

OPEN 3 ACCESS

Crystal structure of 2,9-diphenyl- $17\lambda^6$ thiatetracyclo[8.7.0.0^{3,8}.0^{11,16}]heptadeca-1(10),2,4,6,8,11(16),12,14-octaene-17,17-dione

S. Gopinath,^a P. Narayanan,^a K. Sethusankar,^a* Meganathan Nandakumar^b and Arasambattu K. Mohanakrishnan^b

^aDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India, and ^bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India. *Correspondence e-mail: ksethusankar@yahoo.co.in

Received 18 July 2014; accepted 2 August 2014

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

The title compound, $C_{28}H_{18}O_2S$, is composed of a naphthalene ring system fused with a benzothiophene ring and attached to two phenyl rings. The phenyl rings make dihedral angles of 70.92 (8) and 79.23 (8)° with the essentially planar naphthalene ring system (r.m.s. deviation = 0.031 Å). There is an intramolecular $C-H\cdots\pi$ interaction present. In the crystal, molecules are linked by $C-H\cdots O$ hydrogen bonds which generate C(7) zigzag chains running parallel to [101]. The chains are linked via further $C-H\cdots\pi$ interactions, forming a three-dimensional structure.

Keywords: crystal structure; naphthalene; thiatetracyclo; heptadeca; octaenedione.

CCDC reference: 1017690

1. Related literature

Naphthalene derivatives have been extensively employed in many fields and some posses important biological and commercial applications, such as disinfectants, insecticides, plant hormones and rooting agents, see: Morikawa & Takahashi (2004). They have also been identified as a new range of potent antimicrobials effective against a wide range of human pathogens, see: Rokade & Sayyed (2009). For a related structure, see: Narayanan *et al.* (2011).

V = 2061.49 (8) Å³

Mo $K\alpha$ radiation

 $0.35 \times 0.30 \times 0.25 \text{ mm}$

20049 measured reflections

3633 independent reflections

3065 reflections with $I > 2\sigma(I)$

 $\mu = 0.18 \text{ mm}^{-1}$

T = 296 K

 $R_{\rm int} = 0.025$

Z = 4

2. Experimental

2.1. Crystal data

 $\begin{array}{l} C_{28}H_{18}O_2S\\ M_r = 418.48\\ Monoclinic, P2_1/n\\ a = 9.9374 \ (2) \ Å\\ b = 16.1534 \ (4) \ Å\\ c = 13.0530 \ (3) \ Å\\ \beta = 100.308 \ (1)^\circ \end{array}$

2.2. Data collection

Bruker Kappa APEXII CCD

diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2008) $T_{\rm min} = 0.939, T_{\rm max} = 0.956$

2.3. Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.035$	280 parameters
$wR(F^2) = 0.104$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.19 \ {\rm e} \ {\rm \AA}^{-3}$
3633 reflections	$\Delta \rho_{\rm min} = -0.37 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1Hydrogen-bond geometry (Å, °).

Cg1, Cg2 and Cg3 are the centroids of rings C23–C28, C1/C6–C10 and C17–C22, respectively.

	D 11		D (D 11 1
$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
$C25-H25\cdots O2^{i}$	0.93	2.52	3.281 (2)	139
$C14-H14\cdots Cg1^{ii}$	0.93	2.71	3.537 (2)	149
$C16-H16\cdots Cg1^{iii}$	0.93	2.63	3.481 (2)	151
$C20-H20\cdots Cg2^{iv}$	0.93	2.89	3.736 (2)	152
$C24 - H24 \cdots Cg3$	0.93	2.60	3.426 (2)	148

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{3}{2}$; (iii) -x, -y, -z + 1; (iv) $x - \frac{3}{2}, -y - \frac{1}{2}, z - \frac{3}{2}$.

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and *Mercury* (Macrae *et al.*,

data reports

2008); software used to prepare material for publication: *SHELXL97* and *PLATON* (Spek, 2009).

Acknowledgements

The authors thank Dr Babu Varghese, Senior Scientific Officer, for the data collection at SAIF, IIT, Madras, India.

Supporting information for this paper is available from the IUCr electronic archives (Reference: SU2758).

References

- Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Morikawa, H. & Takahashi, M. (2004). US Patent 6800482.
- Narayanan, P., Sethusankar, K., Nandakumar, M. & Mohanakrishnan, A. K. (2011). Acta Cryst. E67, 0931.
- Rokade, Y. B. & Sayyed, R. Z. (2009). Rasayan J. Chem. 2, 972-980.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2014). E70, o1013-o1014 [doi:10.1107/S1600536814017838]

Crystal structure of 2,9-diphenyl- $17\lambda^6$ -thiatetracyclo-[8.7.0.0^{3,8}.0^{11,16}]heptadeca-1(10),2,4,6,8,11(16),12,14-octaene-17,17-dione

S. Gopinath, P. Narayanan, K. Sethusankar, Meganathan Nandakumar and Arasambattu K. Mohanakrishnan

S1. Experimental

To a solution of benzo[c]furan1a (0.4 g, 1.48 mmol) in dry toluene (15 ml), benzo[b]thiophene S, S-dioxide 2 (0.25 g, 1.48 mmol) was added and refluxed until the disappearence of the fluroscent colour of the benzo[c]furan (12 h). To this, PTSA (1.13 g, 6.79 mmol) was added and the mixture refluxed for (10 h). The reaction mixture was then poured into a saturated solution of NaHCO₃ (50 ml), extracted with ethyl acetate (3X20ml) and dried (Na₂SO₄). Removal of the solvent followed by column chromatographic purification (silica gel; 10% ethyl acetate in hexane) afforded dibenzothiophene S,*S*-dioxide4a as a colourless solid. Single crystals suitable for X-ray diffraction were prepared by slow evapouration of a solution in ethyl acetate at room temperature.

S2. Refinement

The H atoms were located from a difference electron density map. For refinement they were included in calculated positions and treated as riding atoms: C-H = 0.93 Å with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

The molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at 30% probability level.

Figure 2

A partial view of the crystal packing of the title compound, showing the C—H…O hydrogen bonds (dashed lines; see Table 1 for details) H atoms not involved in the hydrogen bonding have been omitted for clarity.

2,9-Diphenyl-17^{λ6}-thiatetracyclo[8.7.0.0^{3,8}.0^{11,16}]heptadeca-1(10),2,4,6,8,11 (16),12,14-octaene-17,17-dione

Crystal data

C₂₈H₁₈O₂S $M_r = 418.48$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 9.9374 (2) Å b = 16.1534 (4) Å c = 13.0530 (3) Å $\beta = 100.308$ (1)° V = 2061.49 (8) Å³ Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator $\omega \& \varphi$ scans Absorption correction: multi-scan (*SADABS*; Bruker, 2008) $T_{\min} = 0.939, T_{\max} = 0.956$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.104$ S = 1.033633 reflections 280 parameters 0 restraints Primary atom site location: structure-invariant direct methods F(000) = 872 $D_x = 1.348 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3633 reflections $\theta = 2.0-25.0^{\circ}$ $\mu = 0.18 \text{ mm}^{-1}$ T = 296 KBlock, colourless $0.35 \times 0.30 \times 0.25 \text{ mm}$

20049 measured reflections 3633 independent reflections 3065 reflections with $I > 2\sigma(I)$ $R_{int} = 0.025$ $\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 2.0^{\circ}$ $h = -11 \rightarrow 11$ $k = -19 \rightarrow 18$ $l = -12 \rightarrow 15$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0532P)^2 + 0.7982P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.19$ e Å⁻³ $\Delta\rho_{min} = -0.37$ e Å⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C6	-0.26997 (16)	0.07715 (10)	0.66155 (13)	0.0354 (4)	
C5	-0.40842 (18)	0.06567 (11)	0.67099 (15)	0.0431 (4)	
Н5	-0.4759	0.0966	0.6293	0.052*	
C4	-0.44474 (19)	0.01051 (12)	0.73960 (16)	0.0503 (5)	
H4	-0.5365	0.0035	0.7438	0.060*	
C3	-0.3452 (2)	-0.03577 (13)	0.80382 (16)	0.0531 (5)	
H3	-0.3707	-0.0726	0.8516	0.064*	
C2	-0.21072 (19)	-0.02726 (12)	0.79697 (15)	0.0469 (5)	
H2	-0.1453	-0.0583	0.8405	0.056*	
C1	-0.16908 (17)	0.02787 (10)	0.72497 (13)	0.0360 (4)	
C10	-0.02927 (16)	0.03449 (10)	0.71348 (13)	0.0343 (4)	
C9	0.00034 (16)	0.09000 (10)	0.64220 (13)	0.0330 (4)	
C8	-0.09702 (16)	0.14233 (10)	0.58096 (13)	0.0336 (4)	
C7	-0.23185 (16)	0.13559 (10)	0.59007 (13)	0.0346 (4)	
C23	-0.03343 (16)	0.19479 (10)	0.50926 (13)	0.0355 (4)	
C24	-0.08844 (18)	0.25867 (11)	0.44312 (15)	0.0426 (4)	
H24	-0.1782	0.2757	0.4413	0.051*	
C25	-0.00898 (19)	0.29658 (12)	0.38026 (15)	0.0496 (5)	
H25	-0.0464	0.3392	0.3363	0.059*	
C26	0.1245 (2)	0.27299 (13)	0.38098 (16)	0.0523 (5)	
H26	0.1752	0.2986	0.3366	0.063*	
C27	0.18264 (19)	0.21142 (12)	0.44754 (15)	0.0475 (5)	
H27	0.2730	0.1954	0.4499	0.057*	
C28	0.10299 (17)	0.17445 (10)	0.51034 (13)	0.0375 (4)	
C17	-0.33828 (16)	0.18539 (10)	0.52159 (14)	0.0364 (4)	
C18	-0.37945 (19)	0.16206 (12)	0.41930 (15)	0.0483 (5)	
H18	-0.3481	0.1126	0.3956	0.058*	
C19	-0.4673 (2)	0.21199 (14)	0.35178 (17)	0.0564 (5)	
H19	-0.4944	0.1964	0.2826	0.068*	
C20	-0.51450 (19)	0.28448 (13)	0.38694 (18)	0.0554 (6)	
H20	-0.5713	0.3188	0.3410	0.066*	
C21	-0.4783 (2)	0.30639 (12)	0.48907 (19)	0.0554 (5)	
H21	-0.5131	0.3547	0.5130	0.067*	
C22	-0.39036 (19)	0.25723 (11)	0.55713 (16)	0.0476 (5)	
H22	-0.3661	0.2724	0.6267	0.057*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C11	0.08060 (17)	-0.01687 (10)	0.77541 (13)	0.0366 (4)
C12	0.1770 (2)	0.01822 (13)	0.85221 (16)	0.0524 (5)
H12	0.1713	0.0741	0.8680	0.063*
C13	0.2822 (2)	-0.02950 (15)	0.90583 (17)	0.0627 (6)
H13	0.3465	-0.0057	0.9581	0.075*
C14	0.2921 (2)	-0.11145 (14)	0.88242 (17)	0.0571 (6)
H14	0.3641	-0.1430	0.9176	0.069*
C15	0.1967 (2)	-0.14668 (13)	0.80765 (17)	0.0576 (5)
H15	0.2029	-0.2026	0.7924	0.069*
C16	0.0908 (2)	-0.10002 (11)	0.75434 (15)	0.0486 (5)
H16	0.0256	-0.1249	0.7036	0.058*
01	0.20172 (14)	0.02549 (8)	0.56085 (12)	0.0578 (4)
O2	0.26058 (13)	0.13802 (9)	0.68509 (11)	0.0551 (4)
S1	0.16252 (4)	0.10036 (3)	0.60531 (3)	0.03783 (15)

Atomic displacement parameters $(Å^2)$

	U^{11}	<i>U</i> ²²	U ³³	U ¹²	U ¹³	<i>U</i> ²³
C6	0.0343 (9)	0.0325 (9)	0.0384 (9)	0.0002 (7)	0.0037 (7)	-0.0059 (7)
C5	0.0354 (9)	0.0425 (10)	0.0507 (11)	0.0013 (7)	0.0057 (8)	-0.0015(8)
C4	0.0395 (10)	0.0527 (12)	0.0608 (13)	-0.0059 (9)	0.0150 (9)	-0.0015 (10)
C3	0.0544 (12)	0.0528 (12)	0.0547 (12)	-0.0086 (9)	0.0166 (9)	0.0076 (10)
C2	0.0477 (11)	0.0457 (11)	0.0463 (11)	0.0000 (8)	0.0058 (8)	0.0080 (8)
C1	0.0375 (9)	0.0323 (9)	0.0371 (9)	-0.0013 (7)	0.0037 (7)	-0.0033 (7)
C10	0.0363 (9)	0.0291 (8)	0.0351 (9)	0.0013 (7)	-0.0004 (7)	-0.0037 (7)
C9	0.0288 (8)	0.0296 (8)	0.0381 (9)	0.0009 (6)	-0.0007 (7)	-0.0039(7)
C8	0.0324 (8)	0.0290 (8)	0.0369 (9)	0.0001 (6)	-0.0007 (7)	-0.0019 (7)
C7	0.0324 (8)	0.0301 (8)	0.0396 (9)	0.0019 (6)	0.0015 (7)	-0.0032(7)
C23	0.0332 (8)	0.0330 (9)	0.0373 (9)	-0.0043 (7)	-0.0017 (7)	-0.0012(7)
C24	0.0350 (9)	0.0410 (10)	0.0476 (11)	-0.0008 (7)	-0.0040 (8)	0.0070 (8)
C25	0.0470 (11)	0.0491 (11)	0.0470 (11)	-0.0090 (9)	-0.0068 (8)	0.0141 (9)
C26	0.0467 (11)	0.0619 (13)	0.0470 (11)	-0.0135 (9)	0.0050 (9)	0.0118 (10)
C27	0.0347 (9)	0.0567 (12)	0.0500 (11)	-0.0051 (8)	0.0045 (8)	0.0036 (9)
C28	0.0321 (8)	0.0369 (9)	0.0408 (9)	-0.0017 (7)	-0.0006 (7)	-0.0002 (7)
C17	0.0273 (8)	0.0353 (9)	0.0455 (10)	0.0001 (7)	0.0038 (7)	0.0028 (7)
C18	0.0424 (10)	0.0459 (11)	0.0522 (11)	0.0025 (8)	-0.0033 (8)	-0.0029 (9)
C19	0.0469 (11)	0.0651 (14)	0.0508 (12)	-0.0025 (10)	-0.0084 (9)	0.0072 (10)
C20	0.0326 (9)	0.0564 (13)	0.0741 (15)	0.0018 (9)	0.0014 (9)	0.0286 (11)
C21	0.0468 (11)	0.0418 (11)	0.0793 (16)	0.0133 (9)	0.0156 (11)	0.0111 (10)
C22	0.0469 (10)	0.0428 (10)	0.0529 (11)	0.0088 (8)	0.0089 (9)	0.0015 (9)
C11	0.0364 (9)	0.0376 (9)	0.0347 (9)	0.0028 (7)	0.0033 (7)	0.0029 (7)
C12	0.0519 (11)	0.0480 (11)	0.0516 (12)	0.0074 (9)	-0.0059 (9)	-0.0071 (9)
C13	0.0525 (12)	0.0790 (16)	0.0482 (12)	0.0062 (11)	-0.0135 (9)	-0.0003 (11)
C14	0.0526 (12)	0.0646 (14)	0.0529 (12)	0.0204 (10)	0.0063 (10)	0.0227 (10)
C15	0.0672 (13)	0.0408 (11)	0.0621 (13)	0.0151 (10)	0.0041 (11)	0.0079 (10)
C16	0.0552 (11)	0.0370 (10)	0.0494 (11)	0.0054 (8)	-0.0021 (9)	0.0003 (8)
01	0.0578 (8)	0.0451 (8)	0.0747 (10)	0.0154 (6)	0.0230 (7)	0.0007 (7)
O2	0.0373 (7)	0.0612 (9)	0.0589 (9)	-0.0107 (6)	-0.0131 (6)	0.0106 (7)

<u>S1</u>	0.0283 (2)	0.0368 (3)	0.0463 (3)	0.00192 (16)	0.00104 (18)	0.00276 (18)
Geome	etric parameters (2	Å, ^o)				
С6—С	25	1.415 ((2)	C27—C28	1	.374 (3)
С6—С	21	1.424	(2)	С27—Н27	0	.9300
С6—С	27	1.425	(2)	C28—S1	1	.7483 (17)
С5—С	24	1.357 ((3)	C17—C18	1	.377 (3)
С5—Н	15	0.9300		C17—C22	1	.384 (2)
C4—C	23	1.394 ((3)	C18—C19	1	.384 (3)
C4—H	I4	0.9300		C18—H18	0	.9300
С3—С	22	1.362	(3)	C19—C20	1	.371 (3)
С3—Н	13	0.9300		C19—H19	0	.9300
С2—С	C1	1.410 ((3)	C20—C21	1	.364 (3)
С2—Н	12	0.9300		C20—H20	0	.9300
C1—C	210	1.428	(2)	C21—C22	1	.381 (3)
C10—	·C9	1.362	(2)	C21—H21	0	.9300
C10—	C11	1.489 ((2)	C22—H22	0	.9300
С9—С	28	1.419	(2)	C11—C12	1	.379 (2)
C9—S	1	1.7707	(17)	C11—C16	1	.379 (2)
С8—С	27	1.370 ((2)	C12—C13	1	.384 (3)
С8—С	223	1.485 ((2)	C12—H12	0	.9300
С7—С	217	1.492 ((2)	C13—C14	1	.366 (3)
C23—	C28	1.393 ((2)	С13—Н13	0	.9300
C23—	C24	1.393 ((2)	C14—C15	1	.358 (3)
C24—	C25	1.380 ((3)	C14—H14	0	.9300
C24—	H24	0.9300		C15—C16	1	.377 (3)
C25—	C26	1.379 ((3)	C15—H15	0	.9300
C25—	H25	0.9300		C16—H16	0	.9300
C26—	C27	1.378 ((3)	O1—S1	1	.4255 (14)
C26—	H26	0.9300		O2—S1	1	.4286 (13)
С5—С	C6—C1	118.07	(16)	C27—C28—C23	1	23.72 (17)
С5—С	С6—С7	121.34	(15)	C27—C28—S1	1	24.24 (14)
C1—C	С6—С7	120.59	(15)	C23—C28—S1	1	11.96 (13)
C4—C	С5—С6	121.39	(17)	C18—C17—C22	1	19.37 (16)
C4—C	С5—Н5	119.3		C18—C17—C7	1	19.27 (16)
С6—С	С5—Н5	119.3		C22—C17—C7	1	21.25 (16)
С5—С	С4—С3	120.33	(17)	C17—C18—C19	1	20.14 (19)
С5—С	C4—H4	119.8		C17—C18—H18	1	19.9
С3—С	C4—H4	119.8		C19—C18—H18	1	19.9
С2—С	C3—C4	120.35	(18)	C20-C19-C18	1	20.0 (2)
C2—C	С3—Н3	119.8	· /	C20-C19-H19	1	20.0
C4—C	С3—Н3	119.8		C18—C19—H19	1	20.0
C3—C	C2—C1	121.07	(17)	C21—C20—C19	1	20.19 (18)
C3—C	2—Н2	119.5	~ /	C21—C20—H20	1	19.9
C1-C	2—Н2	119.5		С19—С20—Н20	1	19.9
C2—C	C1—C6	118.73	(16)	C20—C21—C22	1	20.37 (19)
-			× /		-	

supporting information

C2 C1 C10	101 (4 (15)	C20 C21 U21	110.0
	121.64 (15)	C20—C21—H21	119.8
C6-C1-C10	119.62 (15)	C22—C21—H21	119.8
C9—C10—C1	117.02 (15)	C17—C22—C21	119.88 (19)
C9—C10—C11	120.71 (15)	С17—С22—Н22	120.1
C1-C10-C11	122.27 (15)	C21—C22—H22	120.1
С10—С9—С8	124.64 (15)	C12—C11—C16	118.64 (16)
C10—C9—S1	124.51 (12)	C12—C11—C10	120.81 (16)
C8—C9—S1	110.65 (12)	C16—C11—C10	120.51 (15)
C7—C8—C9	118.85 (15)	C11—C12—C13	120.17 (19)
C7-C8-C23	129 27 (14)	C11—C12—H12	119.9
C9-C8-C23	11177(14)	C_{13} C_{12} H_{12}	119.9
C_{8} C_{7} C_{6}	110.77(11) 119.20(14)	C_{14} C_{13} C_{12} C_{12}	120.31 (19)
$C_{8}^{8} = C_{7}^{7} = C_{17}^{17}$	119.20(14) 120.20(15)	$C_{14} = C_{13} = C_{12}$	120.31 (19)
$C_{0} - C_{1} - C_{1}$	120.29(13) 120.42(14)	$C_{12} = C_{12} = H_{12}$	119.0
$C_0 - C_1 - C_1$	120.42(14)		119.8
C28—C23—C24	117.03 (16)		119.86 (18)
C28—C23—C8	112.47 (14)	C15—C14—H14	120.1
C24—C23—C8	130.50 (15)	C13—C14—H14	120.1
C25—C24—C23	119.64 (17)	C14—C15—C16	120.38 (19)
C25—C24—H24	120.2	C14—C15—H15	119.8
C23—C24—H24	120.2	C16—C15—H15	119.8
C26—C25—C24	121.72 (18)	C15—C16—C11	120.61 (18)
С26—С25—Н25	119.1	C15—C16—H16	119.7
C24—C25—H25	119.1	C11—C16—H16	119.7
C27—C26—C25	119.87 (18)	O1—S1—O2	117.23 (9)
С27—С26—Н26	120.1	O1—S1—C28	112.00 (9)
C25—C26—H26	120.1	02 - 51 - C28	108.99 (8)
C_{28} C_{27} C_{26}	117.96 (17)	01 - 81 - C9	111 03 (8)
$C_{28} = C_{27} = C_{20}$	121.0	$O_2 S_1 C_9$	112.16 (8)
$C_{26} = C_{27} = H_{27}$	121.0	$C_{2}^{2} S_{1}^{1} C_{2}^{0}$	02.78(8)
620-627-1127	121.0	020-31-09	92.78 (8)
C1 $C6$ $C5$ $C4$	12(3)	C26 C27 C28 S1	-175 58 (15)
$C_{1} = C_{0} = C_{1} = C_{1}$	-170.48(17)	$C_{20} = C_{27} = C_{28} = S_{17}$	-26(2)
$C/-C_{0}-C_{4}$	-1/9.40(17)	$C_{24} = C_{23} = C_{20} = C_{27}$	-2.0(3)
$C_{0} - C_{3} - C_{4} - C_{3}$	0.8 (3)	C_{3} C_{23} C_{23} C_{23} C_{27}	177.03 (10)
C5—C4—C3—C2	-1.3(3)	C24—C23—C28—S1	1/4.3/(13)
C4—C3—C2—C1	-0.3 (3)	C8—C23—C28—S1	-5.97 (18)
C3—C2—C1—C6	2.2 (3)	C8—C7—C17—C18	75.9 (2)
C3—C2—C1—C10	-176.95 (17)	C6—C7—C17—C18	-100.6(2)
C5—C6—C1—C2	-2.6 (2)	C8—C7—C17—C22	-100.2 (2)
C7—C6—C1—C2	178.01 (16)	C6—C7—C17—C22	83.3 (2)
C5-C6-C1-C10	176.58 (15)	C22-C17-C18-C19	2.9 (3)
C7—C6—C1—C10	-2.8 (2)	C7—C17—C18—C19	-173.33 (17)
C2-C1-C10-C9	-179.60 (16)	C17—C18—C19—C20	-0.6 (3)
C6—C1—C10—C9	1.2 (2)	C18—C19—C20—C21	-1.9 (3)
C2-C1-C10-C11	0.8 (3)	C19—C20—C21—C22	2.1 (3)
C6-C1-C10-C11	-178.36 (15)	C18—C17—C22—C21	-2.6(3)
C1 - C10 - C9 - C8	14(2)	C7-C17-C22-C21	17346(17)
$C_{11} - C_{10} - C_{9} - C_{8}$	-178 99 (15)	C_{20} C_{21} C_{22} C_{17}	0.2(3)
C1 - C10 - C9 - S1	-172 85 (12)	$C_{2} = C_{1} = C_{1} = C_{1}$	70.8 (2)
01 - 010 - 0j - 01	1/2.03 (12)	-11-12	10.0 (2)

C11—C10—C9—S1	6.7 (2)	C1-C10-C11-C12	-109.6 (2)
C10—C9—C8—C7	-2.5 (2)	C9—C10—C11—C16	-106.7 (2)
S1—C9—C8—C7	172.46 (12)	C1—C10—C11—C16	72.8 (2)
C10-C9-C8-C23	-179.01 (15)	C16—C11—C12—C13	0.6 (3)
S1—C9—C8—C23	-4.05 (17)	C10-C11-C12-C13	-176.99 (19)
C9—C8—C7—C6	0.8 (2)	C11—C12—C13—C14	0.6 (3)
C23—C8—C7—C6	176.63 (15)	C12-C13-C14-C15	-1.4 (4)
C9—C8—C7—C17	-175.72 (14)	C13—C14—C15—C16	0.8 (3)
C23—C8—C7—C17	0.1 (3)	C14-C15-C16-C11	0.5 (3)
C5—C6—C7—C8	-177.61 (16)	C12-C11-C16-C15	-1.2 (3)
C1—C6—C7—C8	1.7 (2)	C10-C11-C16-C15	176.44 (18)
C5—C6—C7—C17	-1.1 (2)	C27—C28—S1—O1	-65.86 (18)
C1—C6—C7—C17	178.25 (15)	C23—C28—S1—O1	117.15 (13)
C7—C8—C23—C28	-169.54 (16)	C27—C28—S1—O2	65.52 (18)
C9—C8—C23—C28	6.5 (2)	C23—C28—S1—O2	-111.46 (13)
C7—C8—C23—C24	10.1 (3)	C27—C28—S1—C9	-179.89 (17)
C9—C8—C23—C24	-173.88 (17)	C23—C28—S1—C9	3.13 (13)
C28—C23—C24—C25	2.1 (3)	C10—C9—S1—O1	60.76 (16)
C8—C23—C24—C25	-177.52 (17)	C8—C9—S1—O1	-114.20 (12)
C23—C24—C25—C26	-0.1 (3)	C10—C9—S1—O2	-72.55 (16)
C24—C25—C26—C27	-1.6 (3)	C8—C9—S1—O2	112.48 (12)
C25—C26—C27—C28	1.1 (3)	C10—C9—S1—C28	175.63 (15)
C26—C27—C28—C23	1.1 (3)	C8—C9—S1—C28	0.66 (12)

Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of rings C23–C28, C1/C6–C10 and C17–C22, respectively.

D—H···A	D—H	Н…А	D····A	D—H…A
C25—H25····O2 ⁱ	0.93	2.52	3.281 (2)	139
C14—H14··· $Cg1^{ii}$	0.93	2.71	3.537 (2)	149
C16—H16… <i>Cg</i> 1 ⁱⁱⁱ	0.93	2.63	3.481 (2)	151
C20—H20···· $Cg2^{iv}$	0.93	2.89	3.736 (2)	152
C24—H24…Cg3	0.93	2.60	3.426 (2)	148

Symmetry codes: (i) x-1/2, -y+1/2, z-1/2; (ii) -x+1/2, y-1/2, -z+3/2; (iii) -x, -y, -z+1; (iv) x-3/2, -y-1/2, z-3/2.