organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of [propane-1,3-diylbis(piperidine-4,1-di­yl)]bis­­[(pyridin-4-yl)methanone]–4,4′-oxydi­benzoic acid (1/1)

aHeritage High School, Rogers, AR 72756, USA, and bLyman Briggs College, Department of Chemistry, E-30 Holmes Hall, 919 East Shaw Lane, Michigan State University, East Lansing, MI 48825, USA
*Correspondence e-mail: laduca@msu.edu

Edited by E. R. T. Tiekink, University of Malaya, Malaysia (Received 27 July 2014; accepted 7 August 2014; online 16 August 2014)

In the title co-crystal, C25H32N4O2·C14H10O5, mol­ecules are connected into supra­molecular chains aligned along [102] by O—H⋯N hydrogen bonding. These aggregate into supra­molecular layers oriented parallel to (20-1) by C—H⋯O inter­actions. These layers then stack in an ABAB pattern along the c crystal direction to give the full three-dimensional crystal structure. The central chain in the dipyridylamide has an antianti conformation. The dihedral angle between the aromatic ring planes is 29.96 (3)°. Disorder is noted in some of the residues in the structure and this is manifested in two coplanar dispositions of one statistically disordered carb­oxy­lic acid group.

1. Related literature

For the preparation of piperazine-1,4-diylbis(pyridin-4-yl­methanone), see: Hou et al. (2003[Hou, H., Song, Y., Xu, H., Wei, Y., Fan, Y., Zhu, Y., Li, L. & Du, C. (2003). Macromolecules, 36, 999-1008.]). For the preparation of divalent metal 4,4′-oxydibenzoate coordination polymers, see: Yang et al. (2009[Yang, J., Ma, J., Liu, Y. & Batten, S. R. (2009). CrystEngComm, 11, 151-159.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C25H32N4O2·C14H10O5

  • Mr = 678.77

  • Monoclinic, P 21 /c

  • a = 16.032 (4) Å

  • b = 12.605 (4) Å

  • c = 17.259 (5) Å

  • β = 99.033 (7)°

  • V = 3444.4 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 173 K

  • 0.22 × 0.17 × 0.15 mm

2.1.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS2012; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS2012. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.715, Tmax = 0.745

  • 55666 measured reflections

  • 6304 independent reflections

  • 3501 reflections with I > 2σ(I)

  • Rint = 0.095

2.1.3. Refinement

  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.153

  • S = 1.03

  • 6304 reflections

  • 457 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯N1i 0.84 1.83 2.665 (3) 176
O7—H7⋯N4 0.86 (2) 2.01 (3) 2.859 (7) 167 (8)
O6A—H6A⋯N4 0.86 (2) 1.79 (2) 2.652 (7) 177 (7)
C1—H1⋯O7Aii 0.95 2.27 3.114 (6) 147
C12—H12B⋯O2iii 0.99 2.60 3.453 (4) 144
C19—H19B⋯O6iii 0.99 2.47 3.326 (6) 144
Symmetry codes: (i) x-1, y, z-2; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{5\over 2}}]; (iii) [x, -y+{\script{5\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS2012. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS2012. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Crystal­Maker (Palmer, 2007[Palmer, D. (2007). CrystalMaker. CrystalMaker Software, Bicester, Oxfordshire, England.]); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Chemical context top

Some divalent metal 4,4'-oxydibenzoate (oba) coordination polymers show intriguing self-penetrated topologies (Yang et al., 2009). We therefore attempted to expand the scope of these materials by using the very-long spanning di­pyridyl ligand propane-1,3-diylbis(piperidine-4,1-diyl))bis­(pyridin-4-yl­methanone (ppbp). The title compound was obtained as colorless crystals through the hydro­thermal reaction of zinc nitrate, H2oba, and ppbp.

Structural commentary top

The asymmetric unit of the title compound contains a full H2oba molecule with one of its carb­oxy­lic acid termini disordered in a 50/50 ratio, and a full ppbp molecule (Fig. 1). The H2oba and ppbp molecules are connected into supra­molecular chains (Fig. 2) aligned along [1 0 2] by O—H···N hydrogen bonding (Table 1) between unprotonated ppbp pyridyl N atoms and protonated H2oba carboxyl­ate O atoms.

Supra­molecular features top

These chains aggregate into supra­molecular layers oriented parallel to the (2 0 1) crystal planes by C—H···O inter­actions between ppbp pyridyl C atoms and unprotonated H2oba carboxyl­ate O atoms (C···O distance = 3.114 (8) Å). These layers then stack in an ABAB pattern along the c crystal direction to give the full three-dimensional crystal structure of the title co-crystal (Fig. 3). The stacking is mediated by C—H···O inter­actions between ppbp tri­methyl­ene linker C atoms and ppbp amide O atoms (C···O distance = 3.453 (7) Å) and also by C—H···O inter­actions between H2oba aromatic C atoms and unprotonated H2oba carboxyl­ate O atoms (C···O distance = 3.555 (7) Å).

Database survey top

This compound was not previously reported in the CCDC.

Synthesis and crystallization top

Zinc(II) nitrate hexahydrate and 4,4'-oxydi­benzoic acid (H2oba) were obtained commercially. Propane-1,3-diylbis(piperidine-4,1-diyl))bis­(pyridin-4-yl­methanone (ppbp) was prepared via modification of a published procedure for the synthesis of piperazine-1,4-diylbis(pyridin-4-yl­methanone) (Hou et al., 2003), using tri­methyl­ene­piperidine instead of piperazine as the amine precursor. A mixture of zinc(II) nitrate hexahydrate (110 mg, 0.37 mmol), H2oba (96 mg, 0.37 mmol), ppbp (115 mg, 0.37 mmol), 1.0 mL of a 1.0 M NaOH solution, and 10.0 g water (550 mmol) was placed into a 23 ml Teflon-lined Parr acid digestion bomb, which was then heated under autogenous pressure at 393 K for 72 h. Colorless plates of the title compound were obtained along with some amorphous white powder.

Refinement top

All H atoms bound to C atoms were placed in calculated positions, with C—H = 0.95 Å, and refined in riding mode with Uiso = 1.5Ueq(C). The H atoms bound to O atoms were found in a difference Fourier map, restrained with O—H = 0.85 Å and refined with Uiso = 1.5Ueq(O).

Related literature top

For the preparation of piperazine-1,4-diylbis(pyridin-4-ylmethanone), see: Hou et al. (2003). For the preparation of divalent metal 4,4'-oxydibenzoate coordination polymers, see: Yang et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: APEX2 (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalMaker (Palmer, 2007); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The formula unit of the title compound, showing 50% probability ellipsoids and atom numbering scheme. Most hydrogen atom positions are shown as grey sticks. Color codes: Red O, light blue N, black C, pink H. Only one of the disordered carboxylic acid groups is shown.
[Figure 2] Fig. 2. Layer pattern within the title compound constructed from supramolecular chains connected by O—H···N hydrogen bonding.
[Figure 3] Fig. 3. Stacking of supramolecular layers within the title compound.
4-{[4-(3-{1-[(pyridin-4-yl)carbonyl]piperidin-4-yl}propyl)piperidin-1-yl]carbonyl}pyridine–4,4'-oxydibenzoic acid (1/1) top
Crystal data top
C25H32N4O2·C14H10O5F(000) = 1440
Mr = 678.77Dx = 1.309 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 16.032 (4) ÅCell parameters from 7245 reflections
b = 12.605 (4) Åθ = 2.4–21.9°
c = 17.259 (5) ŵ = 0.09 mm1
β = 99.033 (7)°T = 173 K
V = 3444.4 (16) Å3Block, colourless
Z = 40.22 × 0.17 × 0.15 mm
Data collection top
Bruker APEXII CCD
diffractometer
6304 independent reflections
Radiation source: fine-focus sealed tube3501 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.095
ϕ and ω scansθmax = 25.4°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS2012; Bruker, 2012)
h = 1919
Tmin = 0.715, Tmax = 0.745k = 1515
55666 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0533P)2 + 1.9615P]
where P = (Fo2 + 2Fc2)/3
6304 reflections(Δ/σ)max = 0.001
457 parametersΔρmax = 0.50 e Å3
2 restraintsΔρmin = 0.54 e Å3
Crystal data top
C25H32N4O2·C14H10O5V = 3444.4 (16) Å3
Mr = 678.77Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.032 (4) ŵ = 0.09 mm1
b = 12.605 (4) ÅT = 173 K
c = 17.259 (5) Å0.22 × 0.17 × 0.15 mm
β = 99.033 (7)°
Data collection top
Bruker APEXII CCD
diffractometer
6304 independent reflections
Absorption correction: multi-scan
(SADABS2012; Bruker, 2012)
3501 reflections with I > 2σ(I)
Tmin = 0.715, Tmax = 0.745Rint = 0.095
55666 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0552 restraints
wR(F2) = 0.153H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.50 e Å3
6304 reflectionsΔρmin = 0.54 e Å3
457 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.64279 (13)1.41437 (15)1.60440 (11)0.0473 (5)
O20.34348 (13)1.40624 (15)0.85532 (11)0.0458 (5)
O30.00461 (12)0.80814 (14)0.23098 (10)0.0391 (5)
O40.16756 (13)1.08325 (16)0.06306 (10)0.0438 (5)
H4A0.18201.10410.10950.066*
O50.11387 (14)0.94796 (16)0.12257 (11)0.0492 (6)
O60.1453 (4)1.1087 (4)0.5139 (3)0.0499 (7)0.50
O6A0.1506 (4)1.0685 (5)0.5354 (3)0.0499 (7)0.50
O70.1450 (4)0.9583 (4)0.5765 (4)0.0499 (7)0.50
O7A0.1286 (4)0.9109 (4)0.5858 (3)0.0499 (7)0.50
N10.78276 (15)1.15847 (19)1.79278 (13)0.0399 (6)
N20.65133 (14)1.28497 (17)1.51423 (12)0.0338 (5)
N30.32687 (14)1.28701 (17)0.95014 (12)0.0349 (6)
N40.2102 (2)1.1243 (3)0.68184 (17)0.0755 (11)
C10.80512 (17)1.2576 (2)1.77677 (15)0.0379 (7)
H10.84611.29321.81340.045*
C20.77083 (16)1.3097 (2)1.70900 (15)0.0344 (7)
H20.78811.38001.69970.041*
C30.71111 (16)1.2594 (2)1.65447 (14)0.0308 (6)
C40.68972 (18)1.1559 (2)1.67015 (15)0.0357 (7)
H40.65021.11771.63380.043*
C50.72678 (19)1.1091 (2)1.73961 (16)0.0417 (7)
H50.71161.03831.74990.050*
C60.66657 (17)1.3255 (2)1.58778 (15)0.0335 (7)
C70.60681 (18)1.3526 (2)1.45183 (15)0.0407 (7)
H7A0.64861.39101.42580.049*
H7B0.57271.40581.47510.049*
C80.54927 (17)1.2874 (2)1.39107 (15)0.0356 (7)
H8A0.50251.25781.41560.043*
H8B0.52431.33451.34770.043*
C90.59577 (17)1.1970 (2)1.35774 (15)0.0327 (6)
H90.64011.22911.33030.039*
C100.64064 (17)1.1307 (2)1.42608 (15)0.0357 (7)
H10A0.59791.09581.45310.043*
H10B0.67421.07451.40540.043*
C110.69871 (17)1.1977 (2)1.48491 (15)0.0366 (7)
H11A0.72431.15271.52940.044*
H11B0.74491.22721.45950.044*
C120.53838 (17)1.1296 (2)1.29791 (15)0.0368 (7)
H12A0.57301.07591.27580.044*
H12B0.49721.09151.32490.044*
C130.49058 (17)1.1954 (2)1.23118 (15)0.0367 (7)
H13A0.45031.24211.25290.044*
H13B0.53151.24161.20980.044*
C140.44192 (17)1.1314 (2)1.16393 (15)0.0373 (7)
H14A0.40811.07651.18590.045*
H14B0.48271.09461.13570.045*
C150.37015 (19)1.3554 (2)1.01205 (15)0.0418 (7)
H15A0.32791.39241.03840.050*
H15B0.40331.40960.98870.050*
C160.42860 (18)1.2909 (2)1.07196 (15)0.0374 (7)
H16A0.45361.33811.11530.045*
H16B0.47521.26211.04690.045*
C170.38314 (16)1.1994 (2)1.10569 (14)0.0319 (6)
H170.33971.23091.13460.038*
C180.33638 (17)1.1332 (2)1.03817 (14)0.0334 (6)
H18A0.37811.09691.01070.040*
H18B0.30241.07811.05970.040*
C190.27875 (17)1.2011 (2)0.98003 (15)0.0341 (7)
H19A0.25201.15650.93580.041*
H19B0.23341.23171.00600.041*
C200.31728 (16)1.3201 (2)0.87516 (15)0.0335 (7)
C210.1847 (2)1.2234 (4)0.69088 (19)0.0684 (12)
H210.14231.25190.65180.082*
C220.21603 (18)1.2868 (3)0.75303 (16)0.0454 (8)
H220.19621.35740.75610.054*
C230.27722 (17)1.2464 (2)0.81168 (15)0.0340 (7)
C240.30416 (18)1.1427 (2)0.80403 (16)0.0409 (7)
H240.34541.11160.84300.049*
C250.2693 (2)1.0857 (3)0.7380 (2)0.0593 (10)
H250.28871.01530.73240.071*
C260.12708 (16)0.9924 (2)0.06313 (16)0.0336 (7)
C270.09764 (16)0.9483 (2)0.01669 (14)0.0294 (6)
C280.11189 (17)0.9983 (2)0.08546 (15)0.0353 (7)
H280.14241.06310.08260.042*
C290.08188 (17)0.9540 (2)0.15812 (15)0.0373 (7)
H290.09270.98750.20480.045*
C300.03600 (16)0.8606 (2)0.16198 (14)0.0315 (6)
C310.02433 (17)0.8077 (2)0.09456 (15)0.0353 (7)
H310.00450.74160.09760.042*
C320.05520 (17)0.8522 (2)0.02257 (15)0.0347 (7)
H320.04710.81600.02400.042*
C330.1311 (5)1.0135 (7)0.5137 (4)0.0499 (7)0.50
C33A0.1258 (5)0.9681 (6)0.5283 (5)0.0499 (7)0.50
C340.09603 (18)0.9448 (3)0.44368 (16)0.0453 (8)
C350.09003 (18)1.0061 (2)0.37619 (18)0.0467 (8)
H350.10851.07780.37990.056*
C360.05732 (18)0.9641 (2)0.30305 (16)0.0415 (7)
H360.05461.00580.25690.050*
C370.02892 (16)0.8607 (2)0.29897 (14)0.0314 (6)
C380.03782 (17)0.7979 (2)0.36559 (15)0.0402 (7)
H380.02060.72580.36180.048*
C390.07165 (18)0.8400 (3)0.43725 (16)0.0477 (8)
H390.07820.79640.48270.057*
H70.167 (4)1.000 (5)0.614 (3)0.10 (3)*0.50
H6A0.171 (3)1.088 (5)0.5825 (19)0.06 (2)*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0639 (14)0.0333 (12)0.0412 (12)0.0047 (10)0.0024 (10)0.0037 (9)
O20.0561 (14)0.0353 (12)0.0431 (12)0.0068 (10)0.0015 (10)0.0100 (10)
O30.0512 (12)0.0397 (11)0.0240 (10)0.0002 (10)0.0021 (9)0.0004 (9)
O40.0481 (13)0.0512 (13)0.0307 (11)0.0085 (11)0.0016 (10)0.0056 (10)
O50.0685 (15)0.0533 (13)0.0243 (11)0.0073 (11)0.0031 (10)0.0018 (10)
O60.0616 (13)0.051 (3)0.0325 (16)0.0039 (17)0.0055 (12)0.0009 (16)
O6A0.0616 (13)0.051 (3)0.0325 (16)0.0039 (17)0.0055 (12)0.0009 (16)
O70.0616 (13)0.051 (3)0.0325 (16)0.0039 (17)0.0055 (12)0.0009 (16)
O7A0.0616 (13)0.051 (3)0.0325 (16)0.0039 (17)0.0055 (12)0.0009 (16)
N10.0456 (15)0.0435 (16)0.0294 (13)0.0116 (13)0.0019 (11)0.0008 (11)
N20.0411 (14)0.0305 (13)0.0271 (12)0.0045 (11)0.0032 (10)0.0015 (10)
N30.0422 (14)0.0308 (13)0.0290 (13)0.0058 (11)0.0031 (10)0.0008 (10)
N40.051 (2)0.135 (3)0.0429 (18)0.039 (2)0.0151 (15)0.038 (2)
C10.0354 (16)0.0471 (19)0.0297 (16)0.0010 (14)0.0009 (12)0.0081 (14)
C20.0351 (16)0.0354 (16)0.0322 (15)0.0047 (13)0.0032 (13)0.0017 (13)
C30.0323 (15)0.0337 (16)0.0258 (14)0.0008 (12)0.0026 (12)0.0002 (12)
C40.0449 (17)0.0327 (16)0.0280 (15)0.0005 (13)0.0013 (13)0.0029 (12)
C50.055 (2)0.0330 (16)0.0366 (17)0.0022 (15)0.0065 (15)0.0022 (14)
C60.0360 (16)0.0305 (16)0.0323 (16)0.0059 (13)0.0004 (12)0.0009 (13)
C70.0519 (19)0.0337 (17)0.0328 (16)0.0034 (14)0.0054 (14)0.0058 (13)
C80.0419 (17)0.0342 (16)0.0285 (15)0.0043 (13)0.0008 (12)0.0036 (12)
C90.0338 (15)0.0363 (16)0.0274 (14)0.0008 (13)0.0031 (12)0.0031 (12)
C100.0402 (17)0.0312 (16)0.0344 (16)0.0061 (13)0.0013 (13)0.0006 (13)
C110.0352 (16)0.0408 (17)0.0328 (16)0.0074 (13)0.0017 (13)0.0024 (13)
C120.0387 (16)0.0389 (17)0.0312 (15)0.0025 (14)0.0005 (13)0.0017 (13)
C130.0356 (16)0.0419 (17)0.0315 (15)0.0003 (14)0.0018 (12)0.0008 (14)
C140.0383 (17)0.0400 (17)0.0324 (16)0.0014 (14)0.0019 (13)0.0021 (13)
C150.0560 (19)0.0340 (17)0.0322 (16)0.0095 (15)0.0034 (14)0.0043 (13)
C160.0439 (17)0.0381 (17)0.0274 (15)0.0083 (14)0.0025 (13)0.0074 (13)
C170.0320 (15)0.0364 (16)0.0269 (14)0.0002 (13)0.0031 (12)0.0014 (12)
C180.0365 (16)0.0329 (16)0.0298 (15)0.0062 (13)0.0025 (12)0.0007 (12)
C190.0371 (16)0.0332 (16)0.0311 (15)0.0088 (13)0.0024 (12)0.0001 (12)
C200.0309 (15)0.0336 (17)0.0344 (16)0.0029 (13)0.0000 (12)0.0019 (13)
C210.039 (2)0.136 (4)0.0283 (18)0.018 (2)0.0021 (15)0.002 (2)
C220.0365 (17)0.069 (2)0.0292 (16)0.0046 (16)0.0007 (13)0.0085 (15)
C230.0322 (16)0.0411 (17)0.0281 (15)0.0035 (13)0.0032 (12)0.0038 (13)
C240.0440 (18)0.0410 (18)0.0380 (17)0.0094 (15)0.0075 (14)0.0028 (14)
C250.057 (2)0.064 (2)0.062 (2)0.0238 (19)0.0262 (19)0.0260 (19)
C260.0289 (15)0.0369 (17)0.0345 (16)0.0010 (13)0.0033 (12)0.0022 (14)
C270.0255 (14)0.0351 (16)0.0268 (14)0.0057 (12)0.0014 (11)0.0007 (12)
C280.0358 (16)0.0357 (16)0.0335 (16)0.0017 (13)0.0027 (13)0.0019 (13)
C290.0415 (17)0.0444 (18)0.0258 (15)0.0044 (14)0.0048 (13)0.0038 (13)
C300.0322 (15)0.0369 (16)0.0239 (14)0.0027 (13)0.0005 (12)0.0024 (13)
C310.0374 (16)0.0354 (16)0.0317 (16)0.0016 (13)0.0016 (13)0.0038 (13)
C320.0386 (16)0.0401 (17)0.0245 (14)0.0010 (14)0.0019 (12)0.0052 (13)
C330.0616 (13)0.051 (3)0.0325 (16)0.0039 (17)0.0055 (12)0.0009 (16)
C33A0.0616 (13)0.051 (3)0.0325 (16)0.0039 (17)0.0055 (12)0.0009 (16)
C340.0309 (17)0.073 (2)0.0297 (16)0.0058 (16)0.0011 (13)0.0118 (16)
C350.0406 (18)0.0453 (19)0.051 (2)0.0009 (15)0.0022 (15)0.0143 (16)
C360.0456 (18)0.0470 (19)0.0303 (16)0.0005 (15)0.0012 (13)0.0051 (14)
C370.0320 (15)0.0391 (17)0.0230 (14)0.0025 (13)0.0044 (11)0.0009 (13)
C380.0381 (17)0.0485 (19)0.0321 (17)0.0032 (14)0.0001 (13)0.0084 (14)
C390.0382 (17)0.075 (2)0.0278 (16)0.0014 (17)0.0005 (13)0.0087 (16)
Geometric parameters (Å, º) top
O1—C61.232 (3)C13—H13A0.9900
O2—C201.232 (3)C13—H13B0.9900
O3—C301.386 (3)C13—C141.524 (4)
O3—C371.381 (3)C14—H14A0.9900
O4—H4A0.8400C14—H14B0.9900
O4—C261.316 (3)C14—C171.528 (4)
O5—C261.217 (3)C15—H15A0.9900
O6—C331.222 (9)C15—H15B0.9900
O6—H6A1.22 (4)C15—C161.517 (4)
O6A—C33A1.327 (8)C16—H16A0.9900
O6A—H6A0.86 (2)C16—H16B0.9900
O7—C331.278 (8)C16—C171.528 (4)
O7—H70.86 (2)C17—H171.0000
O7A—C33A1.221 (9)C17—C181.530 (3)
O7A—H71.34 (4)C18—H18A0.9900
N1—C11.340 (4)C18—H18B0.9900
N1—C51.332 (3)C18—C191.517 (3)
N2—C61.354 (3)C19—H19A0.9900
N2—C71.468 (3)C19—H19B0.9900
N2—C111.471 (3)C20—C231.501 (4)
N3—C151.460 (3)C21—H210.9500
N3—C191.470 (3)C21—C221.368 (5)
N3—C201.345 (3)C22—H220.9500
N4—C211.331 (5)C22—C231.391 (4)
N4—C251.337 (5)C23—C241.390 (4)
C1—H10.9500C24—H240.9500
C1—C21.378 (4)C24—C251.388 (4)
C2—H20.9500C25—H250.9500
C2—C31.386 (4)C26—C271.492 (4)
C3—C41.386 (4)C27—C281.394 (3)
C3—C61.507 (4)C27—C321.386 (4)
C4—H40.9500C28—H280.9500
C4—C51.384 (4)C28—C291.388 (4)
C5—H50.9500C29—H290.9500
C7—H7A0.9900C29—C301.384 (4)
C7—H7B0.9900C30—C311.379 (3)
C7—C81.524 (4)C31—H310.9500
C8—H8A0.9900C31—C321.382 (4)
C8—H8B0.9900C32—H320.9500
C8—C91.523 (4)C33—C341.520 (9)
C9—H91.0000C33A—C341.493 (9)
C9—C101.530 (3)C34—C351.388 (4)
C9—C121.528 (4)C34—C391.377 (4)
C10—H10A0.9900C35—H350.9500
C10—H10B0.9900C35—C361.393 (4)
C10—C111.521 (4)C36—H360.9500
C11—H11A0.9900C36—C371.379 (4)
C11—H11B0.9900C37—C381.385 (4)
C12—H12A0.9900C38—H380.9500
C12—H12B0.9900C38—C391.377 (4)
C12—C131.525 (4)C39—H390.9500
C37—O3—C30122.8 (2)C17—C16—H16B109.1
C26—O4—H4A109.5C14—C17—C16113.1 (2)
C33—O6—H6A80 (3)C14—C17—H17107.5
C33A—O6A—H6A115 (5)C14—C17—C18111.9 (2)
C33—O7—H7107 (6)C16—C17—H17107.5
C33A—O7A—H776 (3)C16—C17—C18109.1 (2)
C5—N1—C1117.8 (2)C18—C17—H17107.5
C6—N2—C7117.7 (2)C17—C18—H18A109.3
C6—N2—C11125.3 (2)C17—C18—H18B109.3
C7—N2—C11113.5 (2)H18A—C18—H18B107.9
C15—N3—C19113.2 (2)C19—C18—C17111.8 (2)
C20—N3—C15119.3 (2)C19—C18—H18A109.3
C20—N3—C19125.4 (2)C19—C18—H18B109.3
C21—N4—C25116.9 (3)N3—C19—C18110.4 (2)
N1—C1—H1118.8N3—C19—H19A109.6
N1—C1—C2122.3 (3)N3—C19—H19B109.6
C2—C1—H1118.8C18—C19—H19A109.6
C1—C2—H2120.0C18—C19—H19B109.6
C1—C2—C3120.0 (3)H19A—C19—H19B108.1
C3—C2—H2120.0O2—C20—N3123.3 (2)
C2—C3—C6117.4 (2)O2—C20—C23117.9 (2)
C4—C3—C2117.6 (2)N3—C20—C23118.8 (2)
C4—C3—C6124.5 (2)N4—C21—H21118.0
C3—C4—H4120.5N4—C21—C22123.9 (4)
C5—C4—C3119.0 (3)C22—C21—H21118.0
C5—C4—H4120.5C21—C22—H22120.4
N1—C5—C4123.3 (3)C21—C22—C23119.2 (3)
N1—C5—H5118.3C23—C22—H22120.4
C4—C5—H5118.3C22—C23—C20118.5 (3)
O1—C6—N2123.0 (2)C24—C23—C20123.2 (2)
O1—C6—C3116.9 (2)C24—C23—C22118.0 (3)
N2—C6—C3120.1 (2)C23—C24—H24120.9
N2—C7—H7A109.4C25—C24—C23118.3 (3)
N2—C7—H7B109.4C25—C24—H24120.9
N2—C7—C8111.4 (2)N4—C25—C24123.7 (3)
H7A—C7—H7B108.0N4—C25—H25118.1
C8—C7—H7A109.4C24—C25—H25118.1
C8—C7—H7B109.4O4—C26—C27114.1 (2)
C7—C8—H8A109.1O5—C26—O4123.6 (3)
C7—C8—H8B109.1O5—C26—C27122.3 (3)
H8A—C8—H8B107.8C28—C27—C26123.2 (2)
C9—C8—C7112.6 (2)C32—C27—C26118.3 (2)
C9—C8—H8A109.1C32—C27—C28118.5 (2)
C9—C8—H8B109.1C27—C28—H28119.7
C8—C9—H9107.6C29—C28—C27120.5 (3)
C8—C9—C10108.4 (2)C29—C28—H28119.7
C8—C9—C12113.1 (2)C28—C29—H29120.3
C10—C9—H9107.6C30—C29—C28119.4 (2)
C12—C9—H9107.6C30—C29—H29120.3
C12—C9—C10112.2 (2)C29—C30—O3124.5 (2)
C9—C10—H10A109.2C31—C30—O3114.5 (2)
C9—C10—H10B109.2C31—C30—C29120.8 (2)
H10A—C10—H10B107.9C30—C31—H31120.5
C11—C10—C9112.1 (2)C30—C31—C32119.1 (3)
C11—C10—H10A109.2C32—C31—H31120.5
C11—C10—H10B109.2C27—C32—H32119.2
N2—C11—C10110.5 (2)C31—C32—C27121.5 (2)
N2—C11—H11A109.6C31—C32—H32119.2
N2—C11—H11B109.6O6—C33—O7121.6 (8)
C10—C11—H11A109.6O6—C33—C34127.4 (6)
C10—C11—H11B109.6O6—C33—H6A50 (2)
H11A—C11—H11B108.1O7—C33—C34111.0 (7)
C9—C12—H12A109.1O7—C33—H6A72 (2)
C9—C12—H12B109.1C34—C33—H6A176 (2)
H12A—C12—H12B107.8O6A—C33A—C34108.9 (6)
C13—C12—C9112.7 (2)O6A—C33A—H766 (3)
C13—C12—H12A109.1O7A—C33A—O6A121.0 (7)
C13—C12—H12B109.1O7A—C33A—C34130.1 (6)
C12—C13—H13A108.5O7A—C33A—H756 (3)
C12—C13—H13B108.5C34—C33A—H7173 (3)
H13A—C13—H13B107.5C33A—C34—C3324.4 (3)
C14—C13—C12115.0 (2)C35—C34—C33108.6 (4)
C14—C13—H13A108.5C35—C34—C33A132.9 (4)
C14—C13—H13B108.5C39—C34—C33132.4 (4)
C13—C14—H14A109.0C39—C34—C33A108.1 (4)
C13—C14—H14B109.0C39—C34—C35119.0 (3)
C13—C14—C17113.1 (2)C34—C35—H35119.5
H14A—C14—H14B107.8C34—C35—C36121.0 (3)
C17—C14—H14A109.0C36—C35—H35119.5
C17—C14—H14B109.0C35—C36—H36120.7
N3—C15—H15A109.5C37—C36—C35118.7 (3)
N3—C15—H15B109.5C37—C36—H36120.7
N3—C15—C16110.8 (2)O3—C37—C38114.0 (2)
H15A—C15—H15B108.1C36—C37—O3125.3 (2)
C16—C15—H15A109.5C36—C37—C38120.5 (3)
C16—C15—H15B109.5C37—C38—H38120.0
C15—C16—H16A109.1C39—C38—C37120.0 (3)
C15—C16—H16B109.1C39—C38—H38120.0
C15—C16—C17112.5 (2)C34—C39—H39119.7
H16A—C16—H16B107.8C38—C39—C34120.6 (3)
C17—C16—H16A109.1C38—C39—H39119.7
O2—C20—C23—C2248.4 (4)C11—N2—C6—C323.3 (4)
O2—C20—C23—C24124.8 (3)C11—N2—C7—C854.5 (3)
O3—C30—C31—C32178.4 (2)C12—C9—C10—C11179.2 (2)
O3—C37—C38—C39179.1 (2)C12—C13—C14—C17170.0 (2)
O4—C26—C27—C280.3 (4)C13—C14—C17—C1655.3 (3)
O4—C26—C27—C32179.3 (2)C13—C14—C17—C18179.0 (2)
O5—C26—C27—C28179.8 (3)C14—C17—C18—C19179.4 (2)
O5—C26—C27—C321.2 (4)C15—N3—C19—C1857.8 (3)
O6—C33—C34—C33A174.6 (18)C15—N3—C20—O20.1 (4)
O6—C33—C34—C356.0 (9)C15—N3—C20—C23176.5 (2)
O6—C33—C34—C39174.2 (6)C15—C16—C17—C14177.9 (2)
O6A—C33A—C34—C331.1 (10)C15—C16—C17—C1852.7 (3)
O6A—C33A—C34—C350.2 (8)C16—C17—C18—C1953.5 (3)
O6A—C33A—C34—C39179.2 (5)C17—C18—C19—N356.1 (3)
O7—C33—C34—C33A5.2 (10)C19—N3—C15—C1656.8 (3)
O7—C33—C34—C35174.1 (5)C19—N3—C20—O2162.5 (3)
O7—C33—C34—C395.6 (9)C19—N3—C20—C2321.1 (4)
O7A—C33A—C34—C33178.0 (19)C20—N3—C15—C16138.8 (3)
O7A—C33A—C34—C35178.9 (6)C20—N3—C19—C18138.8 (3)
O7A—C33A—C34—C391.7 (9)C20—C23—C24—C25172.5 (3)
N1—C1—C2—C30.1 (4)C21—N4—C25—C240.5 (5)
N2—C7—C8—C953.8 (3)C21—C22—C23—C20173.9 (3)
N3—C15—C16—C1754.4 (3)C21—C22—C23—C240.3 (4)
N3—C20—C23—C22135.0 (3)C22—C23—C24—C250.8 (4)
N3—C20—C23—C2451.7 (4)C23—C24—C25—N41.2 (5)
N4—C21—C22—C231.0 (5)C25—N4—C21—C220.6 (5)
C1—N1—C5—C41.5 (4)C26—C27—C28—C29179.1 (2)
C1—C2—C3—C41.5 (4)C26—C27—C32—C31178.4 (2)
C1—C2—C3—C6171.1 (2)C27—C28—C29—C301.3 (4)
C2—C3—C4—C51.7 (4)C28—C27—C32—C312.5 (4)
C2—C3—C6—O143.4 (4)C28—C29—C30—O3178.5 (2)
C2—C3—C6—N2139.2 (3)C28—C29—C30—C314.1 (4)
C3—C4—C5—N10.2 (4)C29—C30—C31—C323.5 (4)
C4—C3—C6—O1128.7 (3)C30—O3—C37—C3619.1 (4)
C4—C3—C6—N248.7 (4)C30—O3—C37—C38165.1 (2)
C5—N1—C1—C21.6 (4)C30—C31—C32—C270.2 (4)
C6—N2—C7—C8145.5 (2)C32—C27—C28—C291.9 (4)
C6—N2—C11—C10146.0 (3)C33—C34—C35—C36178.1 (4)
C6—C3—C4—C5170.3 (3)C33—C34—C39—C38177.0 (5)
C7—N2—C6—O12.0 (4)C33A—C34—C35—C36178.5 (5)
C7—N2—C6—C3179.3 (2)C33A—C34—C39—C38177.2 (4)
C7—N2—C11—C1055.8 (3)C34—C35—C36—C371.6 (4)
C7—C8—C9—C1053.7 (3)C35—C34—C39—C383.3 (4)
C7—C8—C9—C12178.8 (2)C35—C36—C37—O3179.7 (2)
C8—C9—C10—C1155.2 (3)C35—C36—C37—C384.1 (4)
C8—C9—C12—C1354.6 (3)C36—C37—C38—C393.0 (4)
C9—C10—C11—N256.4 (3)C37—O3—C30—C2938.8 (4)
C9—C12—C13—C14171.8 (2)C37—O3—C30—C31146.5 (2)
C10—C9—C12—C13177.7 (2)C37—C38—C39—C340.7 (4)
C11—N2—C6—O1159.5 (3)C39—C34—C35—C362.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···N1i0.841.832.665 (3)176
O7—H7···N40.86 (2)2.01 (3)2.859 (7)167 (8)
O6A—H6A···N40.86 (2)1.79 (2)2.652 (7)177 (7)
C1—H1···O7Aii0.952.273.114 (6)147
C12—H12B···O2iii0.992.603.453 (4)144
C19—H19B···O6iii0.992.473.326 (6)144
Symmetry codes: (i) x1, y, z2; (ii) x+1, y+1/2, z+5/2; (iii) x, y+5/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···N1i0.841.832.665 (3)175.5
O7—H7···N40.86 (2)2.01 (3)2.859 (7)167 (8)
O6A—H6A···N40.86 (2)1.79 (2)2.652 (7)177 (7)
C1—H1···O7Aii0.952.273.114 (6)147
C12—H12B···O2iii0.992.603.453 (4)144
C19—H19B···O6iii0.992.473.326 (6)144
Symmetry codes: (i) x1, y, z2; (ii) x+1, y+1/2, z+5/2; (iii) x, y+5/2, z+1/2.
 

Acknowledgements

We gratefully acknowledge Lyman Briggs College of Michigan State University for funding this work. EML thanks the Michigan State University High School Honors Science Program for her participation in this research effort. We thank Dr Rose Tyler for helpful discussions.

References

First citationBruker (2012). APEX2, SAINT and SADABS2012. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHou, H., Song, Y., Xu, H., Wei, Y., Fan, Y., Zhu, Y., Li, L. & Du, C. (2003). Macromolecules, 36, 999–1008.  Web of Science CSD CrossRef CAS Google Scholar
First citationPalmer, D. (2007). CrystalMaker. CrystalMaker Software, Bicester, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, J., Ma, J., Liu, Y. & Batten, S. R. (2009). CrystEngComm, 11, 151–159.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds