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MgSeO4�7H2O is isostructural with the analogous sulfate, MgSO4�7H2O,

consisting of isolated [Mg(H2O)6]2+ octahedra and [SeO4]2� tetrahedra, linked

by O—H� � �O hydrogen bonds, with a single interstitial lattice water molecule.

As in the sulfate, the [Mg(H2O)6]2+ coordination octahedron is elongated along

one axis due to the tetrahedral coordination of the two apical water molecules;

these have Mg—O distances of �2.10 Å, whereas the remaining four trigonally

coordinated water molecules have Mg—O distances of�2.05 Å. The mean Se—

O bond length is 1.641 Å and is in excellent agreement with other selenates. The

unit-cell volume of MgSeO4�7H2O at 10 K is 4.1% larger than that of the sulfate

at 2 K, although this is not uniform; the greater part of the expansion is along the

a axis of the crystal.

1. Chemical context

Since their discovery almost two hundred years ago, the

heptahydrates of divalent metal selenates have received scant

attention. This is in stark contrast with the M2+SeO4 hexa-

hydrates, which have been extensively characterized, including

studies of their morphology and optical properties (Topsøe &

Christiansen, 1874), their crystal structures (Stadnicka et al.,

1988; Kolitsch, 2002), their formation of isomorphous solution

series (e.g., Ojkova et al., 1990: Stoilova et al., 1995) and their

dehydration properties (Nabar & Paralkar, 1975: Stoilova &

Koleva, 1995). In part this may be due to the fact that the

heptahydrates must be prepared at lower temperatures.

Nevertheless, it is striking that the only information

concerning their crystal structures, namely their apparent

isomorphism with the M2+SO4 heptahydrates, has remained

largely unaltered since the observations made prior to 1830 by

Berzelius and his student Mitscherlich, which is that

MgSeO4�7H2O forms deliquescent four-sided prismatic crys-

tals below 288 K (e.g., Berzelius, 1818, 1829). The only known

goniometric data relate to FeSeO4�7H2O and CoSeO4�7H2O

(Wohlwill, 1860: Topsøe, 1870: Tutton, 1918), which are

isomorphous with the monoclinic series of M2+SO4 hepta-

hydrates. It is worth stating that MgMoO4�5H2O is isomor-

phous with both the sulfate, chromate and selenate analogues

but is not isostructural with them [Bars et al., 1977; see also

Lima-de-Faria et al. (1990) for further discussion of these

nomenclature], so the occurrence of MgSeO4�7H2O as acicular

rhombic prisms is no guarantee that it is isostructural with the

sulfate salt. Additional confusion arises from conflicting

observations of the MgSeO4–H2O binary phase diagram

(Meyer & Aulich, 1928: Klein, 1940), including our own recent
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discovery of hitherto unknown hydrates (containing 9H2O and

11H2O) below 273 K (Fortes, 2014).

As part of a wider study into low-temperature crystal

hydrates of MgSeO4 and related compounds (Fortes et al.,

2013) we synthesised the title compound and carried out a

single-crystal neutron diffraction experiment in order to

determine its structure.

2. Structural commentary

The crystal structure (Fig. 1) is isostructural with that of the

sulfate, having isolated [Mg(H2O)6]2+ octahedra and [SeO4]2�

tetrahedra linked by a framework of moderately strong

hydrogen bonds (H� � �O from 1.692 to 1.946 Å; Table 1). The

seventh water molecule is coordinated to neither Mg nor Se,

occupying a ‘void’ between the polyhedral ions and donating

comparatively weak (i.e., long and non-linear) hydrogen

bonds (Fig. 2, Table 1). The [Mg(H2O)6]2+ octahedron is

slightly elongated along the OW2 – Mg – OW5 axis, the

respective Mg—O distances being 2.101 Å (average)

compared with 2.046 Å (average) for the other four ‘equa-

torial’ water molecules (Table 2). This distortion was also

noted in the sulfate by Baur (1964) and is manifested in

subsequent neutron single-crystal and powder diffraction

studies (Ferraris et al., 1973: Fortes et al., 2006). The difference

is due to the tetrahedral coordination of OW2 and OW5; both

of these water molecules (in addition to being Mg-coordin-

ated) donate two hydrogen bonds and accept one hydrogen

bond, from OW7 and OW6 respectively. The four ‘equatorial’

water molecules donate but do not accept any hydrogen

bonds. In the sulfate at 2 K (Fortes et al., 2006), the average

equatorial Mg—O distances were found to be 2.029 Å and the

average axial Mg—O distances to be 2.100 Å (2.056 and

Acta Cryst. (2014). E70, 134–137 Fortes and Gutmann � [Mg(H2O)6](SeO4)(H2O) 135

Figure 1
Asymmetric unit of MgSeO4�7H2O with anisotropic displacement
ellipsoids drawn at the 50% probability level (75% for Mg and the
selenate O atoms to aid visibility). Dashed rods indicate hydrogen bonds.
The superscripts (i) and (ii) denote, respectively, the symmetry operations
[1 � x, 1

2 + y, 3
2 � z] and [3

2 � x, 1 � y, 1
2 + z].

Table 1
Hydrogen-bond geometry (Å, �).

D—H� � �A D—H H� � �A D� � �A D—H� � �A

OW1—H1A� � �O3i 0.969 (16) 1.692 (16) 2.659 (9) 175.4 (13)
OW1—H1B� � �O4ii 0.968 (16) 1.757 (15) 2.724 (9) 175.1 (11)
OW2—H2A� � �O2i 0.983 (14) 1.781 (15) 2.757 (9) 171.0 (11)
OW2—H2B� � �O4iii 0.984 (11) 1.753 (11) 2.732 (7) 172.4 (10)
OW3—H3A� � �O2ii 0.976 (13) 1.889 (13) 2.861 (8) 174.5 (12)
OW3—H3B� � �O3iv 0.985 (9) 1.708 (9) 2.692 (6) 177.4 (14)
OW4—H4A� � �O1iii 0.976 (14) 1.720 (15) 2.688 (9) 170.9 (11)
OW4—H4B� � �O2v 0.964 (13) 1.927 (11) 2.861 (7) 162.3 (15)
OW5—H5A� � �O4 0.976 (14) 1.874 (14) 2.839 (8) 169.6 (10)
OW5—H5B� � �OW7 0.967 (15) 1.786 (14) 2.742 (9) 169.4 (10)
OW6—H6A� � �OW5i 0.976 (10) 1.875 (10) 2.841 (6) 170.3 (12)
OW6—H6B� � �OW7vi 0.982 (14) 1.809 (13) 2.787 (8) 173.4 (11)
OW7—H7A� � �O1iv 0.973 (10) 1.858 (12) 2.790 (7) 159.5 (14)
OW7—H7B� � �OW2vii 0.955 (13) 1.946 (16) 2.866 (8) 161.2 (15)

Symmetry codes: (i) �xþ 3
2;�yþ 1; z � 1

2; (ii) �xþ 3
2;�yþ 1; zþ 1

2; (iii)
�x þ 1; yþ 1

2;�zþ 1
2; (iv) �xþ 1; yþ 1

2;�zþ 3
2; (v) x� 1

2;�yþ 1
2;�zþ 1; (vi)

x; y; z� 1; (vii) �x þ 1; y� 1
2;�zþ 3

2.

Figure 2
Packing of the polyhedra and interstitial water in MgSeO4�7H2O viewed
down the c-axis. The polyhedral ions have been blurred in order to
emphasize the location of the interstitial water molecules.

Table 2
Selected bond lengths (Å).

Se1—O1 1.630 (6) Mg1—OW1 2.045 (6)
Se1—O3 1.631 (8) Mg1—OW3 2.046 (10)
Se1—O2 1.642 (4) Mg1—OW6 2.058 (9)
Se1—O4 1.661 (7) Mg1—OW5 2.097 (8)
Mg1—OW4 2.037 (6) Mg1—OW2 2.104 (8)



2.102 Å at room temperature; Ferraris et al., 1973; Calleri et al.,

1984).

The [SeO4]2� tetrahedron exhibits a similar property in that

the bond lengths are influenced by the hydrogen-bond

coordination. Two of the oxygen atoms (O1 and O3) accept

two hydrogen bonds and have mean Se—O bond lengths of

1.631 Å, whereas the other two oxygen atoms (O2 and O4)

accept three hydrogen bonds and have a mean Se—O bond

length of 1.652 Å. This distinction is not readily apparent in

any of the data pertaining to the sulfate, but it is worth

observing that the neutron scattering cross-section of selenium

is almost three times greater than that of sulfur so our result

should be considered more accurate. The mean Se—O bond

length of 1.641 Å is in excellent agreement with other similar

high-precision analyses of selenate crystals (Kolitsch, 2001,

2002; Weil & Bonneau, 2014).

Overall, the unit-cell volume of the selenate at 10 K is 4.1%

larger than the sulfate analogue (deuterated) at 2 K. This

expansion is not isotropic, however, with the greatest

proportion being along the a axis of the crystal. We find that

the a axis is 2.7% longer, the b axis 1.0% longer, and the c axis

0.3% longer in the selenate than the sulfate. It is not readily

apparent from examination of the structure why this should be

so. The magnitude of the volumetric strain is virtually identical

to that found in MgSeO4�11H2O (4.1% larger than the sulfate

analogue; Fortes, 2014) and somewhat less than is observed in,

for example, CuSeO4�5H2O (5.1% larger than the equivalent

sulfate; Kolitsch, 2001) or MgSeO4�6H2O (5.2%; Kolitsch,

2002).

3. Synthesis and crystallization

In our initial attempts to make MgSeO4 we employed the

widely cited method of reacting basic Mg-carbonate with

aqueous selenic acid (e.g., Stoilova & Koleva, 1995), but this

was found to leave a substantial amount of acid in solution,

giving a pink-coloured viscous liquid with a sour odour,

which yielded an intimate mixture of MgSeO4�6H2O and

Mg(HSeO3)2�4H2O crystals (cf., Kolitsch, 2002; Mička et al.,

1996) even after repeated re-crystallization and treatment

with aqueous H2O2. Consequently, we prepared an aqueous

solution of magnesium selenate by stirring MgO into a

solution of H2SeO4 (Sigma–Aldrich 481513, 40%wt diluted

further in its own weight of distilled water) heated to 340 K.

This reaction is much less dramatic than is the case when

Mg-carbonate is used and the only clear indication that it has

run to completion is the pH of the solution, which changed

from 0.11 to 8.80. After a period of evaporation in the open

air, the solution precipitates cm-sized crystals of

MgSeO4�6H2O. After a further round of recrystallization from

distilled water the phase purity of the hexahydrate was veri-

fied both by X-ray powder diffraction and Raman spectro-

scopy.

Finally, crystalline MgSeO4�6H2O was dissolved in distilled

water to a concentration of 35%wt MgSeO4 at 333 K, and this

liquid was left to evaporate in a refrigerated workshop at

269 K. After two days, slender prismatic crystals indis-

tinguishable in habit from MgSO4�7H2O, appeared. One of

these was removed from the liquid, dried on filter paper and

cut into a pair of fragments each with dimensions 1 x 1 x 4 mm.

The two fragments were placed side-by-side in an aluminium

foil pouch suspended inside a standard thin-walled vanadium

sample can (6 mm inner diameter). The lid of the can was

sealed with indium wire and was then transported to the ISIS

neutron source immersed in liquid nitrogen.

The sample can was screwed onto a standard centre stick

and inserted into a pre-cooled Closed-Cycle Refrigerator

(CCR) already mounted on the SXD beam-line (Keen et al.,

2006). Initial data collection as the sample was cooled from

200 K down to 10 K revealed strong reflections from both

crystals that could be indexed with an orthorhombic unit cell

of similar shape but roughly 4% larger than that of

MgSO4�7H2O. After cooling to 10 K data were collected with

the crystals in four discrete orientations with respect to the

incident beam, optimizing the coverage of reciprocal space,

with integration times of 1600 mAhr each (roughly 10 h per

frame at typical ISIS beam intensity). The peaks were indexed

and integrated using the instrument software, SXD2001

(Gutmann, 2005) and exported in a format suitable for

analysis using SHELX2014 (Sheldrick, 2008; Gruene et al.,

2014).
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Table 3
Experimental details.

Crystal data
Chemical formula [Mg(H2O)6](SeO4)(H2O)
Mr 293.38
Crystal system, space group Orthorhombic, P212121

Temperature (K) 10
a, b, c (Å) 12.234 (4), 12.020 (4), 6.809 (3)
V (Å3) 1001.3 (6)
Z 4
Radiation type Neutron, � = 0.48–7.0 Å
� (mm�1) 0.48 + 0.0036 * �
Crystal size (mm) 1.00 � 1.00 � 4.00

Data collection
Diffractometer SXD diffractometer
Absorption correction Numerical. The linear absorption

coefficient is wavelength
dependent and is calculated as:
� = 0.4823 + 0.0036 * � [mm�1]
as determined by Gaussian
integration in SXD2001
(Gutmann, 2005)

No. of measured, independent and
observed [I > 2�(I)] reflections

4337, 4337, 4337

Refinement
R[F 2 > 2�(F 2)], wR(F 2), S 0.072, 0.197, 1.08
No. of reflections 4337
No. of parameters 252
H-atom treatment All H-atom parameters refined

w = 1/[�2(Fo
2) + (0.1399P)2 +

21.2928P] where P = (Fo
2 +

2Fc
2)/3

��max, ��min (fermi Å�3) 2.06, �1.72
Absolute structure All f0 0 are zero, so absolute struc-

ture could not be determined

Computer programs: SXD2001 (Gutmann, 2005), SHELXS2014 and SHELXL2014
(Gruene et al., 2014), DIAMOND (Putz & Brandenburg, 2006) and publCIF (Westrip,
2010).



Upon completion of the experiment, crystals of the title

compound that had been stored in a glass vial at 253 K for ten

days were analysed by means of X-ray powder diffraction.

This measurement, carried out on a custom Peltier cold stage

(Wood et al., 2012) at 253 K, revealed that the heptahydrate

had transformed completely to the newly reported

MgSeO4�9H2O (Fortes, 2014), thus providing some initial

insight into the relative stability of the two compounds.

4. Refinement

Crystal data, data collection and structure refinement details

are summarized in Table 3. Structure refinement with

SHELXL using the model obtained at 2 K for the deuterated

MgSO4 analogue (Fortes et al., 2006) based on earlier work

(Baur, 1964: Ferraris et al., 1973: Calleri et al., 1984) yielded a

good fit with no density residuals larger than 4.5% of the

nuclear scattering density due to a hydrogen atom. No

restraints were used and all anisotropic temperature factors

were refined independently.
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A. Dominic Fortes and Matthias J. Gutmann

Computing details 

Data collection: SXD2001 (Gutmann, 2005); cell refinement: SXD2001 (Gutmann, 2005); data reduction: SXD2001 

(Gutmann, 2005); program(s) used to solve structure: SHELXS2014 (Gruene et al., 2014); program(s) used to refine 

structure: SHELXL2014 (Gruene et al., 2014); molecular graphics: DIAMOND (Putz & Brandenburg, 2006); software 

used to prepare material for publication: publCIF (Westrip, 2010).

Hexaaquamagnesium(II) selenate monohydrate 

Crystal data 

[Mg(H2O)6](SeO4)(H2O)
Mr = 293.38
Orthorhombic, P212121

a = 12.234 (4) Å
b = 12.020 (4) Å
c = 6.809 (3) Å
V = 1001.3 (6) Å3

Z = 4

F(000) = 592
Dx = 1.946 Mg m−3

Neutron radiation, λ = 0.48–7.0 Å
Cell parameters from 550 reflections
µ = 0.48 + 0.0036 * λ mm−1

T = 10 K
Rhomboid, colourless
4.00 × 1.00 × 1.00 mm

Data collection 

SXD 
diffractometer

Radiation source: ISIS neutron spallation source
time–of–flight LAUE diffraction scans
Absorption correction: numerical 

The linear absorption coefficient is wavelength 
dependent and is calculated as: µ = 0.4823 + 
0.0036 * λ [mm-1] as determined by Gaussian 
integration in SXD2001 (Gutmann, 2005)

Tmin = ?, Tmax = ?
4337 measured reflections
4337 independent reflections
4337 reflections with I > 2σ(I)
θmax = 84.5°, θmin = 0.001°
h = −32→30
k = −31→20
l = −11→6

Refinement 

Refinement on F2

Least-squares matrix: full
R[F2 > 2σ(F2)] = 0.072
wR(F2) = 0.197
S = 1.08
4337 reflections
252 parameters
0 restraints

Primary atom site location: structure-invariant 
direct methods

Hydrogen site location: difference Fourier map
All H-atom parameters refined
w = 1/[σ2(Fo

2) + (0.1399P)2 + 21.2928P] 
where P = (Fo

2 + 2Fc
2)/3

(Δ/σ)max < 0.001
Δρmax = 2.06 e Å−3

Δρmin = −1.72 e Å−3
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Extinction correction: SHELXL2014 (Gruene et 
al., 2014), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4

Extinction coefficient: 0.0026 (3)

Absolute structure: All f" are zero, so absolute 
structure could not be determined

Special details 

Experimental. For peak integration a local UB matrix refined for each frame, using approximately 50 reflections from 
each of the 11 detectors. Hence _cell_measurement_reflns_used 550 For final cell dimensions a weighted average of all 
local cells was calculated Because of the nature of the experiment, it is not possible to give values of theta_min and 
theta_max for the cell determination. The same applies for the wavelength used for the experiment. The range of 
wavelengths used was 0.48–7.0 Angstroms, BUT the bulk of the diffraction information is obtained from wavelengths in 
the range 0.7–2.5 Angstroms. The data collection procedures on the SXD instrument used for the single-crystal neutron 
data collection are most recently summarized in the Appendix to the following paper Wilson, C. C. (1997). J. Mol. Struct. 
405, 207–217
Geometry. All e.s.d.s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full 
covariance matrix. The cell e.s.d.s are taken into account individually in the estimation of e.s.d.s in distances, angles and 
torsion angles; correlations between e.s.d.s in cell parameters are only used when they are defined by crystal symmetry. 
An approximate (isotropic) treatment of cell e.s.d.s is used for estimating e.s.d.s involving l.s. planes.
Refinement. The variable wavelength nature of the data collection procedure means that sensible values of 
_diffrn_reflns_theta_min & _diffrn_reflns_theta_max cannot be given instead the following limits are given 
_diffrn_reflns_sin(theta)/lambda_min 0.06 _diffrn_reflns_sin(theta)/lambda_max 1.38 _refine_diff_density_max/min is 
given in Fermi per angstrom cubed not electons per angstrom cubed. Another way to consider the _refine_diff_density_ 
is as a percentage of the scattering density of a given atom: _refine_diff_density_max = 4.5% of hydrogen 
_refine_diff_density_min = -3.8% of hydrogen Refinement of F2 against ALL reflections. The weighted R-factor wR and 
goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The 
threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of 
reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors 
based on ALL data will be even larger. For comparison, the calculated R-factor based on F is 0.0578 for the 1606 unique 
reflections obtained after merging to generate the Fourier map.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) 

x y z Uiso*/Ueq

Se1 0.72001 (19) 0.1764 (3) 0.4966 (7) 0.0005 (6)
O1 0.6727 (3) 0.0565 (4) 0.4240 (10) 0.0045 (10)
O2 0.8540 (3) 0.1781 (4) 0.4840 (10) 0.0039 (10)
O3 0.6788 (3) 0.2016 (4) 0.7201 (10) 0.0032 (9)
O4 0.6714 (3) 0.2769 (4) 0.3540 (10) 0.0037 (10)
Mg1 0.5841 (3) 0.6050 (4) 0.4601 (11) 0.0028 (11)
OW1 0.7361 (3) 0.6719 (5) 0.5016 (11) 0.0053 (10)
OW2 0.5312 (3) 0.7470 (4) 0.3064 (10) 0.0046 (10)
OW3 0.5370 (3) 0.6718 (5) 0.7231 (10) 0.0052 (10)
OW4 0.4319 (3) 0.5399 (4) 0.4219 (10) 0.0049 (11)
OW5 0.6304 (3) 0.4595 (4) 0.6082 (10) 0.0042 (10)
OW6 0.6434 (3) 0.5384 (4) 0.2028 (11) 0.0059 (11)
OW7 0.5042 (3) 0.4328 (4) 0.9377 (11) 0.0048 (10)
H1A 0.7663 (8) 0.7214 (10) 0.403 (2) 0.019 (2)
H1B 0.7660 (8) 0.6934 (9) 0.628 (2) 0.017 (3)
H2A 0.5789 (8) 0.7721 (9) 0.199 (2) 0.017 (2)
H2B 0.4571 (7) 0.7511 (9) 0.251 (2) 0.016 (2)
H3A 0.5772 (7) 0.7242 (9) 0.805 (2) 0.018 (3)
H3B 0.4584 (7) 0.6826 (10) 0.748 (2) 0.018 (2)
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H4A 0.3879 (7) 0.5493 (9) 0.304 (2) 0.017 (2)
H4B 0.4068 (8) 0.4717 (9) 0.481 (2) 0.020 (3)
H5A 0.6362 (7) 0.3931 (9) 0.526 (2) 0.019 (3)
H5B 0.5863 (8) 0.4406 (9) 0.721 (2) 0.018 (2)
H6A 0.7205 (7) 0.5302 (10) 0.170 (3) 0.026 (3)
H6B 0.5992 (8) 0.4994 (10) 0.104 (2) 0.019 (3)
H7A 0.4395 (7) 0.4789 (9) 0.953 (2) 0.021 (3)
H7B 0.4843 (8) 0.3642 (9) 0.998 (3) 0.023 (3)

Atomic displacement parameters (Å2) 

U11 U22 U33 U12 U13 U23

Se1 0.0004 (7) 0.0005 (10) 0.0006 (18) −0.0001 (7) −0.0003 (10) −0.0002 (15)
O1 0.0057 (12) 0.0042 (19) 0.004 (3) −0.0009 (12) −0.0004 (16) −0.0005 (19)
O2 0.0013 (10) 0.0051 (18) 0.005 (3) −0.0001 (11) 0.0015 (14) 0.002 (2)
O3 0.0041 (13) 0.0042 (19) 0.001 (3) −0.0006 (11) 0.0013 (15) −0.0011 (19)
O4 0.0046 (13) 0.0025 (18) 0.004 (3) 0.0004 (12) 0.0005 (15) 0.0016 (19)
Mg1 0.0027 (12) 0.0021 (17) 0.003 (3) 0.0008 (11) −0.0005 (14) −0.0019 (19)
OW1 0.0046 (12) 0.008 (2) 0.003 (3) −0.0021 (12) 0.0007 (17) −0.001 (3)
OW2 0.0038 (12) 0.0028 (19) 0.007 (3) 0.0004 (11) −0.0016 (16) 0.000 (2)
OW3 0.0038 (11) 0.007 (2) 0.005 (3) −0.0004 (13) 0.0005 (15) −0.001 (2)
OW4 0.0042 (13) 0.006 (2) 0.005 (3) −0.0011 (13) −0.0017 (14) 0.000 (2)
OW5 0.0057 (13) 0.0010 (19) 0.006 (3) 0.0000 (12) 0.0002 (14) 0.001 (2)
OW6 0.0046 (13) 0.006 (2) 0.007 (3) −0.0001 (13) 0.0006 (16) −0.002 (2)
OW7 0.0064 (14) 0.0040 (19) 0.004 (3) 0.0009 (12) 0.0009 (15) 0.000 (2)
H1A 0.022 (4) 0.020 (5) 0.016 (7) −0.005 (3) −0.004 (4) −0.002 (5)
H1B 0.020 (4) 0.019 (5) 0.013 (8) −0.006 (3) −0.004 (4) −0.002 (5)
H2A 0.019 (4) 0.014 (4) 0.018 (7) −0.002 (3) 0.007 (4) 0.004 (5)
H2B 0.013 (3) 0.017 (4) 0.018 (7) 0.001 (3) 0.000 (3) −0.003 (5)
H3A 0.015 (3) 0.019 (5) 0.019 (7) −0.003 (3) 0.001 (4) −0.012 (5)
H3B 0.009 (3) 0.024 (5) 0.021 (7) 0.001 (3) 0.005 (3) −0.002 (5)
H4A 0.016 (3) 0.021 (5) 0.013 (7) 0.001 (3) −0.006 (3) −0.002 (5)
H4B 0.022 (4) 0.016 (4) 0.021 (8) −0.007 (3) −0.001 (4) 0.005 (5)
H5A 0.021 (3) 0.014 (4) 0.021 (8) 0.002 (3) 0.003 (4) −0.004 (5)
H5B 0.020 (4) 0.022 (5) 0.011 (7) −0.001 (3) 0.002 (4) 0.001 (5)
H6A 0.009 (3) 0.030 (6) 0.039 (10) 0.002 (3) 0.004 (4) 0.001 (6)
H6B 0.018 (3) 0.023 (5) 0.015 (8) −0.005 (3) −0.002 (4) −0.004 (5)
H7A 0.015 (3) 0.018 (5) 0.030 (9) 0.007 (3) 0.001 (4) 0.007 (5)
H7B 0.026 (4) 0.016 (5) 0.028 (9) −0.003 (3) −0.002 (5) 0.013 (6)

Geometric parameters (Å, º) 

Se1—O1 1.630 (6) OW2—H2A 0.983 (14)
Se1—O3 1.631 (8) OW2—H2B 0.984 (11)
Se1—O2 1.642 (4) OW3—H3A 0.976 (13)
Se1—O4 1.661 (7) OW3—H3B 0.985 (9)
Mg1—OW4 2.037 (6) OW4—H4B 0.964 (13)
Mg1—OW1 2.045 (6) OW4—H4A 0.976 (14)
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Mg1—OW3 2.046 (10) OW5—H5B 0.967 (15)
Mg1—OW6 2.058 (9) OW5—H5A 0.976 (14)
Mg1—OW5 2.097 (8) OW6—H6A 0.976 (10)
Mg1—OW2 2.104 (8) OW6—H6B 0.982 (14)
OW1—H1B 0.968 (16) OW7—H7B 0.955 (13)
OW1—H1A 0.969 (16) OW7—H7A 0.973 (10)

O1—Se1—O3 109.7 (3) OW5—Mg1—OW2 177.3 (3)
O1—Se1—O2 110.5 (3) H1B—OW1—H1A 107.8 (12)
O3—Se1—O2 110.8 (4) H1B—OW1—Mg1 124.8 (9)
O1—Se1—O4 109.8 (4) H1A—OW1—Mg1 119.5 (9)
O3—Se1—O4 107.4 (3) H2A—OW2—H2B 104.2 (12)
O2—Se1—O4 108.6 (3) H2A—OW2—Mg1 115.9 (7)
OW4—Mg1—OW1 179.2 (5) H2B—OW2—Mg1 121.0 (7)
OW4—Mg1—OW3 90.3 (3) H3A—OW3—H3B 108.0 (11)
OW1—Mg1—OW3 88.9 (4) H3A—OW3—Mg1 127.8 (8)
OW4—Mg1—OW6 93.7 (3) H3B—OW3—Mg1 118.5 (10)
OW1—Mg1—OW6 87.2 (3) H4B—OW4—H4A 105.5 (11)
OW3—Mg1—OW6 175.7 (3) H4B—OW4—Mg1 124.4 (8)
OW4—Mg1—OW5 89.3 (3) H4A—OW4—Mg1 124.5 (8)
OW1—Mg1—OW5 90.9 (3) H5B—OW5—H5A 107.7 (11)
OW3—Mg1—OW5 89.0 (4) H5B—OW5—Mg1 115.3 (7)
OW6—Mg1—OW5 89.4 (3) H5A—OW5—Mg1 115.3 (10)
OW4—Mg1—OW2 88.1 (3) H6A—OW6—H6B 109.0 (13)
OW1—Mg1—OW2 91.7 (3) H6A—OW6—Mg1 125.2 (11)
OW3—Mg1—OW2 91.7 (3) H6B—OW6—Mg1 125.1 (8)
OW6—Mg1—OW2 90.0 (4) H7B—OW7—H7A 103.7 (11)

Hydrogen-bond geometry (Å, º) 

D—H···A D—H H···A D···A D—H···A

OW1—H1A···O3i 0.969 (16) 1.692 (16) 2.659 (9) 175.4 (13)
OW1—H1B···O4ii 0.968 (16) 1.757 (15) 2.724 (9) 175.1 (11)
OW2—H2A···O2i 0.983 (14) 1.781 (15) 2.757 (9) 171.0 (11)
OW2—H2B···O4iii 0.984 (11) 1.753 (11) 2.732 (7) 172.4 (10)
OW3—H3A···O2ii 0.976 (13) 1.889 (13) 2.861 (8) 174.5 (12)
OW3—H3B···O3iv 0.985 (9) 1.708 (9) 2.692 (6) 177.4 (14)
OW4—H4A···O1iii 0.976 (14) 1.720 (15) 2.688 (9) 170.9 (11)
OW4—H4B···O2v 0.964 (13) 1.927 (11) 2.861 (7) 162.3 (15)
OW5—H5A···O4 0.976 (14) 1.874 (14) 2.839 (8) 169.6 (10)
OW5—H5B···OW7 0.967 (15) 1.786 (14) 2.742 (9) 169.4 (10)
OW6—H6A···OW5i 0.976 (10) 1.875 (10) 2.841 (6) 170.3 (12)
OW6—H6B···OW7vi 0.982 (14) 1.809 (13) 2.787 (8) 173.4 (11)
OW7—H7A···O1iv 0.973 (10) 1.858 (12) 2.790 (7) 159.5 (14)
OW7—H7B···OW2vii 0.955 (13) 1.946 (16) 2.866 (8) 161.2 (15)

Symmetry codes: (i) −x+3/2, −y+1, z−1/2; (ii) −x+3/2, −y+1, z+1/2; (iii) −x+1, y+1/2, −z+1/2; (iv) −x+1, y+1/2, −z+3/2; (v) x−1/2, −y+1/2, −z+1; (vi) x, y, 
z−1; (vii) −x+1, y−1/2, −z+3/2.


