data reports

OPEN ∂ ACCESS

Crystal structure of 4-bromo-*N*-(2bromo-3-nitrobenzyl)-2-nitronaphthalen-1-amine

Vijay P. Singh,^a Krishnan Venkateshwaran,^a Harkesh B. Singh^a and Ray J. Butcher^{b*}

^aDepartment of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India, and ^bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA. *Correspondence e-mail: rbutcher99@yahoo.com

Received 27 June 2014; accepted 25 July 2014

Edited by E. R. T. Tiekink, University of Malaya, Malaysia

In the title compound, $C_{17}H_{11}Br_2N_3O_4$, the dihedral angle between the planes of the naphthalene system and the benzene ring is $52.86 (8)^{\circ}$. The nitro substituent and the attached naphthalene system are almost coplanar [dihedral angle = $5.6 (4)^{\circ}$], probably as a consequence of an intramolecular $N-H\cdots O$ hydrogen bond with the amine group. The nitro substituent attached to the benzene ring is disordered over two sets of sites with occupancies of 0.694 (3) and 0.306 (3). The major component deviates significantly from the ring plane [dihedral angle = $53.6 (2)^{\circ}$]. In the crystal, the molecules are linked into a threedimensional array by extensive $\pi - \pi$ interactions involving both the naphthalene and benzene rings [range of centroidcentroid distances = 3.5295(16) - 3.9629(18)Å] and C-H...O interactions involving the methylene H atoms and the phenyl-attached nitro group.

Keywords: crystal structure; naphthalen-1-amine; π – π interactions; hydrogen bonding; arylselenium compounds; photoluminescent seleno-spirocyclic compounds.

CCDC reference: 1015963

1. Related literature

For the role of secondary interactions in stabilizing organoselenium compounds, see; Singh *et al.* (2010, 2012); Mugesh & Singh (2000). For the isolation of novel photoluminescent selenospirocyclic compounds *via* intermolecular C–C bond formation, see: Singh *et al.* (2011).

2. Experimental

2.1. Crystal data

 $\begin{array}{l} C_{17}H_{11}Br_2N_3O_4\\ M_r = 481.11\\ Triclinic, P\overline{1}\\ a = 8.3675 \ (4) \ \mathring{A}\\ b = 8.5812 \ (5) \ \mathring{A}\\ c = 12.2691 \ (5) \ \mathring{A}\\ a = 76.973 \ (4)^\circ\\ \beta = 81.053 \ (4)^\circ \end{array}$

2.2. Data collection

Agilent Xcalibur (Ruby, Gemini) diffractometer Absorption correction: multi-scan

(CrysAlis PRO; Agilent, 2012) $T_{\min} = 0.345, T_{\max} = 1.000$

2.3. Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.053$ $wR(F^2) = 0.129$ S = 1.026700 reflections 246 parameters 1 restraint 12164 measured reflections

 $\gamma = 76.302 \ (5)^{\circ}$

Z = 2

V = 829.00 (8) Å³

Mo $K\alpha$ radiation

 $0.44 \times 0.32 \times 0.12 \text{ mm}$

 $\mu = 4.92 \text{ mm}^{-1}$

T = 123 K

12104 measured reflections 6700 independent reflections 4118 reflections with $I > 2\sigma(I)$ $R_{int} = 0.033$

H atoms treated by a mixture of
independent and constrained
refinement
$\Delta \rho_{\rm max} = 1.04 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.77 \text{ e } \text{\AA}^{-3}$

Table 1		
Hydrogen-b	ond geometry	y (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1N\cdots O2$	0.84 (3)	1.91 (3)	2.624 (3)	141 (3)
$C12-H12B\cdots O4A^{i}$	0.99	2.54	3.532 (4)	177
$C12-H12B\cdots O4B^{i}$	0.99	2.61	3.462 (8)	144

Symmetry code: (i) x - 1, y, z.

Data collection: *CrysAlis PRO* (Agilent, 2012); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2013* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *WinGX* (Farrugia, 2012).

Acknowledgements

RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

Supporting information for this paper is available from the IUCr electronic archives (Reference: TK5325).

References

- Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Mugesh, G. & Singh, H. B. (2000). Chem. Soc. Rev. 29, 347-357.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Singh, V. P., Singh, H. B. & Butcher, R. J. (2010). *Eur. J. Inorg. Chem.* pp. 637–647.
- Singh, V. P., Singh, H. B. & Butcher, R. J. (2011). Chem. Commun. 47, 7221-7223.
- Singh, V. P., Singh, P., Singh, H. B. & Butcher, R. J. (2012). *Tetrahedron Lett.* **53**, 4591–4594.

supporting information

Acta Cryst. (2014). E70, o960-o961 [doi:10.1107/S160053681401719X]

Crystal structure of 4-bromo-*N*-(2-bromo-3-nitrobenzyl)-2-nitronaphthalen-1amine

Vijay P. Singh, Krishnan Venkateshwaran, Harkesh B. Singh and Ray J. Butcher

S1. Comment

Arylselenium compounds having one *ortho*-coordinating group have been widely studied as reagents in organic synthesis, glutathione peroxidase mimics, and precursors for the synthesis of macrocycles (Singh *et al.*, 2012; Mugesh & Singh, 2000). Introduction of a second *ortho*-coordinating group towards selenium leads to interesting reactivity of the selenium derivatives and isolation of unusual species (Singh *et al.*, 2010). Recently, we reported the isolation of novel photoluminescent selenospirocyclic compounds *via* intermolecular C—C bond formation (Singh *et al.*, 2011). In continuation of this research, we attempted the synthesis of naphthylamine based spirocyclic compounds. However, the reaction led to the isolation of 4-bromo-*N*-(2-bromo-3-nitrobenzyl)-2-nitronaphthalen-1-amine (**2**) instead of the desired spiro-compound (**3**) (Fig. 1).

In the structure of the title compound, Fig. 2, the naphthyl nitro substituent is almost coplanar with the naphthyl ring (dihedral angle = 5.6 (4)°) probably as a consequence of an intramolecular hydrogen bond with the N—H moiety. However, the nitro substituent attached to the benzene deviates significantly from the ring plane (dihedral angle = 53.6 (2)° for the major component); this is disordered with occupancies of 0.694 (3) and 0.306 (3). The dihedral angle between the two ring systems is 52.86 (8)°. The molecules are linked into a three-dimensional array, Fig. 3, by extensive π - π interactions involving both the naphthyl ring (Cg1; C1, C2, C3, C4, C5, C10: Cg2; C5, C6, C7, C8, C9, C10) and benzene ring (Cg3; C13, C14, C15, C16, C17, C18), see Table 1, and, in addition, there are weak intermolecular C—H…O interactions involving the methylene H atoms and the benzenenitro group, Table 2.

S2. Experimental

Referring to Fig. 1, to a stirred solution of selenide **1** (0.400 g 1 mmol in 3 mL CHCl₃) at 0° C, was added bromine (0.05 ml in 1 mL CHCl₃). After 30 mins a yellow precipitate was formed. Stirring was continued for further 30 mins, Et₃N (0.140 ml) added and the stirring continued for an additional 6 h. After completion of the reaction, the reaction mixture was poured into water and extracted with CHCl₃ (2 × 30 mL). The combined organic layers were dried over sodium sulfate and evaporated on a rotary evaporator to get a brown solid. Yield: 0.230 g (49 %); ¹H NMR (CDCl₃): δ [ppm] = 7.57-7.83 (m, 6H), 8.12 (s, CH, 1H), 8.29-8.32 (d, *J* = 8.43 Hz, 1H), 8.55-8.58 (dd, *J* = 0.73, 7.33 Hz, 1H), 8.66-8.69 (dd, *J* = 0.73, 8.06 Hz, 1H). ¹³C NMR (CDCl₃): δ [ppm] = 122.7, 123.8, 125.3, 128.1, 128.2, 128.3, 128.5, 129.2, 130.0, 132.2, 132.4, 133.2, 133.4, 135.8, 138.2, 142.5, 164.9. IR (KBr): 3455, 2924, 1666, 1510, 1374, 1296, 768, 734 cm⁻¹.

S2.1. Refinement

C-bound H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C— H distances of 0.95–0.99 Å, and with $U_{iso}(H) = 1.2-1.5U_{eq}(C)$. The N-bound H atom was refined freely. One of the nitro groups was disordered over two conformations with occupancies of 0.694 (3) and 0.306 (4). The two conformers were constrained to have similar metrical parameters. Highest residual electron density peak; 1.02 e/Å3 is 0.74 A from Br2, and the deepest hole of -0.81 e/Å³ is 0.65 A from Br1. Twelve reflections were removed from the final refinement owing to poor agreement.

Figure 2

Figure 1

The molecular structure of $C_{17}H_{11}Br_2N_3O_4$ showing the numbering scheme and 30% probability displacement ellipsoids and the intramolecular N-H···O hydrogen bond (shown as a dashed bond).

Figure 3

The molecular packing for $C_{17}H_{11}Br_2N_3O_4$ viewed along the *c* axis showing the linking of the molecules into a threedimensional array by π - π interactions as well as a network of C—H···O interactions (shown as dashed bonds).

4-Bromo-N-(2-bromo-3-nitrobenzyl)-2-nitronaphthalen-1-amine

Crystal data	
$C_{17}H_{11}Br_2N_3O_4$	$\gamma = 76.302 \ (5)^{\circ}$
$M_r = 481.11$	$V = 829.00 (8) \text{ Å}^3$
Triclinic, $P\overline{1}$	Z = 2
a = 8.3675 (4) Å	F(000) = 472
b = 8.5812 (5) Å	$D_{\rm x} = 1.927 {\rm ~Mg} {\rm ~m}^{-3}$
c = 12.2691 (5) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
$\alpha = 76.973 \ (4)^{\circ}$	Cell parameters from 3926 reflections
$\beta = 81.053 \ (4)^{\circ}$	$\theta = 5.0-34.9^{\circ}$

 $\mu = 4.92 \text{ mm}^{-1}$ T = 123 K

Data collection

Agilent Xcalibur (Ruby, Gemini) diffractometer	6700 independent reflections 4118 reflections with $I > 2\sigma(I)$
Detector resolution: 10.5081 pixels mm ⁻¹	$R_{\rm int} = 0.033$
ω scans	$\theta_{\rm max} = 35.0^{\circ}, \theta_{\rm min} = 5.0^{\circ}$
Absorption correction: multi-scan	$h = -13 \rightarrow 13$
(CrysAlis PRO; Agilent, 2012)	$k = -12 \rightarrow 13$
$T_{\min} = 0.345, T_{\max} = 1.000$	$l = -19 \rightarrow 19$
12164 measured reflections	
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.053$	Hydrogen site location: mixed
$wR(F^2) = 0.129$	H atoms treated by a mixture of independent
S = 1.02	and constrained refinement
6700 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0498P)^2 + 0.3384P]$
246 parameters	where $P = (F_o^2 + 2F_c^2)/3$
1 restraint	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 1.04 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.77 \text{ e} \text{ Å}^{-3}$

Plate, orange

 $0.44 \times 0.32 \times 0.12 \text{ mm}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Br1	0.52119 (4)	0.68126 (4)	0.76444 (2)	0.03410 (10)	
Br2	0.98711 (4)	0.82225 (4)	0.23405 (3)	0.03346 (10)	
01	0.9351 (3)	0.3484 (3)	0.5032 (2)	0.0374 (6)	
O2	0.8810 (3)	0.4048 (3)	0.3315 (2)	0.0346 (5)	
O3A	1.3573 (4)	0.6322 (4)	0.0114 (3)	0.0334 (7)	0.694 (3)
O4A	1.2701 (4)	0.8769 (5)	0.0461 (4)	0.0480 (10)	0.694 (3)
O3B	1.3147 (8)	0.8513 (9)	-0.0408 (7)	0.0334 (7)	0.306 (3)
O4B	1.3038 (10)	0.6768 (10)	0.1138 (8)	0.0480 (10)	0.306 (3)
N1	0.6518 (3)	0.6613 (3)	0.2639 (2)	0.0230 (5)	
H1N	0.724 (4)	0.577 (4)	0.254 (3)	0.027 (9)*	
N2	0.8518 (3)	0.4286 (3)	0.4272 (2)	0.0240 (5)	
N3	1.2471 (3)	0.7536 (3)	0.0266 (2)	0.0276 (6)	
C1	0.6183 (3)	0.6659 (3)	0.3756 (2)	0.0171 (5)	
C2	0.7114 (3)	0.5555 (3)	0.4567 (2)	0.0196 (5)	
C3	0.6804 (3)	0.5624 (3)	0.5728 (2)	0.0211 (5)	
H3A	0.7467	0.4854	0.6252	0.025*	
C4	0.5575 (3)	0.6778 (4)	0.6087 (2)	0.0216 (5)	
C5	0.4516 (3)	0.7931 (3)	0.5332 (2)	0.0183 (5)	

C6	0.3170 (3)	0.9116 (4)	0.5696 (3)	0.0264 (6)
H6A	0.2998	0.9217	0.6463	0.032*
C7	0.2119 (3)	1.0113 (4)	0.4962 (3)	0.0292 (7)
H7A	0.1240	1.0917	0.5220	0.035*
C8	0.2318 (3)	0.9967 (4)	0.3842 (3)	0.0267 (6)
H8A	0.1552	1.0642	0.3346	0.032*
С9	0.3622 (3)	0.8845 (3)	0.3448 (2)	0.0216 (5)
H9A	0.3741	0.8749	0.2682	0.026*
C10	0.4788 (3)	0.7832 (3)	0.4170 (2)	0.0171 (5)
C12	0.6425 (3)	0.8012 (4)	0.1692 (2)	0.0224 (6)
H12A	0.6430	0.9014	0.1961	0.027*
H12B	0.5383	0.8185	0.1351	0.027*
C13	0.7896 (3)	0.7678 (3)	0.0821 (2)	0.0196 (5)
C14	0.9489 (3)	0.7762 (3)	0.0981 (2)	0.0197 (5)
C15	1.0768 (3)	0.7462 (4)	0.0142 (2)	0.0220 (6)
C16	1.0535 (3)	0.7066 (4)	-0.0846 (2)	0.0265 (6)
H16A	1.1437	0.6861	-0.1406	0.032*
C17	0.8958 (4)	0.6977 (4)	-0.1002 (2)	0.0286 (6)
H17A	0.8765	0.6709	-0.1674	0.034*
C18	0.7659 (3)	0.7280 (4)	-0.0171 (2)	0.0251 (6)
H18A	0.6581	0.7213	-0.0284	0.030*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.03423 (17)	0.0569 (2)	0.01698 (15)	-0.01906 (15)	0.00074 (12)	-0.01145 (14)
Br2	0.03155 (17)	0.0494 (2)	0.02682 (17)	-0.01218 (14)	-0.00825 (13)	-0.01525 (14)
O1	0.0319 (11)	0.0295 (13)	0.0449 (15)	0.0057 (9)	-0.0109 (11)	-0.0035 (11)
O2	0.0336 (12)	0.0256 (12)	0.0354 (13)	0.0041 (9)	0.0090 (10)	-0.0068 (10)
O3A	0.0187 (13)	0.0379 (18)	0.0399 (18)	-0.0008 (12)	-0.0021 (12)	-0.0062 (14)
O4A	0.0293 (16)	0.042 (2)	0.077 (3)	-0.0142 (15)	-0.0194 (17)	-0.0033 (19)
O3B	0.0187 (13)	0.0379 (18)	0.0399 (18)	-0.0008 (12)	-0.0021 (12)	-0.0062 (14)
O4B	0.0293 (16)	0.042 (2)	0.077 (3)	-0.0142 (15)	-0.0194 (17)	-0.0033 (19)
N1	0.0283 (12)	0.0210 (13)	0.0178 (11)	-0.0034 (10)	0.0014 (9)	-0.0045 (9)
N2	0.0187 (10)	0.0158 (12)	0.0353 (14)	-0.0023 (9)	-0.0050 (10)	-0.0002 (10)
N3	0.0184 (11)	0.0345 (16)	0.0282 (13)	-0.0085 (11)	-0.0050 (10)	0.0023 (11)
C1	0.0144 (10)	0.0196 (13)	0.0179 (12)	-0.0063 (9)	0.0009 (9)	-0.0039 (10)
C2	0.0168 (11)	0.0173 (13)	0.0237 (13)	-0.0033 (10)	-0.0009 (10)	-0.0032 (10)
C3	0.0202 (12)	0.0237 (14)	0.0189 (13)	-0.0079 (10)	-0.0044 (10)	0.0020 (10)
C4	0.0213 (12)	0.0310 (15)	0.0162 (12)	-0.0127 (11)	-0.0005 (10)	-0.0056 (11)
C5	0.0145 (10)	0.0204 (13)	0.0220 (13)	-0.0078 (9)	0.0028 (9)	-0.0075 (10)
C6	0.0230 (13)	0.0292 (16)	0.0311 (16)	-0.0082 (11)	0.0046 (12)	-0.0163 (12)
C7	0.0185 (12)	0.0239 (16)	0.046 (2)	-0.0037 (11)	0.0035 (12)	-0.0147 (14)
C8	0.0173 (12)	0.0191 (14)	0.0401 (18)	-0.0009 (10)	-0.0033 (12)	-0.0016 (12)
C9	0.0164 (11)	0.0251 (15)	0.0229 (13)	-0.0046 (10)	-0.0052 (10)	-0.0018 (11)
C10	0.0148 (10)	0.0152 (12)	0.0206 (13)	-0.0032 (9)	-0.0023 (9)	-0.0021 (9)
C12	0.0187 (11)	0.0292 (15)	0.0179 (13)	-0.0031 (10)	-0.0026 (10)	-0.0033 (11)
C13	0.0185 (11)	0.0246 (14)	0.0149 (12)	-0.0050 (10)	-0.0023 (9)	-0.0010 (10)

supporting information

C14	0.0221 (12)	0.0208 (14)	0.0167 (12)	-0.0060 (10)	-0.0062 (10)	-0.0002 (10)
C15	0.0141 (11)	0.0264 (15)	0.0244 (14)	-0.0056 (10)	-0.0039 (10)	-0.0003 (11)
C16	0.0183 (12)	0.0381 (18)	0.0205 (14)	-0.0055 (12)	0.0021 (10)	-0.0036 (12)
C17	0.0287 (14)	0.0424 (19)	0.0159 (13)	-0.0087 (13)	-0.0025 (11)	-0.0066 (12)
C18	0.0205 (12)	0.0385 (18)	0.0185 (14)	-0.0105 (12)	-0.0042 (10)	-0.0039 (12)

Geometric parameters (Å, °)

Br1—C4	1.893 (3)	C6—C7	1.364 (5)	
Br2—C14	1.887 (3)	C6—H6A	0.9500	
O1—N2	1.231 (3)	C7—C8	1.388 (5)	
O2—N2	1.214 (3)	C7—H7A	0.9500	
O3A—N3	1.245 (4)	C8—C9	1.378 (4)	
O4A—N3	1.199 (4)	C8—H8A	0.9500	
O3B—N3	1.214 (7)	C9—C10	1.419 (4)	
O4B—N3	1.224 (9)	С9—Н9А	0.9500	
N1—C1	1.363 (3)	C12—C13	1.517 (4)	
N1—C12	1.467 (4)	C12—H12A	0.9900	
N1—H1N	0.85 (3)	C12—H12B	0.9900	
N2—C2	1.461 (3)	C13—C18	1.390 (4)	
N3—C15	1.474 (3)	C13—C14	1.398 (4)	
C1—C2	1.400 (4)	C14—C15	1.386 (4)	
C1—C10	1.457 (4)	C15—C16	1.383 (4)	
C2—C3	1.420 (4)	C16—C17	1.385 (4)	
C3—C4	1.344 (4)	C16—H16A	0.9500	
С3—НЗА	0.9500	C17—C18	1.388 (4)	
C4—C5	1.432 (4)	C17—H17A	0.9500	
C5—C6	1.417 (4)	C18—H18A	0.9500	
C5—C10	1.426 (4)			
C1—N1—C12	127.2 (2)	C9—C8—C7	120.2 (3)	
C1—N1—H1N	111 (2)	C9—C8—H8A	119.9	
C12—N1—H1N	116 (2)	C7—C8—H8A	119.9	
O2—N2—O1	122.8 (3)	C8—C9—C10	121.0 (3)	
O2—N2—C2	120.1 (2)	С8—С9—Н9А	119.5	
O1—N2—C2	117.1 (3)	С10—С9—Н9А	119.5	
O3B—N3—O4B	122.8 (5)	C9—C10—C5	118.2 (2)	
O4A—N3—O3A	125.1 (3)	C9—C10—C1	121.3 (2)	
O4A—N3—C15	118.2 (3)	C5—C10—C1	120.5 (2)	
O3B—N3—C15	119.2 (4)	N1—C12—C13	109.3 (2)	
O4B—N3—C15	117.1 (4)	N1—C12—H12A	109.8	
O3A—N3—C15	116.7 (3)	C13—C12—H12A	109.8	
N1—C1—C2	122.2 (2)	N1—C12—H12B	109.8	
N1—C1—C10	121.2 (2)	C13—C12—H12B	109.8	
C2-C1-C10	116.6 (2)	H12A—C12—H12B	108.3	
C1—C2—C3	122.5 (2)	C18—C13—C14	118.7 (2)	
C1C2N2	122.3 (3)	C18—C13—C12	119.2 (2)	
C3—C2—N2	115.1 (3)	C14—C13—C12	122.1 (3)	

G4 G2 G2	120.1.(2)	G15 G14 G12	110.0 (2)
C4 - C3 - C2	120.1 (3)	C15-C14-C13	118.8 (3)
С4—С3—Н3А	120.0	C15—C14—Br2	121.3 (2)
С2—С3—Н3А	120.0	C13—C14—Br2	119.9 (2)
C3—C4—C5	121.8 (3)	C16—C15—C14	122.6 (2)
C3—C4—Br1	118.3 (2)	C16—C15—N3	116.3 (2)
C5—C4—Br1	119.9 (2)	C14—C15—N3	121.1 (3)
C6—C5—C10	118.8 (3)	C15—C16—C17	118.5 (3)
C6—C5—C4	122.8 (3)	C15—C16—H16A	120.7
C10-C5-C4	1184(2)	C17— $C16$ — $H16A$	120.7
C7 - C6 - C5	1210(3)	C_{16} C_{17} C_{18}	120.7 119.7(3)
C7 C6 H6A	110.5	C_{16} C_{17} H_{17A}	120.2
$C_{1} = C_{0} = HOA$	119.5	C_{10} C_{17} H_{17A}	120.2
С5—С6—Н6А	119.5		120.2
	120.8 (3)	C17 - C18 - C13	121.7 (3)
С6—С/—Н/А	119.6	C17—C18—H18A	119.2
С8—С7—Н7А	119.6	C13—C18—H18A	119.2
C12—N1—C1—C2	-141.9 (3)	N1—C1—C10—C9	7.0 (4)
C12—N1—C1—C10	40.5 (4)	C2—C1—C10—C9	-170.8 (2)
N1—C1—C2—C3	178.1 (2)	N1-C1-C10-C5	-176.1 (2)
C10-C1-C2-C3	-4.1 (4)	C2-C1-C10-C5	6.2 (3)
N1-C1-C2-N2	0.6 (4)	C1—N1—C12—C13	138.6 (3)
C10-C1-C2-N2	178.3 (2)	N1-C12-C13-C18	105.6 (3)
O2—N2—C2—C1	-7.7 (4)	N1-C12-C13-C14	-74.5 (3)
O1—N2—C2—C1	173.1 (2)	C18—C13—C14—C15	0.6 (4)
O2—N2—C2—C3	174.6 (2)	C12—C13—C14—C15	-179.2 (3)
O1—N2—C2—C3	-4.6 (3)	C18—C13—C14—Br2	-177.7(2)
C1—C2—C3—C4	0.2 (4)	C12—C13—C14—Br2	2.4 (4)
$N_{2} - C_{2} - C_{3} - C_{4}$	177 9 (2)	C13 - C14 - C15 - C16	-0.6(4)
$C_{2} - C_{3} - C_{4} - C_{5}$	19(4)	Br2-C14-C15-C16	177.7(2)
$C_{2} - C_{3} - C_{4} - Br_{1}$	179 86 (19)	C_{13} C_{14} C_{15} N3	1799(3)
C_{3} C_{4} C_{5} C_{6}	177.4(3)	Br2N3	-1.7(4)
Br1 C4 C5 C6	-0.6(3)	04A N3 C15 C16	1.7(+) 125.2(4)
$C_{1}^{2} = C_{1}^{2} = C_{1}^{2} = C_{1}^{2}$	0.0(3)	$O_{A} = N_{3} = C_{13} = C_{10}$	123.2(4)
$C_{3} - C_{4} - C_{5} - C_{10}$	0.2 (4)	$O_{4}D_{1}N_{2} = C_{15} = C_{16}$	120.2(6)
BI1 - C4 - C3 - C10	-1/7.74(18)	O4B N3 $C15$ $C16$	-129.3(0)
C10 - C5 - C6 - C7	2.0 (4)	O_{3A} N3-C15-C16	-52.1 (4)
C4—C5—C6—C7	-1/5.2(3)	04A - N3 - C15 - C14	-55.3 (4)
C5-C6-C7-C8	1.5 (4)	03B—N3—C15—C14	-119.6 (6)
C6—C7—C8—C9	-2.3 (4)	O4B—N3—C15—C14	50.2 (6)
C7—C8—C9—C10	-0.5(4)	O3A—N3—C15—C14	127.4 (3)
C8—C9—C10—C5	3.9 (4)	C14—C15—C16—C17	0.4 (5)
C8—C9—C10—C1	-179.1 (2)	N3—C15—C16—C17	179.8 (3)
C6—C5—C10—C9	-4.6 (4)	C15—C16—C17—C18	-0.1 (5)
C4—C5—C10—C9	172.7 (2)	C16—C17—C18—C13	0.2 (5)
C6C5C10C1	178.4 (2)	C14—C13—C18—C17	-0.4 (4)
C4—C5—C10—C1	-4.3 (4)	C12—C13—C18—C17	179.4 (3)

Hydrogen-bond geometry (Å, °)

<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
0.84 (3)	1.91 (3)	2.624 (3)	141 (3)
0.99	2.57	3.117 (8)	115
0.99	2.54	3.532 (4)	177
0.99	2.61	3.462 (8)	144
	<i>D</i> —H 0.84 (3) 0.99 0.99 0.99	D—H H···A 0.84 (3) 1.91 (3) 0.99 2.57 0.99 2.54 0.99 2.61	DHH…AD…A0.84 (3)1.91 (3)2.624 (3)0.992.573.117 (8)0.992.543.532 (4)0.992.613.462 (8)

Symmetry codes: (i) -x+2, -y+2, -z; (ii) x-1, y, z.

 π - π interactions (Å)

Ring 1	Ring 2	Distance	Perpedicular distance	Slippage	Symmetry
Cg1	Cg1	3.5295 (16)	3.3867 (11)	0.94	1-x,1-y,1-z
Cg2	Cg2	3.8868 (15)	3.3859 (12)	1.91	1-x,-y,1-z
Cg3	Cg3	3.9629 (18)	3.5873 (12)	1.68	-x,1-y,2-z