

OPEN d ACCESS

V = 887.5 (9) Å³

Crystal structure of (3,5-dibromo-2-hydroxyphenyl){1-[(naphthalen-1-yl)carbonyl]-1H-pyrazol-4-yl}methanone

Yoshinobu Ishikawa* and Yuya Motohashi

School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan. *Correspondence e-mail: ishi206@u-shizuoka-ken.ac.jp

Received 14 August 2014; accepted 15 August 2014

Edited by E. R. T. Tiekink, University of Malaya, Malaysia

In the title compound, $C_{21}H_{12}Br_2N_2O_3$, a 1,4-diaroyl pyrazole derivative, the dihedral angles between the naphthalene ring system and the pyrazole ring, the pyrazole and benzene rings, and the naphthalene ring system and benzene ring are 50.0 (2), 51.1 (2) and 1.34 (16) $^{\circ}$, respectively. The phenolic proton forms an intramolecular $O-H \cdots O$ hydrogen bond with the adjacent carbonyl O atom. In the crystal, molecules are linked by $C-H \cdots O$ hydrogen bonds, forming inversion dimers. The dimers are linked by C-H···Br hydrogen bonds, forming double stranded chains along $[01\overline{1}]$. The chains are linked by π - π interactions between the pyrazole rings and between the naphthalene and benzene rings [centroid-centroid distances = 3.592 (4) and 3.632 (4) Å, respectively].

Keywords: crystal structure; diaroyl pyrazole; cyclization; stacking interaction; C—H···O hydrogen bonding.

CCDC reference: 1019490

1. Related literature

For the biological activity of related compounds, see: Khan et al. (2009); Tu et al. (2013). For related structures, see: Ishikawa (2014); Ishikawa & Watanabe (2014a,b,c,d).

2. Experimental

2.1. Crystal data

C21H12Br2N2O3 $M_r = 500.15$

Triclinic, $P\overline{1}$ a = 7.390 (5) Å b = 8.919 (4) Å c = 14.955(9) Å $\alpha = 74.61 \ (4)^{\circ}$ $\beta = 76.71(5)^{\circ}$ $\gamma = 71.03 \ (4)^{\circ}$

2.2. Data collection

Rigaku AFC7R diffractometer Absorption correction: ψ scan (North et al., 1968) $T_{\rm min}=0.448,\ T_{\rm max}=0.692$ 5003 measured reflections 4088 independent reflections

2.3. Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.064$	254 parameters
$wR(F^2) = 0.204$	H-atom parameters c
S = 1.07	$\Delta \rho_{\rm max} = 2.15 \text{ e} \text{ \AA}^{-3}$
4088 reflections	$\Delta \rho_{\rm min} = -2.52 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{l} D1 - H3 \cdots O2 \\ C9 - H4 \cdots O3^{i} \\ C16 - H9 \cdots Br2^{ii} \end{array}$	0.84	1.85	2.565 (7)	142
	0.95	2.30	3.227 (8)	165
	0.95	2.88	3.613 (7)	135

Z = 2

Mo $K\alpha$ radiation

 $0.40 \times 0.18 \times 0.08 \; \mathrm{mm}$

3359 reflections with $F^2 > 2.0\sigma(F^2)$

parameters constrained

3 standard reflections every 150

intensity decay: -0.6%

 $\mu = 4.61 \text{ mm}^{-1}$

T = 100 K

 $R_{\rm int} = 0.062$

reflections

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) x + 1, y - 1, z - 1.

Data collection: WinAFC (Rigaku, 1999); cell refinement: WinAFC; data reduction: WinAFC; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure.

Acknowledgements

We acknowledge the University of Shizuoka for instrumental support and Professor Kei Manabe (University of Shizuoka) for helpful discussions.

Supporting information for this paper is available from the IUCr electronic archives (Reference: TK5338).

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.

- Ishikawa, Y. (2014). Acta Cryst. E70, 0439.
- Ishikawa, Y. & Watanabe, K. (2014a). Acta Cryst. E70, 0472.
- Ishikawa, Y. & Watanabe, K. (2014b). Acta Cryst. E70, 0565.
- Ishikawa, Y. & Watanabe, K. (2014c). Acta Cryst. E70, 0784.
- Ishikawa, Y. & Watanabe, K. (2014d). Acta Cryst. E70, 0832.
- Khan, K. M., Ambreen, N., Hussain, S., Perveen, S. & Choudhary, M. I. (2009). Bioorg. Med. Chem. 17, 2983-2988.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Rigaku (1999). WinAFC. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tu, Q. D., Li, D., Sun, Y., Han, X. Y., Yi, F., Sha, Y., Ren, Y. L., Ding, M. W., Feng, L. L. & Wan, J. (2013). Bioorg. Med. Chem. 21, 2826-2831.

supporting information

Acta Cryst. (2014). E70, o1033 [doi:10.1107/S1600536814018601]

Crystal structure of (3,5-dibromo-2-hydroxyphenyl){1-[(naphthalen-1-yl)carbonyl]-1*H*-pyrazol-4-yl}methanone

Yoshinobu Ishikawa and Yuya Motohashi

S1. Structural commentary

Schiff base derivatives of 3-formylchromones have attracted much attention due to their biological functions such as enzyme inhibition (Khan *et al.* 2009; Tu *et al.* 2013). We have recently reported the crystal structures of such compounds (Ishikawa & Watanabe, 2014a,b,c,d), which were prepared from condensation reaction of 3-formylchromones with aryl-hydrazides.

The reaction of 6,8-dibromo-3-formylchromone (Ishikawa, 2014) with 1-naphthoylhydrazide in ethanol gave white solids, and orange crystals were obtained from an acetonitrile/ethanol solution of the white solids (Fig. 1). The crystallographic analysis revealed that the structure of the orange crystals is a 1,4-diaroyl pyrazole, as shown in Fig. 2, which should be thermodynamically more stable than that of the white solids. The dihedral angles between the naphthalene and pyrazole rings, the pyrazole and benzene rings and the naphthalene and benzene rings are 50.0 (2), 51.1 (2) and 1.34 (16)°, respectively. The phenolic proton forms an intramolecular O—H…O hydrogen bond with the adjacent carbonyl O2 atom. In the crystal, the molecules are linked through stacking interactions between the pyrazole rings and the naphthalene and benzene rings [centroid–centroid distances = 3.553 (4) and 3.632 (4) Å, respectively, i: -x + 2, -y, -z + 1], and are further connected through intermolecular C–H…O hydrogen bonds, as shown in Fig. 3. A significant short contact around the bromine atoms is not observed.

The driving force of the intramolecular cyclization (Fig. 1) should be a resonance energy gain, resulting from the extension of the conjugated system across the entire molecule. The intramolecular cyclization is not observed for the chromone derivatives with electron-donating substituents (Ishikawa & Watanabe, 2014a,b,c,d), and thus the activation energy for the chromone derivative with the electron-withdrawing substituents should be lower than that for ones with electron-donating substituents.

S2. Synthesis and crystallization

Preparation of the white precursor, (*E*)-*N*'-((6,8-dibromo-4-oxo-4*H*-chromen-3-yl)methylene)-1-naphthohydrazide, is as follows: 1-naphthohydrazide (1.1 mmol) and 6,8-dibromo-3-formylchromone (1.1 mmol) were dissolved in 50 ml of ethanol, and the mixture was refluxed with Dean-Stark apparatus for 15 min with stirring. After cooling, the white precipitates were collected, washed with *n*-hexane and dried *in vacuo* (yield 25%). ¹H NMR (400 MHz, DMSO-*d*₆): δ = 7.60–7.64 (m, 4H), 7.77 (d, 1H, *J* = 6.8 Hz), 8.02–8.05 (m, 1H), 8.11 (d, 1H, *J* = 8.3 Hz), 8.17 (d, 1H, *J* = 2.4 Hz), 8.21–8.23 (m, 1H), 8.45 (d, 1H, *J* = 1.9 Hz), 8.47 (s, 1H), 12.16 (s, 1H). DART-MS (negative mode) calcd for [C₂₁H₁₂Br₂N₂O₃]: 499.919, found 498.920. The orange crystals suitable for X-ray diffraction were obtained by slow evaporation of an acetonitrile/ethanol solution of the white precursor at room temperature.

S3. Refinement

The O- and C(*sp*²)-bound hydrogen atoms were placed in their geometric positions [O—H = 0.84 Å and C—H 0.95 Å, $U_{iso}(H) = 1.2U_{eq}(O,C)$], and refined using a riding model. Three reflections, *i.e.* (4 6 7), (4 6 3) and (4 6 5) were omitted owing to poor agreement. The maximum and minimum residual electron density peaks of 2.15 and 2.52 eÅ⁻³, respectively, were located 0.88 and 1.05 Å from the Br1 and Br2 atoms, respectively.

Figure 1

Reaction scheme for the title compound.

Figure 2

The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are shown as small spheres of arbitrary radius.

Figure 3

A crystal packing view of the title compound. Intramolecular O—H…O and intermolecular C–H…O hydrogen bonds are represented by dashed lines.

(3,5-Dibromo-2-hydroxyphenyl){1-[(naphthalen-1-yl)carbonyl]-1*H*-pyrazol-4-yl}methanone

Crystal data	
$C_{21}H_{12}Br_2N_2O_3$ $M_r = 500.15$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 7.390 (5) Å b = 8.919 (4) Å c = 14.955 (9) Å a = 74.61 (4)° $\beta = 76.71$ (5)° $\gamma = 71.03$ (4)° V = 887.5 (9) Å ³	Z = 2 F(000) = 492.00 $D_x = 1.871 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71069 \text{ Å}$ Cell parameters from 25 reflections $\theta = 15.1-17.5^{\circ}$ $\mu = 4.61 \text{ mm}^{-1}$ T = 100 K Plate, orange $0.40 \times 0.18 \times 0.08 \text{ mm}$
Data collection	
Rigaku AFC7R diffractometer ω -2 θ scans Absorption correction: ψ scan (North <i>et al.</i> , 1968) $T_{\min} = 0.448, T_{\max} = 0.692$ 5003 measured reflections 4088 independent reflections	3359 reflections with $F^2 > 2.0\sigma(F^2)$ $R_{int} = 0.062$ $\theta_{max} = 27.5^{\circ}$ $h = -5 \rightarrow 9$ $k = -10 \rightarrow 11$ $l = -18 \rightarrow 19$ 3 standard reflections every 150 reflections intensity decay: -0.6%

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.064$ $wR(F^2) = 0.204$	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from
S = 1.07 4088 reflections	neighbouring sites H-atom parameters constrained
254 parameters	$w = 1/[\sigma^2(F_o^2) + (0.1444P)^2 + 3.2256P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta \rho_{\rm max} = 2.15 \text{ e} \text{ Å}^{-3}$
	$\Delta \rho_{\min} = -2.52 \text{ e} \text{ Å}^{-3}$

Special details

Refinement. Refinement was performed using all reflections. The weighted *R*-factor (*wR*) and goodness of fit (*S*) are based on F^2 . *R*-factor (gt) are based on *F*. The threshold expression of $F^2 > 2.0 \sigma(F^2)$ is used only for calculating *R*-factor (gt).

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Br1	0.50138 (8)	-0.13169 (6)	0.83532 (4)	0.0176 (2)
Br2	0.31452 (8)	0.48290 (7)	0.92499 (4)	0.0201 (2)
O1	0.4963 (6)	0.5714 (5)	0.7244 (4)	0.0187 (9)
O2	0.7063 (7)	0.5130 (5)	0.5684 (3)	0.0202 (9)
O3	0.6724 (7)	-0.0505 (6)	0.4014 (4)	0.0240 (10)
N1	0.9928 (7)	0.1676 (6)	0.3998 (4)	0.0160 (10)
N2	0.8285 (7)	0.1192 (6)	0.4157 (4)	0.0139 (9)
C1	0.5910 (8)	0.3094 (6)	0.6818 (4)	0.0127 (10)
C2	0.5037 (8)	0.4138 (7)	0.7463 (5)	0.0145 (11)
C3	0.4201 (8)	0.3493 (7)	0.8375 (4)	0.0139 (11)
C4	0.4218 (8)	0.1885 (7)	0.8626 (4)	0.0146 (11)
C5	0.5058 (8)	0.0873 (7)	0.7989 (5)	0.0142 (11)
C6	0.5922 (8)	0.1444 (7)	0.7097 (4)	0.0132 (10)
C7	0.6900 (8)	0.3729 (7)	0.5888 (4)	0.0139 (10)
C8	0.7757 (8)	0.2698 (7)	0.5188 (4)	0.0134 (10)
C9	0.6977 (8)	0.1766 (7)	0.4881 (4)	0.0147 (11)
C10	0.9595 (8)	0.2605 (7)	0.4605 (5)	0.0160 (11)
C11	0.7991 (8)	0.0156 (7)	0.3655 (4)	0.0152 (11)
C12	0.9184 (8)	0.0025 (7)	0.2726 (4)	0.0132 (10)
C13	0.9601 (8)	0.1394 (7)	0.2138 (5)	0.0157 (11)
C14	1.0545 (8)	0.1378 (7)	0.1201 (5)	0.0165 (11)
C15	1.1092 (8)	-0.0030 (7)	0.0873 (4)	0.0135 (10)
C16	1.1317 (8)	-0.2919 (8)	0.1108 (5)	0.0186 (12)
C17	1.0949 (9)	-0.4298 (7)	0.1657 (5)	0.0187 (12)
C18	0.9958 (9)	-0.4307 (7)	0.2580 (5)	0.0202 (12)
C19	0.9346 (8)	-0.2926 (7)	0.2944 (5)	0.0161 (11)
C20	1.0704 (8)	-0.1464 (7)	0.1456 (4)	0.0130 (10)
C21	0.9702 (8)	-0.1460 (7)	0.2399 (4)	0.0135 (10)
H1	0.3650	0.1466	0.9241	0.0175*
H2	0.6521	0.0733	0.6672	0.0158*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

supporting information

Н3	0.5769	0.5890	0.6760	0.0225*	
H4	0.5756	0.1558	0.5125	0.0176*	
Н5	1.0474	0.3148	0.4649	0.0192*	
H6	0.9250	0.2364	0.2367	0.0189*	
H7	1.0797	0.2336	0.0801	0.0198*	
H8	1.1739	-0.0043	0.0247	0.0162*	
H9	1.1988	-0.2924	0.0485	0.0223*	
H10	1.1363	-0.5261	0.1418	0.0224*	
H11	0.9707	-0.5279	0.2958	0.0243*	
H12	0.8676	-0.2959	0.3570	0.0193*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Br1	0.0169 (4)	0.0074 (3)	0.0300 (4)	-0.0043 (2)	-0.0080 (3)	-0.0017 (3)
Br2	0.0234 (4)	0.0131 (4)	0.0230 (4)	-0.0001 (3)	-0.0030 (3)	-0.0092 (3)
01	0.022 (2)	0.0063 (18)	0.031 (3)	-0.0053 (15)	-0.0045 (17)	-0.0060 (16)
O2	0.025 (3)	0.0088 (19)	0.027 (3)	-0.0068 (16)	-0.0039 (18)	-0.0027 (17)
O3	0.020 (2)	0.030 (3)	0.029 (3)	-0.0151 (19)	0.0060 (18)	-0.016 (2)
N1	0.013 (3)	0.016 (3)	0.022 (3)	-0.0056 (18)	-0.0070 (18)	-0.0047 (19)
N2	0.012 (2)	0.013 (3)	0.019 (3)	-0.0031 (17)	-0.0018 (18)	-0.0072 (18)
C1	0.010 (3)	0.007 (3)	0.023 (3)	0.0008 (18)	-0.007 (2)	-0.006 (2)
C2	0.013 (3)	0.007 (3)	0.028 (3)	-0.0048 (19)	-0.008 (2)	-0.004 (2)
C3	0.010 (3)	0.011 (3)	0.023 (3)	0.0010 (19)	-0.004 (2)	-0.010 (2)
C4	0.010 (3)	0.012 (3)	0.022 (3)	-0.000 (2)	-0.003 (2)	-0.008 (2)
C5	0.013 (3)	0.006 (3)	0.025 (3)	0.0006 (18)	-0.011 (2)	-0.002 (2)
C6	0.012 (3)	0.007 (3)	0.021 (3)	-0.0001 (18)	-0.007 (2)	-0.004 (2)
C7	0.013 (3)	0.010 (3)	0.018 (3)	-0.0016 (19)	-0.004 (2)	-0.004 (2)
C8	0.015 (3)	0.010 (3)	0.016 (3)	-0.0046 (19)	-0.004 (2)	-0.002 (2)
C9	0.017 (3)	0.010 (3)	0.019 (3)	-0.005 (2)	-0.004 (2)	-0.005 (2)
C10	0.017 (3)	0.009 (3)	0.023 (3)	-0.007 (2)	-0.006 (3)	0.000 (2)
C11	0.014 (3)	0.015 (3)	0.019 (3)	-0.003 (2)	-0.002 (2)	-0.009 (2)
C12	0.009 (3)	0.015 (3)	0.019 (3)	-0.0044 (19)	-0.0037 (19)	-0.005 (2)
C13	0.012 (3)	0.008 (3)	0.032 (4)	-0.0010 (19)	-0.012 (3)	-0.006 (3)
C14	0.016 (3)	0.011 (3)	0.023 (3)	-0.003 (2)	-0.009 (3)	-0.001 (2)
C15	0.010 (3)	0.015 (3)	0.017 (3)	-0.007 (2)	-0.0023 (19)	-0.002 (2)
C16	0.014 (3)	0.017 (3)	0.025 (3)	0.003 (2)	-0.005 (3)	-0.014 (3)
C17	0.019 (3)	0.009 (3)	0.031 (4)	0.001 (2)	-0.012 (3)	-0.008 (3)
C18	0.025 (3)	0.011 (3)	0.030 (4)	-0.008 (3)	-0.014 (3)	0.001 (3)
C19	0.017 (3)	0.013 (3)	0.020 (3)	-0.005 (2)	-0.008 (2)	-0.001 (2)
C20	0.011 (3)	0.011 (3)	0.018 (3)	-0.0032 (19)	-0.004 (2)	-0.004 (2)
C21	0.012 (3)	0.011 (3)	0.021 (3)	-0.0029 (19)	-0.008 (2)	-0.005 (2)

Geometric parameters (Å, °)

Br1—C5	1.893 (6)	C13—C14	1.417 (9)
Br2—C3	1.870 (7)	C14—C15	1.373 (9)
O1—C2	1.341 (7)	C15—C20	1.417 (8)

O2—C7	1.243 (8)	C16—C17	1.356 (9)
O3—C11	1.213 (8)	C16—C20	1.425 (10)
N1—N2	1.368 (8)	C17—C18	1.404 (9)
N1—C10	1.317 (9)	C18—C19	1.378 (10)
N2—C9	1.364 (7)	C19—C21	1.416 (8)
N2—C11	1.427 (10)	C20—C21	1.434 (8)
C1—C2	1.419 (9)	O1—H3	0.840
C1—C6	1.417 (8)	C4—H1	0.950
C1—C7	1.475 (8)	С6—Н2	0.950
C2—C3	1.415 (8)	С9—Н4	0.950
C3—C4	1.379 (8)	С10—Н5	0.950
C4—C5	1.389 (9)	С13—Н6	0.950
C5—C6	1.380 (8)	C14—H7	0.950
C7—C8	1.473 (9)	C15—H8	0.950
C8—C9	1.367 (11)	С16—Н9	0.950
C8—C10	1.426 (8)	C17—H10	0.950
C11—C12	1.476 (8)	C18—H11	0.950
C12—C13	1.382 (8)	C19—H12	0.950
C12—C21	1.438 (9)		01900
0.2 0.21			
Br2…O1	3.001 (5)	H11…H12	2.3146
O1…O2	2.565 (7)	Br1…H7 ⁱⁱⁱ	3.3724
O1…C7	2.867 (8)	Br1…H8 ^{viii}	3.4550
O2…C2	2.807 (7)	Br1…H10 ^{ix}	3.3397
O2…C9	3.538 (9)	Br2…H6 ^v	3.3350
O2…C10	2.996 (8)	Br2…H7 ^{viii}	3.3550
O3…N1	3.512 (9)	Br2…H7 ^v	3.1777
O3…C9	2.751 (10)	Br2…H9 ^x	2.8779
O3…C13	3.512 (8)	Br2…H9 ⁱⁱⁱ	3.5074
O3…C19	2.944 (8)	Br2…H10 ^x	3.1965
O3…C21	2.972 (7)	Br2…H10 ⁱⁱ	3.5687
N1…C12	2.930 (10)	O1…H6 ^v	3.0327
N1…C13	2.928 (10)	O1…H10 ⁱⁱⁱ	3.5909
N2…C13	2.926 (8)	O2…H4 ^v	3.1289
C1···C4	2.795 (8)	O2…H5 ^{vi}	2.6299
C1…C9	3.252 (9)	O2…H11 ⁱⁱⁱ	3.5241
C2…C5	2.803 (8)	O2…H12 ^{iv}	3.3240
C3…C6	2.800 (9)	O2…H12 ⁱⁱⁱ	3.3782
C6…C8	2.958 (8)	O3…H2 ⁱⁱ	2.8993
C6…C9	3.181 (9)	O3…H4 ⁱⁱ	2.3008
C8…C11	3.570 (10)	O3…H5 ⁱⁱⁱ	3.1732
C10…C11	3.507 (11)	N1…H2 ⁱⁱⁱ	2.9620
C11…C19	2.994 (9)	N1…H11 ^{iv}	2.7216
C12…C15	2.810 (8)	N2···H3 ^v	3.5425
C13…C20	2.802 (9)	N2…H11 ^{iv}	3.5371
C14…C21	2.848 (8)	C2…H11 ⁱⁱ	3.4752
C16…C19	2.797 (9)	C3···H9 ⁱⁱⁱ	3.4520
C17…C21	2.827 (10)	C3…H11 ⁱⁱ	3.5806

C18…C20	2.789 (9)	C4…H8 ^{viii}	3.1593
Br1…O1 ⁱ	3.492 (6)	C4····H8 ⁱⁱⁱ	3.4809
Br1…C12 ⁱⁱ	3.542 (7)	C6…H12 ⁱⁱ	3.4958
Br1…C14 ⁱⁱⁱ	3.477 (7)	C7…H12 ⁱⁱⁱ	3.3582
O1…Br1 ^{iv}	3.492 (6)	C8····H11 ^{iv}	3.5695
O1…N2 ^v	3.564 (7)	С9…Н3 ^v	3.3636
O1···C17 ⁱⁱⁱ	3.481 (9)	C10····H11 ^{iv}	2.6785
O1…C18 ⁱⁱⁱ	3.598 (8)	C10…H12 ⁱⁱⁱ	3.3923
O2…C9 ^v	3.440 (7)	C11····H4 ⁱⁱ	3.5045
O2····C10 ^{vi}	3.558 (9)	C11····H5 ⁱⁱⁱ	3.4029
O2····C18 ⁱⁱⁱ	3.563 (10)	C12···H2 ⁱⁱⁱ	3.3072
O2…C19 ⁱⁱⁱ	3.476 (8)	С13…Н2 ^{ііі}	3.4633
O3…O3 ⁱⁱ	3.530(7)	C13…H10 ^{iv}	3.4537
O3…C6 ⁱⁱ	3.253 (10)	C13…H11 ^{iv}	3.5269
O3…C9 ⁱⁱ	3.227 (8)	C14…H1 ^{xi}	3.2807
O3…C10 ⁱⁱⁱ	3.520 (8)	C14····H9 ^{vii}	3.2254
N1…N2 ⁱⁱⁱ	3.411 (7)	C14…H10 ^{iv}	3.3528
N1···C9 ⁱⁱⁱ	3.455 (7)	C15····H1 ^{xi}	3.0172
N2…O1 ^v	3.564 (7)	C15····H8 ^{vii}	2.9417
N2…N1 ⁱⁱⁱ	3.411 (7)	C15····H9 ^{vii}	3.4108
N2…C10 ⁱⁱⁱ	3.451 (7)	C16…H1 ⁱⁱ	3.5849
C1···C19 ⁱⁱⁱ	3.556 (9)	C16····H7 ^{vii}	3.4040
C1···C21 ⁱⁱⁱ	3.432 (8)	C16····H8 ^{vii}	3.4014
C2…C16 ⁱⁱⁱ	3.539 (10)	С17…НЗ ^{ііі}	3.4810
C2…C17 ⁱⁱⁱ	3.566 (11)	C17…H6 ⁱ	3.4220
C3…C16 ⁱⁱⁱ	3.421 (9)	С18…НЗ ^{ііі}	3.2763
C3…C18 ⁱⁱ	3.468 (10)	C18…H5 ⁱ	3.3353
C4…C15 ⁱⁱⁱ	3.481 (8)	C18····H6 ⁱ	3.2839
C5…C14 ⁱⁱⁱ	3.513 (8)	С19…Н5 ^{ііі}	3.5826
C5…C15 ⁱⁱⁱ	3.422 (9)	C20····H8 ^{vii}	3.2058
C5…C19 ⁱⁱ	3.570 (9)	H1···C14 ^{viii}	3.2807
C5…C21 ⁱⁱ	3.544 (9)	H1…C15 ^{viii}	3.0172
C6…O3 ⁱⁱ	3.253 (10)	H1···C16 ⁱⁱ	3.5849
C6…C12 ⁱⁱⁱ	3.470 (8)	H1…H1 ^{xii}	3.3932
C6…C21 ⁱⁱⁱ	3.491 (10)	H1…H7 ^{viii}	2.8501
C7…C19 ⁱⁱⁱ	3.395 (10)	H1…H8 ^{viii}	2.2922
C9…O2 ^v	3.440 (7)	H1…H8 ⁱⁱⁱ	3.4174
C9…O3 ⁱⁱ	3.227 (8)	H2…O3 ⁱⁱ	2.8993
C9…N1 ⁱⁱⁱ	3.455 (7)	H2…N1 ⁱⁱⁱ	2.9620
C10O2 ^{vi}	3.558 (9)	H2···C12 ⁱⁱⁱ	3.3072
C10…O3 ⁱⁱⁱ	3.520 (8)	H2···C13 ⁱⁱⁱ	3.4633
C10····N2 ⁱⁱⁱ	3.451 (7)	H3…N2 ^v	3.5425
C10…C11 ⁱⁱⁱ	3.448 (8)	Н3…С9 ^v	3.3636
C10C18 ^{iv}	3.537 (8)	H3…C17 ⁱⁱⁱ	3.4810
C11C10 ⁱⁱⁱ	3.448 (8)	H3…C18 ⁱⁱⁱ	3.2763
C12····Br1 ⁱⁱ	3.542 (7)	H3…H4 ^v	3.2835
C12…C6 ⁱⁱⁱ	3.470 (8)	H3····H5 ^{vi}	3.2838
C14…Br1 ⁱⁱⁱ	3.477 (7)	H3…H11 ⁱⁱⁱ	3.3159

C14····C5 ⁱⁱⁱ	3.513 (8)	H4…O2 ^v	3.1289
C15····C4 ⁱⁱⁱ	3.481 (8)	H4…O3 ⁱⁱ	2.3008
C15…C5 ⁱⁱⁱ	3.422 (9)	H4…C11 ⁱⁱ	3.5045
C15…C15 ^{vii}	3.352 (10)	H4…H3 ^v	3.2835
C16…C2 ⁱⁱⁱ	3.539 (10)	H4…H4 ⁱⁱ	3.4472
C16…C3 ⁱⁱⁱ	3.421 (9)	H4…H12 ⁱⁱ	3.4341
C17…O1 ⁱⁱⁱ	3.481 (9)	H5…O2 ^{vi}	2.6299
C17···C2 ⁱⁱⁱ	3.566 (11)	H5…O3 ⁱⁱⁱ	3,1732
C18…O1 ⁱⁱⁱ	3.598 (8)	H5…C11 ⁱⁱⁱ	3.4029
C18····O2 ⁱⁱⁱ	3.563 (10)	H5…C18 ^{iv}	3.3353
C18…C3 ⁱⁱ	3.468 (10)	H5…C19 ⁱⁱⁱ	3.5826
C18…C10 ⁱ	3.537 (8)	H5…H3 ^{vi}	3.2838
C19O2 ⁱⁱⁱ	3 476 (8)	$H5\cdots H5^{vi}$	3 5363
C19···C1 ⁱⁱⁱ	3,556 (9)	H5H11 ^{iv}	2,6349
C19C5 ⁱⁱ	3 570 (9)	H5H12 ^{iv}	3 3818
C19C7 ⁱⁱⁱ	3 395 (10)	H5…H12 ⁱⁱⁱ	2 8249
$C^{21} \cdots C^{1}$	3.432(8)	H6Br2v	3 3350
$C21 \cdots C5^{ii}$	3.132(0) 3.544(9)	$H6\cdots O1^{v}$	3 0327
$C21 \cdots C6^{iii}$	3 491 (10)	H6···C17 ^{iv}	3 4220
Br1…H1	2 9064	$H6 \cdots C18^{iv}$	3 2839
Br1···H2	2.9004	H6H10 ^{iv}	2 9117
Br ² ···H1	2.9029	H6H11 ^{iv}	2.5117
O2···H3	1 8478	H7···Br1 ⁱⁱⁱ	3 3724
O2···H5	2 9382	H7Br2 ^{xi}	3 3550
O3···H4	2.6228	$H7 \cdots Br2^{v}$	3 1777
03···H12	2.3649	$H7 \cdots C16^{vii}$	3 4040
N1…H4	3 1758	H7H1 ^{xi}	2.8501
N1···H6	2 4781	$H7 \cdots H9^{\text{vii}}$	2.9645
N2…H5	3 0438	$H7 \cdots H10^{iv}$	2,7262
N2…H6	2.6233	H8Br1 ^{xi}	3 4550
C1H3	2 4414	H8…C4 ^{xi}	3 1 5 9 3
C1···H4	3.2200	H8····C4 ⁱⁱⁱ	3.4809
C2…H1	3.2819	H8····C15 ^{vii}	2.9417
C2…H2	3.3118	H8····C16 ^{vii}	3.4014
C3···H3	3.0549	H8····C20 ^{vii}	3.2058
C4…H2	3.2658	H8···H1 ^{xi}	2.2922
C6…H1	3.2617	H8…H1 ⁱⁱⁱ	3.4174
С6…Н4	2.9521	$H8\cdots H8^{vii}$	2.8061
C7…H2	2.6957	H8…H9 ^{vii}	3.3014
C7···H3	2.4287	H9…Br2 ^{xiii}	2.8779
C7…H4	2.9062	H9…Br2 ⁱⁱⁱ	3.5074
С7…Н5	2.8364	H9····C3 ⁱⁱⁱ	3.4520
C8···H2	2.6214	H9····C14 ^{vii}	3.2254
С9…Н2	2.5715	H9C15 ^{vii}	3.4108
С9…Н5	3.1225	H9…H7 ^{vii}	2.9645
С10…Н4	3.1375	H9····H8 ^{vii}	3.3014
С10…Н6	3.4812	$H10\cdots Br1^{ix}$	3.3397
С11…Н4	2.7515	H10····Br2 ^{xiii}	3.1965

С11…Н6	2.6092	H10····Br2 ⁱⁱ	3.5687
С11…Н12	2.6897	H10····O1 ⁱⁱⁱ	3.5909
С12…Н7	3.2902	H10…C13 ⁱ	3.4537
С12…Н12	2.7322	$H10$ ···· $C14^{i}$	3.3528
С13…Н8	3.2701	H10…H6 ⁱ	2.9117
С15…Н6	3.2629	H10…H7 ⁱ	2.7262
C15…H9	2.6357	H11O2 ⁱⁱⁱ	3.5241
C16…H8	2,6301	$H11\cdots N1^{i}$	2 7216
C16…H11	3 2439	H11N2 ⁱ	3 5371
C17···H12	3 2752	H11C2 ⁱⁱ	3 4752
C18····H9	3 2522	H11····C3 ⁱⁱ	3 5806
C19H10	3 2731	$H11 \cdots C8^{i}$	3 5695
C20H7	3 2871	$H11 \cdots C10^{i}$	2 6785
C20···H10	3 2758	H11C13 ⁱ	3 5269
C20H12	3 3011	H11H3 ⁱⁱⁱ	3 3150
C21H6	3 2052	H11H5 ⁱ	2 6340
C21H8	3.3033	H11H6i	2.0349
C21H0	2 2286		2.02/1
C21H1	3.3280		3.3240
	3.2830		3.3/82
H2···H4	2.3745	H12···C6"	3.4958
H6…H/	2.3618	H12····C/···	3.3582
H/···H8	2.3192		3.3923
H8…H9	2.4494	H12···H4"	3.4341
H9…H10	2.3002	H12···H5 ¹	3.3818
H10…H11	2.3456	H12····H5 ^m	2.8249
N2—N1—C10	104.6 (5)	C14—C15—C20	121.0 (5)
N1—N2—C9	111.9 (6)	C17—C16—C20	120.6 (6)
N1—N2—C11	124.5 (5)	C16—C17—C18	120.2 (6)
C9—N2—C11	123.5 (6)	C17—C18—C19	121.0 (6)
C2-C1-C6	119.7 (5)	C18—C19—C21	120.8 (6)
C2C1C7	118.9 (5)	C15—C20—C16	120.0 (5)
C6—C1—C7	121.2 (5)	C15—C20—C21	120.3 (6)
01—C2—C1	122.9 (5)	C16—C20—C21	119.7 (5)
01—C2—C3	118.5 (6)	C12—C21—C19	125.0 (5)
C1—C2—C3	118.6 (5)	C12—C21—C20	117.3 (5)
Br2—C3—C2	119.1 (5)	C19—C21—C20	117.7 (6)
Br2—C3—C4	120.3 (5)	C2—O1—H3	109.471
C2—C3—C4	120.5 (6)	C3—C4—H1	119,719
C3—C4—C5	120.6 (5)	C5—C4—H1	119.718
Br1C5C4	119.3 (4)	C1—C6—H2	120.184
Br1—C5—C6	119.8 (5)	C5—C6—H2	120.182
C4—C5—C6	120.9 (6)	N2-C9-H4	126.528
C1-C6-C5	119.6 (6)	C8—C9—H4	126.542
02-C7-C1	121.0 (6)	N1—C10—H5	124 031
02-C7-C8	1187(5)	C8-C10-H5	124 022
C1 - C7 - C8	1204(5)	C12—C13—H6	119 423
C7—C8—C9	130.1 (5)	C14—C13—H6	119.416
	/ - /		

C7 C9 C10	125 1 (7)	C12 C14 U7	120 217
$C_{1} = C_{2} = C_{10}$	123.1 (7)		120.217
C9—C8—C10	104.6 (6)	C15—C14—H7	120.214
N2—C9—C8	106.9 (6)	С14—С15—Н8	119.513
N1—C10—C8	111.9 (6)	С20—С15—Н8	119.515
O3—C11—N2	117.1 (6)	С17—С16—Н9	119.699
O3—C11—C12	125.0 (7)	С20—С16—Н9	119.707
N2—C11—C12	117.8 (6)	C16—C17—H10	119.889
C11—C12—C13	119.0 (6)	C18—C17—H10	119.880
C11—C12—C21	120.0 (5)	C17—C18—H11	119.506
C13—C12—C21	120.6 (5)	C19—C18—H11	119.498
C12—C13—C14	121.2 (6)	С18—С19—Н12	119.584
C13—C14—C15	119.6 (6)	C21—C19—H12	119.586
	11)10 (0)		1171000
$H_{3}=01=C_{2}=C_{1}$	-17.0	C9-C8-C10-H5	179.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	163.3	$C_{10} C_{8} C_{9} N_{2}$	-0.7(5)
$N_2 = N_1 = C_1 = C_2 = C_3$	105.5	$C_{10} = C_8 = C_9 = N_2$	170.2
N2 - N1 - C10 - C8	1.9 (0)	C10-C8-C9-H4	179.5
$N_2 - N_1 - C_{10} - H_5$	-1/8.1	03 - C11 - C12 - C13	139.0 (6)
C10—N1—N2—C9	-2.4 (5)	03-011-012-021	-33.7 (8)
C10—N1—N2—C11	-179.9 (4)	N2-C11-C12-C13	-38.1 (7)
N1—N2—C9—C8	1.9 (6)	N2—C11—C12—C21	149.2 (5)
N1—N2—C9—H4	-178.1	C11—C12—C13—C14	-172.6(5)
N1—N2—C11—O3	161.6 (5)	С11—С12—С13—Н6	7.4
N1—N2—C11—C12	-21.1 (7)	C11—C12—C21—C19	-7.7 (9)
C9—N2—C11—O3	-15.7 (7)	C11—C12—C21—C20	174.2 (5)
C9—N2—C11—C12	161.7 (4)	C13—C12—C21—C19	179.8 (5)
C11—N2—C9—C8	179.5 (4)	C13—C12—C21—C20	1.7 (8)
C11—N2—C9—H4	-0.5	C21—C12—C13—C14	0.1 (9)
C2-C1-C6-C5	1.0 (9)	С21—С12—С13—Н6	-179.9
C2-C1-C6-H2	-179.0	C_{12} $-C_{13}$ $-C_{14}$ $-C_{15}$	-14(9)
C6-C1-C2-O1	-179.6(5)	C_{12} C_{13} C_{14} H_{7}	178.6
C6 $C1$ $C2$ $C3$	0.1(0)	$H_{6} C_{13} C_{14} C_{15}$	178.6
$C_{2} = C_{1} = C_{2} = C_{3}$	0.1(9)	$H_{0} = C_{13} = C_{14} = C_{13}$	-1 4
$C_2 = C_1 = C_7 = C_2$	3.7(9)	110 - C13 - C14 - 117	1.4
$C_2 = C_1 = C_2 = C_3$	-1/7.7(5)	C13 - C14 - C15 - C20	170.2
C/=C1=C2=01	4.4 (9)		-1/9.2
C = C = C = C = C = C = C = C = C = C =	-1/5.9(5)	H/-C14-C15-C20	-1/9.2
C6-C1-C7-02	-1/2.3(5)	Н/—С14—С15—Н8	0.8
C6-C1-C7-C8	6.4 (9)	C14—C15—C20—C16	-178.9(5)
C7—C1—C6—C5	176.9 (5)	C14—C15—C20—C21	1.0 (9)
C7—C1—C6—H2	-3.1	H8—C15—C20—C16	1.1
O1—C2—C3—Br2	-3.0 (8)	H8—C15—C20—C21	-179.0
O1—C2—C3—C4	179.0 (5)	C17—C16—C20—C15	-179.8 (6)
C1—C2—C3—Br2	177.3 (5)	C17-C16-C20-C21	0.4 (9)
C1—C2—C3—C4	-0.7 (9)	C20—C16—C17—C18	-0.0 (10)
Br2—C3—C4—C5	-177.8 (4)	C20-C16-C17-H10	180.0
Br2—C3—C4—H1	2.2	H9—C16—C17—C18	180.0
C2—C3—C4—C5	0.1 (9)	H9—C16—C17—H10	-0.0
C2—C3—C4—H1	-179.9	H9—C16—C20—C15	0.2
C3—C4—C5—Br1	-178.9(5)	H9-C16-C20-C21	-179.6
			1,2,0

C3—C4—C5—C6	1.1 (9)	C16—C17—C18—C19	-0.1 (10)
H1-C4-C5-Br1	1.1	C16—C17—C18—H11	179.9
H1—C4—C5—C6	-178.9	H10-C17-C18-C19	179.9
Br1C5C1	178.4 (4)	H10-C17-C18-H11	-0.1
Br1—C5—C6—H2	-1.6	C17—C18—C19—C21	-0.1 (10)
C4—C5—C6—C1	-1.6 (9)	C17—C18—C19—H12	179.9
C4—C5—C6—H2	178.4	H11-C18-C19-C21	179.9
O2—C7—C8—C9	-132.1 (6)	H11-C18-C19-H12	-0.1
O2-C7-C8-C10	41.0 (8)	C18—C19—C21—C12	-177.6 (6)
C1—C7—C8—C9	49.2 (8)	C18—C19—C21—C20	0.5 (9)
C1—C7—C8—C10	-137.7 (5)	H12-C19-C21-C12	2.4
C7—C8—C9—N2	173.5 (5)	H12-C19-C21-C20	-179.5
С7—С8—С9—Н4	-6.5	C15—C20—C21—C12	-2.2 (8)
C7—C8—C10—N1	-175.3 (5)	C15—C20—C21—C19	179.6 (5)
С7—С8—С10—Н5	4.7	C16—C20—C21—C12	177.6 (5)
C9—C8—C10—N1	-0.8 (6)	C16—C20—C21—C19	-0.6 (8)

Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y, -z+1; (iii) -x+2, -y, -z+1; (iv) x, y+1, z; (v) -x+1, -y+1, -z+1; (vi) -x+2, -y+1, -z+1; (vii) -x+2, -y, -z; (viii) x-1, y, z+1; (ix) -x+2, -y-1, -z+1; (x) x-1, y+1, z+1; (xi) x+1, y, z-1; (xii) -x+1, -y, -z+2; (xiii) x+1, y-1, z-1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D···· A	<i>D</i> —H··· <i>A</i>
O1—H3···O2	0.84	1.85	2.565 (7)	142
С9—Н4…ОЗ ^{іі}	0.95	2.30	3.227 (8)	165
C16—H9····Br2 ^{xiii}	0.95	2.88	3.613 (7)	135

Symmetry codes: (ii) -*x*+1, -*y*, -*z*+1; (xiii) *x*+1, *y*-1, *z*-1.