organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of phen­yl(pyridin-2-yl)methanol

aDepartment of Chemistry, Chungnam National University, Daejeon 305-764, Republic of Korea
*Correspondence e-mail: skkang@cnu.ac.kr

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 19 July 2014; accepted 21 July 2014; online 1 August 2014)

In the title compound, C12H11NO, the pyridine and phenyl rings are inclined to each other by 71.42 (10)°. In the crystal, O—H⋯N hydrogen bonds link the mol­ecules into helical chains extending along the c-axis direction.

1. Related literature

For the synthesis of the title compound and some derivatives, see: Frassoldati et al. (2013[Frassoldati, A., Pinel, C. & Besson, M. (2013). Catal. Today, 203, 133-138.]); Tao et al. (2012[Tao, X., Li, W., Ma, X., Li, X., Fan, W., Xie, X., Ayad, T., Ratovelomanana-Vidal, V. & Zhang, Z. (2012). J. Org. Chem. 77, 612-616.]). For its use in synthesis, see: Miyamura et al. (2008[Miyamura, H., Matsubara, R. & Kobayashi, S. (2008). Chem. Commun. pp. 2031-2033.]); Lucchesi et al. (2008[Lucchesi, C., Inasaki, T., Miyamura, H., Matsubara, R. & Kobayashi, S. (2008). Adv. Synth. Catal. 350, 1996-2000.]); Lash et al. (2007[Lash, T. D., Pokharel, K., Serling, J. M., Yant, V. R. & Ferrence, G. M. (2007). Org. Lett. 9, 2863-2866.]); Szajna et al. (2004[Szajna, E., Dobrowolski, P., Fuller, A. L., Srif, A. M. & Berreau, L. M. (2004). Inorg. Chem. 43, 3988-3997.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C12H11NO

  • Mr = 185.22

  • Orthorhombic, P n a 21

  • a = 7.4385 (8) Å

  • b = 14.3429 (16) Å

  • c = 9.2255 (10) Å

  • V = 984.27 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.3 × 0.26 × 0.18 mm

2.2. Data collection

  • Bruker SMART CCD area-detector diffractometer

  • 7290 measured reflections

  • 2245 independent reflections

  • 1190 reflections with I > 2σ(I)

  • Rint = 0.055

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.084

  • S = 0.81

  • 2245 reflections

  • 131 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.09 e Å−3

  • Δρmin = −0.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O8—H8⋯N1i 0.98 (5) 1.85 (5) 2.809 (4) 166 (4)
Symmetry code: (i) [-x+1, -y+1, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Related literature top

For the synthesis of the title compound and some derivatives, see: Frassoldati et al. (2013); Tao et al. (2012). For its use in synthesis, see: Miyamura et al. (2008); Lucchesi et al. (2008); Lash et al. (2007); Szajna et al. (2004).

Experimental top

To a solution of 2-benzoylpyridine (5.0 g, 0.027 mol) in EtOH (60 ml) was added NaBH4 (3.13 g, 0.083 mol) slowly at room temperature. The solution was stirred gently for 1 h. After adding 60 ml H2O, this solution was heated at 363 K for 15 min. After cooling, the product was extracted with AcOEt (50 ml). The solvent was evaporated under reduced pressure to leave a pale green oil. Colourless crystals of the title compound were obtained by slow evaporation of a solution in EtOH at room temperature.

Refinement top

Atom H8 of the OH group was located in a difference Fourier map and freely refined. C-bound H atoms were positioned geometrically and refined using a riding model: C—H = 0.93 - 0.98 Å with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title molecule, with atom labelling. The displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view along the a axis of the crystal packing of the title compound, showing molecules linked by O—H···N hydrogen bonds (dashed lines; see Table 1 for details).
Phenyl(pyridin-2-yl)methanol top
Crystal data top
C12H11NOF(000) = 392
Mr = 185.22Dx = 1.25 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 973 reflections
a = 7.4385 (8) Åθ = 2.6–19.7°
b = 14.3429 (16) ŵ = 0.08 mm1
c = 9.2255 (10) ÅT = 296 K
V = 984.27 (19) Å3Block, colourless
Z = 40.3 × 0.26 × 0.18 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
Rint = 0.055
Radiation source: fine-focus sealed tubeθmax = 27.5°, θmin = 2.6°
ϕ and ω scansh = 79
7290 measured reflectionsk = 1818
2245 independent reflectionsl = 1111
1190 reflections with I > 2σ(I)
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0303P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.81(Δ/σ)max < 0.001
2245 reflectionsΔρmax = 0.09 e Å3
131 parametersΔρmin = 0.12 e Å3
Crystal data top
C12H11NOV = 984.27 (19) Å3
Mr = 185.22Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 7.4385 (8) ŵ = 0.08 mm1
b = 14.3429 (16) ÅT = 296 K
c = 9.2255 (10) Å0.3 × 0.26 × 0.18 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1190 reflections with I > 2σ(I)
7290 measured reflectionsRint = 0.055
2245 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0391 restraint
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 0.81Δρmax = 0.09 e Å3
2245 reflectionsΔρmin = 0.12 e Å3
131 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4374 (3)0.37463 (19)0.8538 (3)0.0544 (7)
C20.4309 (5)0.2902 (3)0.9150 (5)0.0738 (12)
H20.46160.28511.01240.089*
C30.3819 (5)0.2112 (3)0.8433 (6)0.0773 (12)
H30.37940.1540.89070.093*
C40.3365 (4)0.2177 (2)0.7004 (5)0.0733 (12)
H40.3020.16510.64850.088*
C50.3426 (4)0.3039 (2)0.6344 (4)0.0582 (9)
H50.31190.31040.53720.07*
C60.3949 (4)0.3804 (2)0.7141 (3)0.0434 (7)
C70.4046 (4)0.4769 (2)0.6482 (3)0.0501 (8)
H70.50210.51160.69490.06*
O80.4471 (3)0.46457 (19)0.5006 (3)0.0700 (7)
H80.474 (5)0.526 (3)0.460 (5)0.111 (16)*
C90.2299 (3)0.52994 (18)0.6693 (3)0.0409 (7)
C100.0771 (4)0.5047 (2)0.5952 (4)0.0587 (9)
H100.08170.45490.53070.07*
C110.0819 (4)0.5515 (3)0.6146 (4)0.0715 (11)
H110.18370.53340.56330.086*
C120.0908 (5)0.6244 (3)0.7087 (4)0.0679 (10)
H120.19890.65570.72240.081*
C130.0579 (5)0.6514 (2)0.7824 (4)0.0697 (10)
H130.05150.70170.84590.084*
C140.2204 (4)0.6043 (2)0.7639 (4)0.0570 (8)
H140.32190.6230.81510.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0530 (17)0.061 (2)0.0488 (19)0.0047 (13)0.0014 (14)0.0027 (15)
C20.066 (3)0.084 (3)0.071 (3)0.019 (2)0.008 (2)0.024 (2)
C30.059 (2)0.059 (3)0.114 (4)0.006 (2)0.015 (2)0.029 (3)
C40.059 (2)0.049 (2)0.112 (4)0.0045 (17)0.006 (3)0.008 (2)
C50.056 (2)0.057 (2)0.062 (2)0.0079 (16)0.0005 (17)0.0047 (19)
C60.0362 (15)0.0463 (19)0.0476 (19)0.0058 (13)0.0045 (15)0.0004 (15)
C70.0500 (18)0.0578 (19)0.0426 (19)0.0030 (15)0.0052 (15)0.0001 (16)
O80.0827 (17)0.0741 (18)0.0530 (15)0.0020 (14)0.0260 (13)0.0028 (13)
C90.0452 (16)0.0391 (15)0.0383 (15)0.0036 (14)0.0017 (14)0.0062 (14)
C100.059 (2)0.047 (2)0.069 (2)0.0019 (17)0.0103 (18)0.0040 (17)
C110.052 (2)0.072 (2)0.090 (3)0.0003 (19)0.009 (2)0.010 (2)
C120.061 (2)0.071 (2)0.072 (3)0.016 (2)0.011 (2)0.014 (2)
C130.091 (3)0.057 (2)0.061 (2)0.018 (2)0.004 (2)0.005 (2)
C140.066 (2)0.0535 (18)0.0512 (19)0.0022 (16)0.0088 (18)0.0012 (17)
Geometric parameters (Å, º) top
N1—C61.329 (4)C7—H70.98
N1—C21.338 (4)O8—H80.98 (5)
C2—C31.362 (5)C9—C101.374 (4)
C2—H20.93C9—C141.380 (4)
C3—C41.364 (5)C10—C111.372 (4)
C3—H30.93C10—H100.93
C4—C51.379 (5)C11—C121.361 (5)
C4—H40.93C11—H110.93
C5—C61.376 (4)C12—C131.354 (5)
C5—H50.93C12—H120.93
C6—C71.514 (4)C13—C141.395 (4)
C7—O81.408 (4)C13—H130.93
C7—C91.518 (4)C14—H140.93
C6—N1—C2117.2 (3)C9—C7—H7108.8
N1—C2—C3123.9 (4)C7—O8—H8108 (3)
N1—C2—H2118.1C10—C9—C14118.4 (3)
C3—C2—H2118.1C10—C9—C7120.8 (3)
C2—C3—C4118.6 (4)C14—C9—C7120.8 (3)
C2—C3—H3120.7C11—C10—C9121.3 (3)
C4—C3—H3120.7C11—C10—H10119.4
C3—C4—C5118.7 (4)C9—C10—H10119.4
C3—C4—H4120.7C12—C11—C10120.1 (4)
C5—C4—H4120.7C12—C11—H11120
C6—C5—C4119.2 (3)C10—C11—H11120
C6—C5—H5120.4C13—C12—C11120.0 (3)
C4—C5—H5120.4C13—C12—H12120
N1—C6—C5122.4 (3)C11—C12—H12120
N1—C6—C7115.8 (3)C12—C13—C14120.5 (3)
C5—C6—C7121.8 (3)C12—C13—H13119.8
O8—C7—C6106.5 (3)C14—C13—H13119.8
O8—C7—C9112.3 (2)C9—C14—C13119.8 (3)
C6—C7—C9111.4 (2)C9—C14—H14120.1
O8—C7—H7108.8C13—C14—H14120.1
C6—C7—H7108.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8···N1i0.98 (5)1.85 (5)2.809 (4)166 (4)
Symmetry code: (i) x+1, y+1, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8···N1i0.98 (5)1.85 (5)2.809 (4)166 (4)
Symmetry code: (i) x+1, y+1, z1/2.
 

Acknowledgements

This work was supported by research funding of Chungnam National University.

References

First citationBruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrassoldati, A., Pinel, C. & Besson, M. (2013). Catal. Today, 203, 133–138.  Web of Science CrossRef CAS Google Scholar
First citationLash, T. D., Pokharel, K., Serling, J. M., Yant, V. R. & Ferrence, G. M. (2007). Org. Lett. 9, 2863–2866.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLucchesi, C., Inasaki, T., Miyamura, H., Matsubara, R. & Kobayashi, S. (2008). Adv. Synth. Catal. 350, 1996–2000.  Web of Science CrossRef CAS Google Scholar
First citationMiyamura, H., Matsubara, R. & Kobayashi, S. (2008). Chem. Commun. pp. 2031–2033.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSzajna, E., Dobrowolski, P., Fuller, A. L., Srif, A. M. & Berreau, L. M. (2004). Inorg. Chem. 43, 3988–3997.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationTao, X., Li, W., Ma, X., Li, X., Fan, W., Xie, X., Ayad, T., Ratovelomanana-Vidal, V. & Zhang, Z. (2012). J. Org. Chem. 77, 612–616.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds