

OPEN d ACCESS

Crystal structure of (Z)-3-benzyloxy-6-[(2-hydroxy-5-methylanilino)methylidene]cyclohexa-2,4-dien-1-one

Nadir Ghichi, Ali Benosmane,* Ali Benboudiaf and **Hocine Merazig**

Unité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Faculté des Sciences Exactes, Département de Chimie, Université Constantine 1, Algeria. *Correspondence e-mail: king.ali@hotmail.fr

Received 20 July 2014; accepted 22 July 2014

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

In the title Schiff base compound, C₂₁H₁₉NO₃, the conformation about the C=C bond is Z. The N-H group and carbonyl O atom form an intramolecular N-H···O hydrogen bond with an S(6) ring motif. The benzyloxy ring and the 2-hydroxy-5-methylphenyl ring are inclined to the central six-membered ring by 13.68 (9) and 9.13 (8) $^{\circ}$, respectively, and to one another by 21.95 $(9)^{\circ}$. In the crystal, molecules are linked by $O-H \cdots O$ hydrogen bonds, forming helical chains along [010].

Keywords: crystal structure; Schiff base; azomethines.

CCDC reference: 1015522

1. Related literature

For some general background on Schiff bases and their various biological activities, see: Arora et al. (2002); El-Masry et al. (2000); Jarrahpour & Khalili (2006); More et al. (2001); Phatak et al. (2000). For related structures, see: Akkurt et al. (2005, 2008). For pharmaceutical and industrial applications of azomethines, see: Prakash & Adhikari (2011). For the effect of hydrophilicity on drug properties, see: Lin & Lu (1997).

2. Experimental

2.1. Crystal data

$C_{21}H_{19}NO_3$ $M_r = 333.37$ Monoclinic, $P2_1/c$ a = 12.594 (5) Å b = 9.303 (5) Å c = 14.997 (5) Å $\beta = 96.402$ (5)°	$V = 1746.1 (13) \text{ A}^{3}$ Z = 4 Mo K\alpha radiation $\mu = 0.09 \text{ mm}^{-1}$ T = 293 K $0.03 \times 0.02 \times 0.01 \text{ mm}$		
2.2 Data collection			
2.2. Data conection			
Bruker APEXII CCD	5148 independent reflections $2(72 \text{ meRe} \text{ times with } L_{12}, 2\pi/L)$		
19603 measured reflections	$R_{\rm int} = 0.037$		
2.3. Refinement			
$R[F^2 > 2\sigma(F^2)] = 0.050$	H atoms treated by a mixture of		
$wR(F^2) = 0.158$	independent and constrained		
S = 1.01	refinement		
5148 reflections	$\Delta \rho_{\rm max} = 0.22 \ {\rm e} \ {\rm A}^{-3}$		

renner	mont
$\Delta \rho_{\rm max} =$	$0.22 \text{ e} \text{ Å}^{-3}$
$\Delta \rho_{\min} =$	$-0.16 \text{ e} \text{ Å}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

238 parameters

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} N1 - H1n \cdots O2 \\ O1 - H1o \cdots O2^{i} \end{array}$	0.94 (2)	1.83 (2)	2.609 (2)	138.7 (16)
	0.96 (2)	1.63 (2)	2.590 (2)	176.1 (17)

Symmetry code: (i) $-x, y - \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012).

Acknowledgements

The authors thank the MESRS (Algeria) for financial support. We also thank all researchers of the CHEMS Research Unit, University of Constantine 1, Algeria, for their valuable assistance.

Supporting information for this paper is available from the IUCr electronic archives (Reference: SU2761).

References

- Akkurt, M., Jarrahpour, A., Aye, M., Gençaslan, M. & Büyükgüngör, O. (2008). Acta Cryst. E64, o2087.
- Akkurt, M., Karaca, S., Jarrahpour, A. A., Zarei, M. & Büyükgüngör, O. (2005). Acta Cryst. E61, 0776-0778.
- Arora, K., Gupta, A. & Agarwal, D. D. (2002). Asian J. Chem, 14, 1611-1615. Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- El-Masry, A. H., Fahmy, H. H. & Abdelwahed, S. H. A. (2000). Molecules, 5, 1429-1438.

- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Jarrahpour, A. A. & Khalili, D. (2006). Molecules, 11, 59-63.
- Lin, J. H. & Lu, A. Y. H. (1997). Pharmacol. Rev. 49, 403-449.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.

More, P. G., Bhalvankar, R. B. & Pattar, S. C. (2001). J. Indian Chem. Soc. 78, 474-475.

Phatak, P., Jolly, V. S. & Sharma, K. P. (2000). Orient. J. Chem. 16, 493-494. Prakash, A. & Adhikari, D. (2011). Int. J. ChemTech. Res. 3, 1891-1896.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2014). E70, o957-o958 [doi:10.1107/S1600536814016936]

Crystal structure of (*Z*)-3-benzyloxy-6-[(2-hydroxy-5-methylanilino)methylidene]cyclohexa-2,4-dien-1-one

Nadir Ghichi, Ali Benosmane, Ali Benboudiaf and Hocine Merazig

S1. Experimental

A mixture of 2-amino-4-methylphenol (1 mmol) and 4-(benzyloxy)-2-hydroxybenzaldehyde (1 mmol) was heated to form a clear solution. To this a few drops of conc. HCL was added as a catalyst and the mixture was refluxed for 12 h. After cooling the solution to 80°C it was stirred for 45 min the a precipitate formed. It was filtered off and washed with ice cold ethyl acetate to give the pure title Schiff base compound as an orange solid (yield 35%). This crude product was dissolved in ethyl acetate and two spoons of activated charcoal were added. The mixture was filtered over celite μ 000174 and the product was crystallized from ethyl acetate. The compound was very difficult to crystalize and only after several attempts over a period of four months were crystals suitable for X-ray diffraction analysis finally obtained.

S2. Refinement

The OH and NH H atoms, and the methine H atom were located in a difference Fourier map and freely refined. The C-bound H atoms were fixed geometrically and treated as riding atoms: C-H = 0.93 Å (aromatic) and 0.97 Å (methylene) with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

View of the molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

Partial view along the *b* axis of the crystal packing of the title compound, showing the hydrogen bonds as dashed lines (see Table 1 for details).

(Z)-3-Benzyloxy-6-[(2-hydroxy-5-methylanilino)methylidene]cyclohexa-2,4-dien-1-one

Crystal data

C₂₁H₁₉NO₃ $M_r = 333.37$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 12.594 (5) Å b = 9.303 (5) Å c = 14.997 (5) Å $\beta = 96.402$ (5)° V = 1746.1 (13) Å³

Data collection

Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator phi and ω scans 19603 measured reflections 5148 independent reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.050$ $wR(F^2) = 0.158$ Z = 4 F(000) = 704 $D_x = 1.268 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 293 K Block, orange $0.03 \times 0.02 \times 0.01 \text{ mm}$

2672 reflections with $I > 2\sigma(I)$ $R_{int} = 0.037$ $\theta_{max} = 30.2^{\circ}, \ \theta_{min} = 2.6^{\circ}$ $h = -17 \rightarrow 17$ $k = -13 \rightarrow 13$ $l = -21 \rightarrow 20$

S = 1.015148 reflections 238 parameters 0 restraints

Primary atom site location: structure-invariant direct methods	H atoms treated by a mixture of independent and constrained refinement
Secondary atom site location: difference Fourier	$w = 1/[\sigma^2(F_o^2) + (0.0718P)^2 + 0.1066P]$
map	where $P = (F_o^2 + 2F_c^2)/3$
Hydrogen site location: inferred from	$(\Delta/\sigma)_{\rm max} < 0.001$
neighbouring sites	$\Delta \rho_{\rm max} = 0.22 \text{ e} \text{ Å}^{-3}$
	$\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.00597 (9)	0.00730 (11)	0.29239 (8)	0.0607 (4)	
O2	0.11904 (9)	0.35839 (11)	0.32139 (8)	0.0632 (4)	
O3	0.35952 (9)	0.74624 (12)	0.39999 (9)	0.0686 (4)	
N1	0.14153 (10)	0.12579 (13)	0.41887 (9)	0.0466 (4)	
C1	0.10315 (13)	-0.23275 (17)	0.52145 (11)	0.0543 (5)	
C2	0.03317 (14)	-0.29008 (17)	0.45329 (12)	0.0599 (6)	
C3	-0.00117 (13)	-0.21414 (16)	0.37654 (11)	0.0557 (5)	
C4	0.03510 (12)	-0.07513 (15)	0.36568 (10)	0.0464 (5)	
C5	0.10653 (11)	-0.01575 (15)	0.43336 (10)	0.0435 (4)	
C6	0.13925 (12)	-0.09409 (16)	0.51009 (10)	0.0502 (5)	
C7	0.21681 (12)	0.19787 (17)	0.46691 (11)	0.0500 (5)	
C8	0.24727 (11)	0.33802 (16)	0.44826 (10)	0.0488 (5)	
C9	0.19690 (11)	0.41507 (16)	0.37232 (11)	0.0488 (5)	
C10	0.23632 (12)	0.55360 (16)	0.35497 (11)	0.0535 (5)	
C11	0.31795 (12)	0.61279 (17)	0.41101 (11)	0.0549 (6)	
C12	0.36589 (14)	0.53810 (18)	0.48665 (13)	0.0654 (6)	
C13	0.33182 (13)	0.40505 (18)	0.50384 (12)	0.0626 (6)	
C14	0.31877 (13)	0.82640 (18)	0.32322 (12)	0.0600 (6)	
C15	0.37303 (14)	0.96959 (18)	0.32326 (12)	0.0597 (6)	
C16	0.32694 (18)	1.0777 (2)	0.26853 (13)	0.0769 (8)	
C17	0.3757 (2)	1.2105 (2)	0.26580 (14)	0.0893 (9)	
C18	0.4695 (2)	1.2378 (2)	0.31800 (16)	0.0918 (10)	
C19	0.51594 (18)	1.1327 (2)	0.37257 (18)	0.0933 (9)	
C20	0.46785 (16)	0.9979 (2)	0.37561 (16)	0.0781 (8)	
C21	0.13941 (16)	-0.3163 (2)	0.60556 (13)	0.0792 (8)	
H1o	-0.0411 (17)	-0.044 (2)	0.2490 (16)	0.101 (7)*	
H2	0.00830	-0.38330	0.45937	0.0719*	
H1n	0.1091 (14)	0.1794 (19)	0.3701 (13)	0.075 (6)*	
H3	-0.04862	-0.25606	0.33208	0.0668*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H6	0.18647	-0.05266	0.55491	0.0603*	
H7	0.2525 (13)	0.1493 (17)	0.5192 (12)	0.065 (5)*	
H10	0.20650	0.60482	0.30510	0.0642*	
H12	0.42068	0.58043	0.52442	0.0785*	
H13	0.36443	0.35558	0.55341	0.0750*	
H14A	0.24242	0.84004	0.32335	0.0720*	
H14B	0.33057	0.77387	0.26933	0.0720*	
H16	0.26261	1.06082	0.23328	0.0922*	
H17	0.34437	1.28183	0.22815	0.1070*	
H18	0.50154	1.32764	0.31634	0.1101*	
H19	0.57997	1.15094	0.40792	0.1119*	
H20	0.49987	0.92686	0.41309	0.0937*	
H21A	0.10696	-0.40980	0.60202	0.1186*	
H21B	0.11862	-0.26601	0.65674	0.1186*	
H21C	0.21574	-0.32628	0.61143	0.1186*	

Atomic displacement parameters $(Å^2)$

	U^{11}	<i>U</i> ²²	U^{33}	U^{12}	<i>U</i> ¹³	U^{23}
01	0.0764 (8)	0.0485 (6)	0.0514 (7)	-0.0042 (5)	-0.0186 (6)	0.0026 (5)
O2	0.0626 (7)	0.0505 (6)	0.0687 (8)	-0.0121 (5)	-0.0277 (6)	0.0067 (5)
O3	0.0682 (7)	0.0572 (7)	0.0771 (9)	-0.0194 (6)	-0.0061 (6)	-0.0054 (6)
N1	0.0481 (7)	0.0460 (7)	0.0435 (7)	0.0016 (5)	-0.0050 (6)	-0.0001 (6)
C1	0.0591 (10)	0.0511 (9)	0.0523 (9)	0.0110 (7)	0.0047 (8)	0.0065 (7)
C2	0.0691 (10)	0.0415 (8)	0.0684 (11)	0.0006 (7)	0.0041 (9)	0.0038 (8)
C3	0.0612 (10)	0.0449 (8)	0.0580 (10)	-0.0016 (7)	-0.0066 (8)	-0.0057 (7)
C4	0.0490 (8)	0.0436 (8)	0.0448 (8)	0.0055 (6)	-0.0029 (7)	-0.0017 (6)
C5	0.0430 (7)	0.0412 (7)	0.0456 (8)	0.0057 (6)	0.0019 (6)	-0.0023 (6)
C6	0.0502 (9)	0.0533 (9)	0.0457 (9)	0.0052 (7)	-0.0014 (7)	0.0000 (7)
C7	0.0501 (9)	0.0538 (9)	0.0436 (9)	0.0020 (7)	-0.0060 (7)	-0.0022 (7)
C8	0.0449 (8)	0.0508 (8)	0.0487 (9)	-0.0029 (7)	-0.0041 (7)	-0.0059 (7)
C9	0.0426 (8)	0.0482 (8)	0.0529 (9)	-0.0017 (6)	-0.0063 (7)	-0.0075 (7)
C10	0.0517 (9)	0.0491 (8)	0.0569 (10)	-0.0032 (7)	-0.0069 (7)	-0.0011 (7)
C11	0.0484 (9)	0.0501 (9)	0.0650 (11)	-0.0082 (7)	0.0013 (8)	-0.0106 (8)
C12	0.0581 (10)	0.0642 (11)	0.0682 (11)	-0.0130 (8)	-0.0182 (9)	-0.0096 (9)
C13	0.0612 (10)	0.0634 (10)	0.0576 (10)	-0.0062 (8)	-0.0178 (8)	-0.0039 (8)
C14	0.0588 (10)	0.0554 (9)	0.0659 (11)	-0.0070 (8)	0.0075 (9)	-0.0090 (8)
C15	0.0650 (11)	0.0543 (9)	0.0630 (11)	-0.0093 (8)	0.0210 (9)	-0.0150 (8)
C16	0.1016 (15)	0.0646 (12)	0.0650 (12)	-0.0107 (11)	0.0122 (11)	-0.0092 (10)
C17	0.140 (2)	0.0627 (12)	0.0685 (14)	-0.0114 (13)	0.0257 (14)	-0.0049 (10)
C18	0.127 (2)	0.0675 (13)	0.0879 (17)	-0.0338 (13)	0.0433 (15)	-0.0139 (12)
C19	0.0841 (15)	0.0798 (15)	0.1170 (19)	-0.0316 (12)	0.0161 (14)	-0.0185 (14)
C20	0.0707 (12)	0.0616 (11)	0.1026 (16)	-0.0153 (9)	0.0123 (11)	-0.0092 (10)
C21	0.0904 (14)	0.0737 (12)	0.0710 (13)	0.0068 (10)	-0.0014 (11)	0.0239 (10)

Geometric parameters (Å, °)

01-C4	1.357 (2)	C15—C20	1.379 (3)
O2—C9	1.287 (2)	C15—C16	1.384 (3)
O3—C11	1.365 (2)	C16—C17	1.382 (3)
O3—C14	1.419 (2)	C17—C18	1.366 (4)
O1—H10	0.96 (2)	C18—C19	1.364 (3)
N1—C5	1.413 (2)	C19—C20	1.396 (3)
N1—C7	1.310 (2)	С2—Н2	0.9300
N1—H1n	0.940(19)	С3—Н3	0.9300
C1—C6	1.385 (2)	С6—Н6	0.9300
C1-C21	1 508 (3)	С7—Н7	0.971(17)
C1 - C2	1.380(3)	C10—H10	0.9300
$C_2 - C_3$	1.300(3) 1.378(2)	C12—H12	0.9300
C_{3}	1.370(2) 1 387(2)	C13H13	0.9300
C4-C5	1.307(2) 1 393(2)	C14— $H14A$	0.9500
C_{2}	1.395(2) 1 385(2)	C14—H14B	0.9700
C7 - C8	1.305 (2)	C16—H16	0.9300
C^{8} C^{13}	1.370(2) 1.421(2)	C17 H17	0.9300
C_{8}	1.421(2) 1.432(2)	C_{1}^{1}	0.9300
C_{0} C_{10}	1.435(2) 1 416(2)	C10 H10	0.9300
C_{10}	1.410(2) 1.360(2)	C20 H20	0.9300
C_{10}	1.309(2)	C_{20} H_{21A}	0.9500
$C_{11} = C_{12}$	1.400(3)	C_{21} H_{21} C_{21} H_{21} H_{21}	0.9000
C12-C15	1.344(2) 1.407(2)	C_{21} H21C	0.9000
014015	1.497 (3)	C2I—H2IC	0.9000
C11—O3—C14	117.87 (13)	C18—C19—C20	120.3 (2)
C4—O1—H1o	111.1 (13)	C15—C20—C19	120.28 (19)
C5—N1—C7	127.71 (13)	C1—C2—H2	119.00
C5—N1—H1n	119.9 (11)	С3—С2—Н2	119.00
C7—N1—H1n	112.4 (11)	С2—С3—Н3	120.00
C2—C1—C6	117.40 (15)	С4—С3—Н3	120.00
C2-C1-C21	121.94 (15)	С1—С6—Н6	119.00
C6-C1-C21	120.67 (15)	С5—С6—Н6	119.00
C1—C2—C3	122.37 (15)	N1—C7—H7	116.6 (10)
C2—C3—C4	119.94 (15)	С8—С7—Н7	118.9 (10)
C3—C4—C5	118.58 (14)	C9—C10—H10	120.00
O1—C4—C3	124.00 (14)	C11—C10—H10	120.00
O1—C4—C5	117.41 (13)	C11—C12—H12	120.00
N1—C5—C4	116.40 (13)	C13—C12—H12	120.00
N1—C5—C6	123.29 (13)	C8—C13—H13	119.00
C4—C5—C6	120.31 (13)	C12—C13—H13	119.00
C1—C6—C5	121.40 (14)	O3—C14—H14A	110.00
N1—C7—C8	124.48 (15)	O3—C14—H14B	110.00
C9—C8—C13	118.89 (14)	C15—C14—H14A	110.00
C7—C8—C9	121.29 (14)	C15—C14—H14B	110.00
C7—C8—C13	119.80 (14)	H14A—C14—H14B	108.00
O2—C9—C8	120.49 (13)	C15—C16—H16	120.00
	· /		

O2—C9—C10	121.57 (14)	С17—С16—Н16	120.00
C8—C9—C10	117.93 (14)	C16—C17—H17	120.00
C9—C10—C11	120.54 (15)	C18—C17—H17	120.00
C10-C11-C12	121.43 (15)	C17—C18—H18	120.00
O3—C11—C12	114.26 (14)	C19—C18—H18	120.00
O3—C11—C10	124.31 (15)	С18—С19—Н19	120.00
C11—C12—C13	119.45 (16)	С20—С19—Н19	120.00
C8—C13—C12	121.72 (16)	С15—С20—Н20	120.00
O3—C14—C15	110.09 (14)	С19—С20—Н20	120.00
C14—C15—C16	119.02 (16)	C1—C21—H21A	109.00
C14—C15—C20	122.43 (16)	C1—C21—H21B	109.00
C16—C15—C20	118.55 (17)	C1—C21—H21C	109.00
C15—C16—C17	120.6 (2)	H21A—C21—H21B	109.00
C16—C17—C18	120.52 (19)	H21A-C21-H21C	109.00
C17—C18—C19	119.73 (19)	H21B—C21—H21C	109.00
C14—O3—C11—C10	-3.0 (2)	C7—C8—C9—C10	-176.46 (14)
C14—O3—C11—C12	177.39 (14)	C13—C8—C9—O2	-178.95 (14)
C11—O3—C14—C15	179.43 (14)	C13—C8—C9—C10	1.8 (2)
C7—N1—C5—C4	-171.50 (15)	C7—C8—C13—C12	177.89 (16)
C7—N1—C5—C6	8.9 (2)	C9—C8—C13—C12	-0.4 (2)
C5—N1—C7—C8	179.88 (14)	O2—C9—C10—C11	178.81 (15)
C6—C1—C2—C3	-0.4 (3)	C8—C9—C10—C11	-1.9 (2)
C21—C1—C2—C3	179.41 (16)	C9—C10—C11—O3	-178.96 (14)
C2-C1-C6-C5	0.0 (2)	C9—C10—C11—C12	0.7 (2)
C21—C1—C6—C5	-179.84 (15)	O3—C11—C12—C13	-179.54 (15)
C1—C2—C3—C4	0.3 (3)	C10-C11-C12-C13	0.8 (3)
C2—C3—C4—O1	179.74 (15)	C11—C12—C13—C8	-0.9 (3)
C2—C3—C4—C5	0.3 (2)	O3—C14—C15—C16	-163.21 (16)
O1—C4—C5—N1	0.2 (2)	O3—C14—C15—C20	17.1 (2)
O1—C4—C5—C6	179.81 (14)	C14—C15—C16—C17	-178.97 (18)
C3—C4—C5—N1	179.66 (14)	C20-C15-C16-C17	0.7 (3)
C3—C4—C5—C6	-0.7 (2)	C14—C15—C20—C19	179.30 (19)
N1-C5-C6-C1	-179.83 (14)	C16—C15—C20—C19	-0.4 (3)
C4—C5—C6—C1	0.6 (2)	C15—C16—C17—C18	-0.9 (3)
N1—C7—C8—C9	-0.4 (2)	C16—C17—C18—C19	0.7 (4)
N1—C7—C8—C13	-178.58 (15)	C17—C18—C19—C20	-0.3 (4)
C7—C8—C9—O2	2.8 (2)	C18—C19—C20—C15	0.2 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
N1—H1 <i>n</i> ···O2	0.94 (2)	1.83 (2)	2.609 (2)	138.7 (16)
O1—H1o···O2 ⁱ	0.96 (2)	1.63 (2)	2.590 (2)	176.1 (17)

Symmetry code: (i) -x, y-1/2, -z+1/2.