organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-ethyl­quinazoline-4(3H)-thione

aChemistry Department, College of Sciences and Humanities, Salman bin Abdulaziz University, PO Box 83, Al-Kharij 11942, Saudi Arabia, bSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, Wales, and cCornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, PO Box 10219, Riyadh 11433, Saudi Arabia
*Correspondence e-mail: gelhiti@ksu.edu.sa

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 13 July 2014; accepted 17 July 2014; online 1 August 2014)

In the title compound, C10H10N2S, all non-H atoms are almost coplanar [maximum deviation = 0.103 (1) Å]. In the crystal, N—H⋯S inter­actions form R22(8) rings linking pairs of mol­ecules related by inversion. The mol­ecular pairs are stacked along [100]. A herringbone arrangement of pairs in the [010] direction forms layers parallel to (010).

1. Related literature

For the synthesis of quinazoline-4(3H)-thio­nes, see: Bogert et al. (1903[Bogert, M. T., Breneman, H. C. & Hand, W. F. (1903). J. Am. Chem. Soc. 25, 372-380.]); Zoltewicz & Sharpless (1976[Zoltewicz, J. A. & Sharpless, T. W. (1976). J. Org. Chem. 32, 2681-2685.]); Segarra et al. (1998[Segarra, V., Crespo, M. I., Pujol, F., Beleta, J., Doménech, T., Miralpeix, M., Palacios, J. M., Castro, A. & Martinez, A. (1998). Bioorg. Med. Chem. Lett. 8, 505-510.]); El-Hiti (2004[El-Hiti, G. A. (2004). Synthesis, pp. 363-368.]); Ozturk et al. (2007[Ozturk, T., Ertas, E. & Mert, O. (2007). Chem. Rev. 107, 5210-5278.]); El-Hiti et al. (2011[El-Hiti, G. A., Hussain, A., Hegazy, A. S. & Alotaibi, M. H. (2011). J. Sulfur Chem. 32, 361-395.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C10H10N2S

  • Mr = 190.26

  • Orthorhombic, P b c a

  • a = 5.8231 (3) Å

  • b = 14.3214 (6) Å

  • c = 21.7365 (8) Å

  • V = 1812.71 (14) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 150 K

  • 0.41 × 0.24 × 0.15 mm

2.2. Data collection

  • Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.780, Tmax = 1.000

  • 7795 measured reflections

  • 2240 independent reflections

  • 1973 reflections with I > 2σ(I)

  • Rint = 0.020

2..3. Refinement

  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.087

  • S = 1.03

  • 2240 reflections

  • 119 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯S1i 0.88 2.53 3.3854 (11) 166
Symmetry code: (i) -x+2, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Structural commentary top

The 2-ethyl-3H-quinazoline-4-thione molecule (Fig 1) is almost planer (apart from the ethyl hydrogens) with the ethyl group being twisted from the quinazoline-4-thione plane by 8.7 (2)°. N—H···S inter­actions form R22(8) rings to link pairs of molecules related by inversion. The pairs of molecules are stacked parallel to the a-axis (Fig 2). Adjacent pairs pack in a herring bone arrangement in the [010] direction to form layers parallel to the (010) plane. 2-(Substituted alkyl)-3H-quinazoline-4-thione derivatives can be obtained from double li­thia­tion of 2-alkyl-3H-quinazoline-4-thio­nes followed by reactions with electrophiles, including alkyl iodides, at low temperature in anhydrous THF (El-Hiti, 2004). Also, 3H-quinazoline-4-thio­nes are produced from the corresponding 3H-quinazoline-4-ones using phospho­rus penta­sulfide (Bogert et al., 1903; Ozturk et al., 2007; El-Hiti et al., 2011) or Lawesson's reagent (Segarra et al., 1998). 3H-Quinazoline-4-thio­nes have also been synthesized in one-step from reaction of 2-amino­benzo­nitriles and thio­amides in the presence of hydrogen bromide in various solvents on a steam bath for 1–4 h (Zoltewicz & Sharpless, 1976).

Synthesis and crystallization top

2-Ethyl-3H-quinazoline-4-thione was obtained in 92% yield from double li­thia­tion of 2-methyl-3H-quinazoline-4-thione with n-butyl­lithium at 78 οC in anhydrous THF under nitro­gen followed by reaction with iodo­methane (El-Hiti, 2004). Crystallization from methanol gave the title compound as yellow crystals. The NMR and low and high resolution mass spectra for the title compound were consistent with those reported (El-Hiti, 2004).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms were placed in calculated positions with C—H = 0.95 and 0.98Å and refined in riding mode, Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for aromatic H atoms

Related literature top

For the synthesis of quinazoline-4(3H)-thiones, see: Bogert et al. (1903); Zoltewicz & Sharpless (1976); Segarra et al. (1998); El-Hiti (2004); Ozturk et al. (2007); El-Hiti et al. (2011).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A molecule of the title compound showing atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Crystal structure packing showing N—H···S contacts as dotted lines.
2-Ethylquinazoline-4(3H)-thione top
Crystal data top
C10H10N2SDx = 1.394 Mg m3
Mr = 190.26Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 3617 reflections
a = 5.8231 (3) Åθ = 3.9–29.3°
b = 14.3214 (6) ŵ = 0.31 mm1
c = 21.7365 (8) ÅT = 150 K
V = 1812.71 (14) Å3Plate, yellow
Z = 80.41 × 0.24 × 0.15 mm
F(000) = 800
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
2240 independent reflections
Radiation source: SuperNova (Mo) X-ray Source1973 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.020
ω scansθmax = 29.8°, θmin = 3.0°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
h = 67
Tmin = 0.780, Tmax = 1.000k = 1914
7795 measured reflectionsl = 2329
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.0416P)2 + 0.7981P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2240 reflectionsΔρmax = 0.30 e Å3
119 parametersΔρmin = 0.25 e Å3
Crystal data top
C10H10N2SV = 1812.71 (14) Å3
Mr = 190.26Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 5.8231 (3) ŵ = 0.31 mm1
b = 14.3214 (6) ÅT = 150 K
c = 21.7365 (8) Å0.41 × 0.24 × 0.15 mm
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
2240 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
1973 reflections with I > 2σ(I)
Tmin = 0.780, Tmax = 1.000Rint = 0.020
7795 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.087H-atom parameters constrained
S = 1.03Δρmax = 0.30 e Å3
2240 reflectionsΔρmin = 0.25 e Å3
119 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7433 (2)0.57478 (9)0.62537 (6)0.0185 (3)
C20.6649 (2)0.44643 (8)0.55604 (5)0.0178 (2)
C30.4705 (2)0.42557 (8)0.59550 (5)0.0177 (3)
C40.4368 (2)0.48131 (8)0.64832 (5)0.0183 (3)
C50.3171 (2)0.35262 (9)0.58239 (6)0.0209 (3)
H50.33790.31580.54650.025*
C60.1366 (2)0.33425 (9)0.62146 (6)0.0236 (3)
H60.03370.28450.61270.028*
C70.1046 (2)0.38917 (9)0.67440 (6)0.0240 (3)
H70.01970.37600.70130.029*
C80.2513 (2)0.46175 (9)0.68761 (6)0.0218 (3)
H80.22720.49870.72330.026*
C90.8998 (2)0.65696 (9)0.63452 (6)0.0227 (3)
H9A0.87340.70230.60090.027*
H9B1.06090.63540.63160.027*
C100.8668 (3)0.70632 (9)0.69567 (6)0.0246 (3)
H10A0.70580.72520.70000.037*
H10B0.96520.76180.69720.037*
H10C0.90800.66390.72930.037*
N10.78973 (18)0.52156 (7)0.57402 (5)0.0188 (2)
H10.90860.53740.55130.023*
N20.57662 (19)0.55697 (7)0.66273 (5)0.0199 (2)
S10.73978 (6)0.38502 (2)0.49367 (2)0.02214 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0210 (6)0.0177 (6)0.0169 (6)0.0022 (5)0.0006 (4)0.0010 (5)
C20.0203 (6)0.0164 (5)0.0166 (5)0.0039 (5)0.0026 (5)0.0008 (4)
C30.0194 (6)0.0171 (6)0.0167 (5)0.0027 (5)0.0019 (5)0.0020 (4)
C40.0197 (6)0.0178 (6)0.0172 (5)0.0019 (5)0.0012 (4)0.0010 (5)
C50.0237 (7)0.0189 (6)0.0202 (6)0.0008 (5)0.0032 (5)0.0006 (5)
C60.0238 (7)0.0212 (6)0.0258 (6)0.0033 (5)0.0029 (5)0.0012 (5)
C70.0213 (7)0.0264 (7)0.0244 (6)0.0013 (5)0.0028 (5)0.0038 (5)
C80.0242 (7)0.0226 (6)0.0186 (6)0.0015 (5)0.0016 (5)0.0002 (5)
C90.0238 (7)0.0208 (6)0.0233 (6)0.0033 (5)0.0041 (5)0.0040 (5)
C100.0292 (7)0.0233 (6)0.0214 (6)0.0047 (5)0.0001 (5)0.0040 (5)
N10.0188 (5)0.0194 (5)0.0182 (5)0.0003 (4)0.0030 (4)0.0024 (4)
N20.0220 (6)0.0191 (5)0.0187 (5)0.0006 (4)0.0015 (4)0.0012 (4)
S10.0244 (2)0.02191 (18)0.02011 (17)0.00029 (12)0.00293 (12)0.00599 (12)
Geometric parameters (Å, º) top
C1—N21.2908 (16)C6—C71.4061 (19)
C1—N11.3784 (16)C6—H60.9500
C1—C91.5017 (18)C7—C81.3757 (19)
C2—N11.3560 (16)C7—H70.9500
C2—C31.4514 (17)C8—H80.9500
C2—S11.6737 (12)C9—C101.5177 (17)
C3—C51.4038 (18)C9—H9A0.9900
C3—C41.4119 (16)C9—H9B0.9900
C4—N21.3910 (16)C10—H10A0.9800
C4—C81.4054 (18)C10—H10B0.9800
C5—C61.3766 (19)C10—H10C0.9800
C5—H50.9500N1—H10.8800
N2—C1—N1123.21 (12)C6—C7—H7119.6
N2—C1—C9121.86 (11)C7—C8—C4120.08 (12)
N1—C1—C9114.92 (11)C7—C8—H8120.0
N1—C2—C3114.27 (11)C4—C8—H8120.0
N1—C2—S1120.71 (10)C1—C9—C10113.84 (11)
C3—C2—S1125.01 (10)C1—C9—H9A108.8
C5—C3—C4119.83 (12)C10—C9—H9A108.8
C5—C3—C2121.97 (11)C1—C9—H9B108.8
C4—C3—C2118.19 (11)C10—C9—H9B108.8
N2—C4—C8117.93 (11)H9A—C9—H9B107.7
N2—C4—C3122.83 (11)C9—C10—H10A109.5
C8—C4—C3119.22 (12)C9—C10—H10B109.5
C6—C5—C3120.19 (12)H10A—C10—H10B109.5
C6—C5—H5119.9C9—C10—H10C109.5
C3—C5—H5119.9H10A—C10—H10C109.5
C5—C6—C7119.94 (12)H10B—C10—H10C109.5
C5—C6—H6120.0C2—N1—C1124.53 (11)
C7—C6—H6120.0C2—N1—H1117.7
C8—C7—C6120.73 (13)C1—N1—H1117.7
C8—C7—H7119.6C1—N2—C4116.89 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S1i0.882.533.3854 (11)166
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S1i0.882.533.3854 (11)165.5
Symmetry code: (i) x+2, y+1, z+1.
 

Footnotes

Additional corresponding author, e-mail: kariukib@cardiff.ac.uk.

Acknowledgements

This project was supported by the Deanship of Scientific Research at Salman bin Abdulaziz University under the research project 2013/01/134.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBogert, M. T., Breneman, H. C. & Hand, W. F. (1903). J. Am. Chem. Soc. 25, 372–380.  CrossRef CAS Google Scholar
First citationEl-Hiti, G. A. (2004). Synthesis, pp. 363–368.  Google Scholar
First citationEl-Hiti, G. A., Hussain, A., Hegazy, A. S. & Alotaibi, M. H. (2011). J. Sulfur Chem. 32, 361–395.  CAS Google Scholar
First citationOzturk, T., Ertas, E. & Mert, O. (2007). Chem. Rev. 107, 5210–5278.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSegarra, V., Crespo, M. I., Pujol, F., Beleta, J., Doménech, T., Miralpeix, M., Palacios, J. M., Castro, A. & Martinez, A. (1998). Bioorg. Med. Chem. Lett. 8, 505–510.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZoltewicz, J. A. & Sharpless, T. W. (1976). J. Org. Chem. 32, 2681–2685.  CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds