. Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.053$
$S=1.02$
2281 reflections
88 parameters
2 restraints
H atoms treated by a mixture of independent and constrained refinement

Mo $K \alpha$ radiation
$\mu=4.54 \mathrm{~mm}^{-1}$
$T=125 \mathrm{~K}$
$0.20 \times 0.10 \times 0.05 \mathrm{~mm}$

11850 measured reflections
2281 independent reflections 2007 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.066$
$\Delta \rho_{\max }=0.96$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-1.03$ e \AA^{-3}
Absolute structure: Flack x determined using 742 quotients $\left[\left(I^{+}\right)-\left(I^{-}\right)\right] /\left[\left(I^{+}\right)+\left(I^{-}\right)\right]$ (Parsons et al., 2013)
Absolute structure parameter: -0.03 (3)

Table 1
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 2 \cdots \mathrm{N1}^{\mathrm{ii}}$	$0.90(2)$	$2.28(3)$	$3.142(6)$	$161(5)$
Symmetry code: (ii) $x-\frac{1}{2},-y+\frac{5}{2},-z$.				

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: SHELXTL2014 (Sheldrick, 2008); software used to prepare material for publication: SHELXTL2014, OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2006).

Acknowledgements

This work was supported by Vassar College. X-ray facilities were provided by the US National Science Foundation (grant No. 0521237 to JMT).

Supporting information for this paper is available from the IUCr electronic archives (Reference: JJ2191).

References

Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
Bruker (2007). SAINT, SADABS and APEX2. Bruxer AXS Inc., Madison, Wisconsin, USA.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. \& Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.

Hoque, M. M., Halim, M. A., Rahman, M. M. \& Hossain, M. I. (2013). J. Mol. Struct. 1054-1055, 367-374.
Lueckheide, M., Rothman, N., Ko, B. \& Tanski, J. M. (2013). Polyhedron, 58, 79-84.
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. \& van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.

Parkin, A., Spanswick, C. K., Pulham, C. R. \& Wilson, C. C. (2005). Acta Cryst. E61, o1087-o1089.

Parsons, S., Flack, H. D. \& Wagner, T. (2013). Acta Cryst. B69, 249-259.
Pedireddi, V. R., Reddy, D. S., Goud, B. S., Craig, D. C., Rae, A. D. \& Desiraju,
G. R. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 2353-2360.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Trotter, J., Whitlow, S. H. \& Zobel, T. (1966). J. Chem. Soc. A, p. 353.

Xu, Y.-H., Wang, C. \& Qu, F. (2008). Acta Cryst. E64, o2300.
Zhang, C., Kenny, J. R., Le, H., Deese, A., Ford, K. A., Lightning, L. K., Fan, P. W., Driscoll, J. P., Halladay, J. S., Hop, C. E. C. A. \& Khojasteh, S. C. (2011). Chem. Res. Toxicol. 24, 1668-1677.

supporting information

Acta Cryst. (2014). E70, o944-o945 [doi:10.1107/S1600536814016869]

Crystal structure of 4-chloro-2-iodoaniline

Taylor R. Quinn and Joseph M. Tanski

S1. Structural commentary

Dihalogenated anilines such as the title compound exhibit different toxicities depending on the identity, number and substitution pattern of the halogens on the aniline ring, and the mechanism of halogen activiation in differently substituted dihalogenated anilines by glutathione has been studied using human liver microsomes (Zhang et al., 2011). The title compound may be synthesized using selective ortho-iodination of 4-chloroaniline (Hoque et al., 2013). The CCl and $\mathrm{C}-\mathrm{I}$ bond lengths of 1.755 (6) \AA and 2.101 (5) \AA in the title compound (Fig. 1) are similar to those found in the corresponding mono-substituted anilines, 4-chloroaniline with $\mathrm{C}-\mathrm{Cl}$ bond length $1.75 \AA$ (Trotter et al., 1966) and 2iodoaniline with $\mathrm{C} — \mathrm{I}$ bond length 2.103 (7) $\AA \AA$ (Parkin et al., 2005). Further, the $\mathrm{C}-\mathrm{Cl}$ and $\mathrm{C}-\mathrm{I}$ bond lengths are similar to those found in the isomer where the positions of the halides are reversed, 2-chloro-4-iodoaniline, with $\mathrm{C}-\mathrm{Cl}$ bond length 1.742 (4) \AA and C—I bond length 2.103 (4) \AA (Xu et al., 2008).
In the structure of the titular compound, cooperative intermolecular hydrogen bonding with one of the two amine protons, H2, links the molecules into a one-dimensional chain running down the crystallographic a-axis (Fig. 2, Table 1). The other amine proton, H1, does not engage in any significant hydrogen bonding interaction. There is also an intermolecular halogen-halogen interaction between chlorine and iodine, with a Cl $\cdots \mathrm{I}^{i}$ distance of 3.7850 (16) \AA (Fig. 3) which is slightly longer than the sum of the van der Waals radii of chlorine and iodine, $3.73 \AA$ (Bondi, 1964) [symmetry code (i): $x-1 / 2,-y+3 / 2,-z]$. For a discussion of halogen \cdots halogen interactions, see Pedireddi et al., 1994. The parallel planes of neigboring aromatic molecules reveal a highly offset face-to-face π-stacking (Fig. 3) characterized by a ring centroid-to-centroid distance of 4.154 (1) \AA, centroid-to-plane distance of 3.553 (3) \AA, and ring-offset slippage parameter of 2.151 (6) Å (Lueckheide et al., 2013).

S2. Synthesis and crystallization

Crystalline 4-Chloro-2-iodoaniline (I) was purchased from Aldrich Chemical Company, USA.

S3. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms on carbon were included in calculated positions and refined using a riding model at $\mathrm{C}-\mathrm{H}=0.95 \AA$ and $U_{\mathrm{iso}}(\mathrm{H})=1.2 \times U_{\mathrm{eq}}(\mathrm{C})$ of the aryl C-atoms. The hydrogen atoms on nitrogen were located in the difference map and refined semifreely with the help of a distance restraint, $\mathrm{d}(\mathrm{N}-\mathrm{H}) 0.90(2) \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 \times$ $U_{\text {eq }}(\mathrm{N})$. The extinction parameter (EXTI) refined to zero and was removed from the refinement.

Figure 1
A view of title compound, with atom numbering scheme. Displacement ellipsoids are shown at the 50% probability level.

Figure 2

A view of the hydrogen bonding in 4-Chloro-2-iodoaniline forming a chain parallel to the crystallographic a-axis. Displacement ellipsoids are shown at the 50% probability level; hydrogen atoms on carbon removed for clarity. For symmetry code (ii), see Table 1.

Figure 3
A view of the offset face-to-face π-stacking and $\mathrm{Cl} \cdots \mathrm{I}^{\mathrm{i}}$ contact (thick solid line) in the packing of 4-Chloro-2-iodoaniline. Displacement ellipsoids are shown at the 50% probability level. Symmetry code (i): x $-1 / 2,-y+3 / 2,-z$.

4-Chloro-2-iodoaniline

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{ClIN}$

$M_{r}=253.46$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
Hall symbol: P 2ac 2ab
$a=4.1538$ (4) Å
$b=11.3685$ (11) \AA
$c=15.8550(16) \AA$
$V=748.71(13) \AA^{3}$
$Z=4$
$F(000)=472$
$D_{\mathrm{x}}=2.249 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 5580 reflections
$\theta=2.2-30.3^{\circ}$
$\mu=4.54 \mathrm{~mm}^{-1}$
$T=125 \mathrm{~K}$
Plate, colourless
$0.20 \times 0.10 \times 0.05 \mathrm{~mm}$

Data collection

Bruker APEXII CCD

diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 8.3333 pixels mm^{-1}
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
$T_{\text {min }}=0.56, T_{\text {max }}=0.81$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.053$
$S=1.02$
2281 reflections
88 parameters
2 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

11850 measured reflections
2281 independent reflections
2007 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.066$
$\theta_{\text {max }}=30.5^{\circ}, \theta_{\text {min }}=2.2^{\circ}$
$h=-5 \rightarrow 5$
$k=-16 \rightarrow 16$
$l=-22 \rightarrow 22$

Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0156 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.96$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-1.03 \mathrm{e} \AA^{-3}$
Absolute structure: Flack x determined using 742 quotients $\left[\left(I^{+}\right)-\left(I^{-}\right)\right] /\left[\left(I^{+}\right)+\left(I^{-}\right)\right]$(Parsons et al., 2013)

Absolute structure parameter: -0.03 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
I1	$1.19309(8)$	$0.92075(3)$	$-0.09588(2)$	$0.02161(9)$
C11	$1.0100(4)$	$0.80636(12)$	$0.24943(10)$	$0.0322(3)$
N1	$0.8012(13)$	$1.1528(4)$	$-0.0258(3)$	$0.0236(9)$
H1	$0.795(14)$	$1.124(5)$	$-0.0783(19)$	0.028^{*}
H2	$0.625(10)$	$1.196(4)$	$-0.017(4)$	0.028^{*}
C1	$0.8463(11)$	$1.0685(4)$	$0.0375(3)$	$0.0187(10)$
C2	$1.0139(12)$	$0.9638(4)$	$0.0242(3)$	$0.0167(10)$
C3	$1.0695(12)$	$0.8840(4)$	$0.0886(3)$	$0.0190(10)$
H3	1.1867	0.8136	0.0784	0.023^{*}
C4	$0.9513(13)$	$0.9087(5)$	$0.1680(3)$	$0.0233(11)$
C5	$0.7803(14)$	$1.0111(5)$	$0.1839(4)$	$0.0255(12)$
H5	0.6977	1.0266	0.2387	0.031^{*}
C6	$0.7316(12)$	$1.0906(4)$	$0.1191(3)$	$0.0228(11)$
H6	0.6182	1.1615	0.1301	0.027^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	$0.01729(14)$	$0.02359(15)$	$0.02395(16)$	$0.00030(14)$	$0.00153(14)$	$-0.00153(15)$
C11	$0.0468(9)$	$0.0259(7)$	$0.0238(7)$	$0.0013(7)$	$-0.0056(6)$	$0.0049(6)$
N1	$0.027(2)$	$0.0132(19)$	$0.031(3)$	$0.003(2)$	$-0.001(3)$	$0.0002(18)$
C1	$0.014(2)$	$0.013(2)$	$0.029(3)$	$-0.002(2)$	$-0.003(2)$	$-0.001(2)$
C2	$0.015(3)$	$0.016(2)$	$0.019(3)$	$-0.0008(19)$	$-0.001(2)$	$-0.002(2)$
C3	$0.018(2)$	$0.014(2)$	$0.024(3)$	$0.0009(18)$	$-0.003(2)$	$-0.003(2)$
C4	$0.025(3)$	$0.021(3)$	$0.024(3)$	$-0.003(3)$	$-0.004(2)$	$0.002(2)$
C5	$0.026(3)$	$0.026(3)$	$0.025(3)$	$-0.003(2)$	$0.001(2)$	$-0.004(2)$
C6	$0.023(3)$	$0.015(2)$	$0.030(3)$	$0.002(2)$	$-0.001(2)$	$-0.007(2)$

Geometric parameters (\AA, ${ }^{\circ}$)

I1-C2	2.101 (5)	C2-C3	1.386 (7)
$\mathrm{Cl} 1-\mathrm{C} 4$	1.755 (6)	C3-C4	1.380 (7)
$\mathrm{Cl} 1-\mathrm{I} 1^{\text {i }}$	3.7850 (16)	C3-H3	0.95
N1-C1	1.400 (7)	C4-C5	1.387 (8)
N1-H1	0.90 (2)	C5-C6	1.383 (7)
N1-H2	0.90 (2)	C5-H5	0.95
C1-C2	1.395 (7)	C6-H6	0.95
C1-C6	1.402 (7)		
Cl1 \cdots I1 ${ }^{\text {i }}$	3.7850 (16)		
C4- $\mathrm{Cl} 11-\mathrm{I1}{ }^{\text {i }}$	86.03 (18)	C4-C3-H3	120.7
C1-N1-H1	115 (4)	C2-C3-H3	120.7
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 2$	112 (4)	C3-C4-C5	121.3 (5)
$\mathrm{H} 1-\mathrm{N} 1-\mathrm{H} 2$	109 (5)	C3-C4-Cl1	119.1 (4)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1$	122.9 (5)	C5-C4-Cl1	119.6 (4)
C2-C1-C6	117.5 (5)	C6-C5-C4	119.2 (5)
N1-C1-C6	119.5 (5)	C6-C5-H5	120.4
C3-C2-C1	122.0 (5)	C4-C5-H5	120.4
C3-C2-I1	117.2 (4)	C5-C6-C1	121.3 (5)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{I} 1$	120.8 (4)	C5-C6-H6	119.4
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	118.7 (5)	C1-C6-H6	119.4
N1-C1-C2-C3	176.8 (5)	$\mathrm{I} 1{ }^{\mathrm{i}}-\mathrm{Cl} 1-\mathrm{C} 4-\mathrm{C} 3$	-49.3 (4)
C6-C1-C2-C3	-0.5 (7)	$\mathrm{I} 1{ }^{\mathrm{i}}-\mathrm{Cl} 1-\mathrm{C} 4-\mathrm{C} 5$	129.0 (4)
N1-C1-C2-I1	-3.3 (7)	C3-C4-C5-C6	-0.9 (8)
C6-C1-C2-I1	179.4 (4)	C11-C4-C5-C6	-179.2 (4)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	0.8 (8)	C4-C5-C6-C1	1.2 (8)
$\mathrm{I} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-179.1 (4)	C2-C1-C6-C5	-0.5 (7)
C2-C3-C4-C5	-0.1 (8)	N1-C1-C6-C5	-177.9 (5)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{Cl} 1$	178.2 (4)		

Symmetry code: (i) $x-1 / 2,-y+3 / 2,-z$.

supporting information

Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 2 \cdots \mathrm{~N} 1^{\mathrm{ii}}$	$0.90(2)$	$2.28(3)$	$3.142(6)$	$161(5)$

Symmetry code: (ii) $x-1 / 2,-y+5 / 2,-z$.

