

OPEN access

Crystal structure of *N*,*N*'-bis[(pyridin-4-yl)methyl]naphthalene diimide

Mariana Nicolas-Gomez, Diego Martínez-Otero and Alejandro Dorazco-González*

Centro Conjunto de Investigacion en Quimica Sustentable UAEM-UNAM, Instituto de Quimica, Universidad Nacional Autonoma de Mexico, Carretera Toluca-Atlacomulco Km 14.5 CP 50200 Toluca, Estado de Mexico, Mexico. *Correspondence e-mail: adg@unam.mx

Received 19 July 2014; accepted 4 August 2014

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China

In the centrosymmetric title compound, $C_{26}H_{16}N_4O_4$ {systematic name: 6,13-bis[(pyridin-4-yl)methyl]-6,13-diazatetracyclo[6.6.2.0^{4,16}0^{11,15}]hexadeca-1,3,8,10,15-pantaene-5,7,-12,14-tetrone}, the central ring system is essentially planar [maximum deviation = 0.0234 (8) Å] and approximately perpendicular to the terminal pyridine ring [dihedral angle = 84.38 (3)°]. The molecules displays a *trans* conformation with the (pyridin-4-yl)methyl groups on both sides of the central naphthalene diimide plane. In the crystal, molecules are linked by π - π stacking between parallel pyridine rings [centroid-centroid distances = 3.7014 (8) and 3.8553 (8) Å] and weak C-H···O hydrogen bonds, forming a threedimensional supramolecular architecture.

Keywords: crystal structure; naphthalene diimide; transistors; organic supramolecular solids; hydrogen bonding; $\pi - \pi$ stacking.

CCDC reference: 1017799

1. Related literature

For crystal structures of related compounds, see: Xu *et al.* (2011); Reczek *et al.* (2006); Li *et al.* (2009). For colorimetric applications and nanoscale properties, see: Pandeeswar *et al.* (2014); Trivedi *et al.* (2009); Matsunaga *et al.* (2014); Pantoş *et al.* (2007). For the design of transistors, see: Jung *et al.* (2009); Oh *et al.* (2010). For organic supramolecular solids, see: Cheney *et al.* (2007). For the design and synthesis of one-dimensional coordination polymers, see: Li *et al.* (2011, 2012).

 $\gamma = 87.590 \ (4)^{\circ}$ V = 489.37 (6) Å³

Cu $K\alpha$ radiation

 $0.34 \times 0.13 \times 0.08 \ \mathrm{mm}$

14032 measured reflections

1748 independent reflections

1643 reflections with $I > 2\sigma(I)$

 $\mu = 0.87 \text{ mm}^{-1}$

T = 296 K

 $R_{\rm int} = 0.045$

Z = 1

2. Experimental

2.1. Crystal data

$C_{26}H_{16}N_4O_4$
$M_r = 448.43$
Triclinic, P1
a = 5.5891 (4) Å
b = 7.5232(5) Å
c = 11.9525(8) Å
$\alpha = 77.093 \ (3)^{\circ}$
$\beta = 88.445 (4)^{\circ}$

2.2. Data collection

```
Bruker APEXII CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
T_{min} = 0.555, T_{max} = 0.753
```

2.3. Refinement

$R[F^2 > 2\sigma(F^2)] = 0.037$
$wR(F^2) = 0.106$
S = 1.05
1748 reflections

154 parameters H-atom parameters constrained $\Delta \rho_{max} = 0.19 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$

 Table 1

 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C4-H4\cdots O1^{i}$ $C13-H13\cdots O2^{ii}$	0.93 0.93	2.59 2.51	3.5014 (15) 3.3242 (15)	165 146

Symmetry codes: (i) x - 1, y, z; (ii) -x - 1, -y + 2, -z + 1.

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

Acknowledgements

ADG thanks CONACyT for the repatriation fellowship 203539 and M. Sc. María de las Nieves Zavala Segovia for technical assistance.

Supporting information for this paper is available from the IUCr electronic archives (Reference: XU5806).

References

- Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cheney, M. L., Mcmanus, G. J., Perman, J. A., Wang, Z. & Zaworotko, M. J. (2007). Cryst. Growth Des. 7, 616–617.
- Jung, B. J., Sun, J., Lee, T., Sarjeant, A. & Katz, H. E. (2009). Chem. Mater. 12, 94–101.
- Li, G.-B., He, J.-R., Liu, J.-M. & Su, C.-Y. (2012). CrystEngComm, 14, 2152–2158.
- Li, G.-B., Liu, J.-M., Cai, Y.-P. & Su, C.-Y. (2011). Cryst. Growth Des. 11, 2763– 2772.
- Li, G.-B., Liu, J.-M., Yu, Z.-Q., Wang, W. & Su, C.-Y. (2009). *Inorg. Chem.* 48, 8659–8661.

- Matsunaga, Y., Goto, K., Kubono, K., Sako, K. & Shinmyozu, T. (2014). Chem. Eur. J. 20, 7309–7316.
- Oh, J. H., Suraru, S. L., Lee, W. Y., Könemann, M., Höffken, H. W., Röger, C. & Bao, Z. (2010). Adv. Funct. Mater. 20, 2148–2156.
- Pandeeswar, M., Khare, H., Ramakumar, S. & Govindaraju, T. (2014). RSC Adv. 4, 20154–20163.
- Pantoş, G. D., Wietor, J. L. & Sanders, J. K. M. (2007). Angew. Chem. Int. Ed. Engl. 46, 2238–2240.
- Reczek, J. J., Villazor, K. R., Lynch, V., Swager, T. M. & Iverson, B. L. (2006). J. Am. Chem. Soc. 128, 7995–8002.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Trivedi, D. R., Fujiki, Y., Fujita, N., Shinkai, S. & Sada, K. (2009). Chem. Asia. J. 4, 254–261.
- Xu, L.-P., Zhao, W.-N. & Han, L. (2011). Acta Cryst. E67, 01971.

supporting information

Acta Cryst. (2014). E70, o985-o986 [doi:10.1107/S1600536814017917]

Crystal structure of N,N'-bis[(pyridin-4-yl)methyl]naphthalene diimide

Mariana Nicolas-Gomez, Diego Martínez-Otero and Alejandro Dorazco-González

S1. Comment

The assembly of organic molecules in solid state has attracted much attention in supramolecular chemistry, especially in crystal engineering and materials science (Cheney et al., 2007). The study and understanding of intermolecular interactions in a crystal is a central topic for design and synthesis of functional organic materials with desirable optical, electronic and structural properties (Pandeeswar et al., 2014). Herein we report the crystal structure of the title compound, which was prepared from 1,4,5,8-naphthalene dianhydride and 4-aminomethyl-pyridine under reflux in dry DMF. Suitable single-crystals for X-ray diffraction, were obtained directly from reaction mixture after of 12 h. The compound with methanol solvate (1:1) has been reported (Li et al., 2009) and was obtained as by-product during preparation of transition polymeric complexes in a mixture (methanol:chloroform) under solvothermal conditions, structurally this solvated is similar to compound reported here, both *trans* conformation of N-(4-pyridilmethyl) groups as to the dihedral angles between central ring and pyridil groups (86.34°) . The title compound has also been studied as a semi-rigid ditopic ligand to the synthesis of one-dimensional coordination polymers with Zn(II), Mn(II), Co(II), Cd(II) where the ligand plays the key role to determine the final conformation of the polymeric structures (Li et al., 2011, 2012). The coordination of (I) to the salts of ZnCl2, Zn(ClO₄)₂, Zn(CF₃SO₃)₂ generates one-dimensional polymeric structures where *trans* conformation of (I) is maintained and not significant structural changes observed. A series of onedimensional metal-organic frameworks of Mn(SCN)₂, Co(SCN)₂ and Cd(SCN)₂ with (I) have been reported, in all cases (I) shows a Z mode conformation and links up two metal centers such that one-dimensional chains are formed with π - π stacking interactions (centroid-centroid distances = 3.92–4.14 Å).

S2. Experimental

All chemicals were acquired commercially and were used without further purification. A mixture of 1,4,5,8-naphthalene dianhydride (1.0 g, 0.005 mol) and 4-aminomethyl-pyridine (1.08 g, 0.01 mol) in dry DMF (35 ml) was heated under reflux in atmosphere of dinitrogen and stirring for 2 h. Afterwards the resulting yellow solution was cooling and pallid yellow crystals were obtained on the wall of the flask directly from the mixture which corresponds to the compound I pure according to 1H NMR in DMSO-d6. Yield: 95%. Elemental analysis calculated (%) for $C_{26}H_{16}N_4O_4$; C, 69.64; H, 3.60; N, 12.49; found: C, 69.60; H, 3.62; N, 12.45.

S3. Refinement

H atoms were placed in calculated positions with C—H = 0.93–0.97 Å, and refined in riding mode with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

The structure with displacement ellipsoids drawn at the 30% probability level and H atoms as small sphere of arbitrary radii.

Figure 2

View *p*-stacking interactions in the crystal.

6,13-Bis[(pyridin-4-yl)methyl]-6,13-diazatetracyclo[6.6.2.0^{4,16}0^{11,15}]hexadeca-1,3,8,10,15-pantaene-5,7,12,14-

tetrone

Crystal data

 $C_{26}H_{16}N_4O_4$ $M_r = 448.43$ Triclinic, P1 a = 5.5891 (4) Å b = 7.5232 (5) Å c = 11.9525 (8) Å a = 77.093 (3)° $\beta = 88.445$ (4)° $\gamma = 87.590$ (4)° V = 489.37 (6) Å³ Z = 1 F(000) = 232 $D_x = 1.522 \text{ Mg m}^{-3}$ Cu K\alpha radiation, \lambda = 1.54178 \mathcal{A} Cell parameters from 9981 reflections $\theta = 3.8-68.3^{\circ}$ $\mu = 0.87 \text{ mm}^{-1}$ T = 296 KPlate, colourless $0.34 \times 0.13 \times 0.08 \text{ mm}$ Data collection

Bruker APEXII CCD	14032 measured reflections
diffractometer	1748 independent reflections
Radiation source: Incoatec ImuS	1643 reflections with $I > 2\sigma(I)$
Mirrors monochromator	$R_{int} = 0.045$
ω scans	$\theta_{max} = 68.3^{\circ}, \theta_{min} = 3.8^{\circ}$
Absorption correction: multi-scan	$h = -5 \rightarrow 6$
(<i>SADABS</i> ; Bruker, 2008)	$k = -9 \rightarrow 9$
$T_{\min} = 0.555, T_{\max} = 0.753$	$l = -14 \rightarrow 14$
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.037$	H-atom parameters constrained
$wR(F^2) = 0.106$	$w = 1/[\sigma^2(F_o^2) + (0.0617P)^2 + 0.0799P]$
S = 1.05	where $P = (F_o^2 + 2F_c^2)/3$
1748 reflections	$(\Delta/\sigma)_{max} < 0.001$
154 parameters	$\Delta\rho_{max} = 0.19$ e Å ⁻³
0 restraints	$\Delta\rho_{min} = -0.19$ e Å ⁻³
Special details	

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.43898 (16)	0.61174 (13)	0.75255 (7)	0.0471 (3)
N1	-0.0333 (2)	0.68325 (18)	1.12186 (9)	0.0587 (3)
C1	0.1698 (3)	0.7665 (2)	1.09030 (12)	0.0600 (4)
H1	0.2727	0.7785	1.1478	0.072*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	()		(.)	
C1	0.1698 (3)	0.7665 (2)	1.09030 (12)	0.0600 (4)
H1	0.2727	0.7785	1.1478	0.072*
O2	-0.21818 (18)	0.96340 (12)	0.62202 (8)	0.0540 (3)
N2	0.10767 (18)	0.78494 (13)	0.68880 (8)	0.0375 (3)
C2	0.2394 (2)	0.83681 (19)	0.97785 (11)	0.0482 (3)
H2	0.3847	0.8938	0.9613	0.058*
C6	0.1602 (2)	0.90343 (17)	0.76740 (10)	0.0425 (3)
H6A	0.0742	1.0198	0.7428	0.051*
H6B	0.3301	0.9262	0.7628	0.051*
C3	0.0913 (2)	0.82151 (15)	0.89059 (9)	0.0372 (3)
C5	-0.1744 (3)	0.66899 (19)	1.03678 (12)	0.0511 (3)
Н5	-0.3183	0.6110	1.0560	0.061*
C4	-0.1216 (2)	0.73457 (17)	0.92155 (10)	0.0435 (3)
H4	-0.2276	0.7204	0.8658	0.052*
C7	0.2667 (2)	0.63581 (16)	0.69075 (9)	0.0360 (3)
C8	0.2169 (2)	0.51409 (15)	0.61294 (9)	0.0337 (3)
C9	0.02134 (19)	0.55699 (14)	0.53820 (8)	0.0315 (3)
C10	-0.1324 (2)	0.71073 (15)	0.53795 (9)	0.0340 (3)
C11	-0.0899 (2)	0.83074 (15)	0.61813 (9)	0.0376 (3)

supporting information

C12	0.3627 (2)	0.36316 (16)	0.61186 (9)	0.0383 (3)
H12	0.4906	0.3354	0.6618	0.046*
C13	-0.3204 (2)	0.74975 (16)	0.46403 (10)	0.0384 (3)
H13	-0.4206	0.8516	0.4641	0.046*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0449 (5)	0.0592 (6)	0.0403 (5)	-0.0028 (4)	-0.0085 (4)	-0.0169 (4)
N1	0.0686 (8)	0.0691 (8)	0.0368 (6)	0.0111 (6)	0.0030 (5)	-0.0118 (5)
C1	0.0676 (10)	0.0771 (10)	0.0401 (7)	0.0099 (7)	-0.0136 (6)	-0.0243 (7)
O2	0.0626 (6)	0.0463 (5)	0.0580 (6)	0.0133 (4)	-0.0097 (4)	-0.0237 (4)
N2	0.0465 (6)	0.0387 (5)	0.0292 (5)	-0.0039 (4)	0.0003 (4)	-0.0113 (4)
C2	0.0479 (8)	0.0572 (8)	0.0454 (7)	0.0002 (5)	-0.0060 (5)	-0.0234 (6)
C6	0.0530 (7)	0.0405 (6)	0.0372 (6)	-0.0087 (5)	0.0007 (5)	-0.0143 (5)
C3	0.0436 (6)	0.0356 (6)	0.0358 (6)	0.0031 (4)	-0.0018 (4)	-0.0156 (4)
C5	0.0508 (8)	0.0541 (7)	0.0456 (7)	0.0033 (6)	0.0064 (6)	-0.0074 (6)
C4	0.0454 (7)	0.0467 (7)	0.0391 (6)	-0.0006 (5)	-0.0036 (5)	-0.0108 (5)
C7	0.0376 (6)	0.0437 (6)	0.0264 (5)	-0.0056 (4)	0.0017 (4)	-0.0069 (4)
C8	0.0368 (6)	0.0388 (6)	0.0249 (5)	-0.0027 (4)	0.0023 (4)	-0.0060 (4)
C9	0.0349 (6)	0.0351 (6)	0.0235 (5)	-0.0026 (4)	0.0032 (4)	-0.0044 (4)
C10	0.0384 (6)	0.0356 (6)	0.0272 (5)	-0.0012 (4)	0.0026 (4)	-0.0055 (4)
C11	0.0436 (7)	0.0364 (6)	0.0325 (6)	-0.0003 (5)	0.0021 (4)	-0.0077 (4)
C12	0.0376 (6)	0.0453 (6)	0.0304 (6)	0.0027 (5)	-0.0051 (4)	-0.0055 (5)
C13	0.0420 (6)	0.0376 (6)	0.0346 (6)	0.0061 (5)	-0.0002 (4)	-0.0071 (4)

Geometric parameters (Å, °)

N1—C1	1.325 (2)	С5—Н5	0.9300
N1—C5	1.3293 (19)	C6—H6A	0.9700
N2—C11	1.3931 (16)	C6—H6B	0.9700
N2—C7	1.3982 (16)	C7—C8	1.4823 (16)
N2—C6	1.4746 (14)	C8—C12	1.3718 (16)
O1—C7	1.2123 (14)	C8—C9	1.4110 (16)
O2—C11	1.2127 (15)	C9—C10	1.4113 (16)
C1—C2	1.382 (2)	C9—C9 ⁱ	1.416 (2)
C1—H1	0.9300	C10—C13	1.3708 (17)
C2—C3	1.3766 (17)	C10—C11	1.4855 (16)
C2—H2	0.9300	C12—C13 ⁱ	1.4046 (17)
C3—C4	1.3836 (18)	C12—H12	0.9300
C3—C6	1.5100 (16)	C13-C12 ⁱ	1.4046 (17)
C4—C5	1.3834 (18)	C13—H13	0.9300
C4—H4	0.9300		
C1—N1—C5	115.61 (12)	С3—С6—Н6В	109.0
C11—N2—C7	125.48 (10)	H6A—C6—H6B	107.8
C11—N2—C6	118.44 (10)	O1—C7—N2	120.35 (10)
C7—N2—C6	116.06 (10)	O1—C7—C8	122.58 (11)

N1—C1—C2	124.53 (13)	N2—C7—C8	117.06 (10)
N1—C1—H1	117.7	C12—C8—C9	120.29 (11)
C2—C1—H1	117.7	C12—C8—C7	120.26 (11)
C3—C2—C1	119.25 (13)	C9—C8—C7	119.44 (10)
С3—С2—Н2	120.4	C8—C9—C10	121.50 (11)
C1—C2—H2	120.4	C8—C9—C9 ⁱ	119.18 (13)
C2—C3—C4	117.23 (11)	C10-C9-C9 ⁱ	119.32 (13)
C2—C3—C6	120.00 (11)	C13—C10—C9	120.29 (11)
C4—C3—C6	122.74 (11)	C13—C10—C11	119.95 (10)
C5—C4—C3	118.95 (12)	C9—C10—C11	119.77 (11)
С5—С4—Н4	120.5	O2—C11—N2	120.98 (11)
C3—C4—H4	120.5	O2-C11-C10	122.31 (11)
N1-C5-C4	124.44 (13)	N2-C11-C10	116.70 (10)
N1—C5—H5	117.8	C8-C12-C13 ⁱ	120.51 (11)
С4—С5—Н5	117.8	C8—C12—H12	119.7
N2—C6—C3	112.85 (9)	C13 ⁱ —C12—H12	119.7
N2—C6—H6A	109.0	C10-C13-C12 ⁱ	120.41 (10)
С3—С6—Н6А	109.0	C10—C13—H13	119.8
N2—C6—H6B	109.0	C12 ⁱ —C13—H13	119.8
C5—N1—C1—C2	0.1 (2)	C12—C8—C9—C10	179.61 (9)
N1—C1—C2—C3	0.0 (2)	C7—C8—C9—C10	-1.78 (16)
C11—N2—C6—C3	104.43 (12)	C12—C8—C9—C9 ⁱ	-0.36 (19)
C7—N2—C6—C3	-76.70 (13)	C7—C8—C9—C9 ⁱ	178.25 (10)
C1—C2—C3—C4	-0.20 (18)	C8—C9—C10—C13	179.67 (9)
C1—C2—C3—C6	177.80 (12)	C9 ⁱ —C9—C10—C13	-0.36 (19)
N2—C6—C3—C2	139.13 (11)	C8—C9—C10—C11	-0.25 (17)
N2-C6-C3-C4	-42.99 (16)	C9 ⁱ —C9—C10—C11	179.72 (10)
C1—N1—C5—C4	-0.1 (2)	C7—N2—C11—O2	-179.77 (10)
N1—C5—C4—C3	0.0 (2)	C6—N2—C11—O2	-1.01 (17)
C2—C3—C4—C5	0.19 (17)	C7—N2—C11—C10	-0.43 (17)
C6—C3—C4—C5			
C11—N2—C7—O1	-177.75 (11)	C6—N2—C11—C10	178.33 (9)
	-177.75 (11) 177.16 (10)	C6—N2—C11—C10 C13—C10—C11—O2	178.33 (9) 0.79 (18)
C6—N2—C7—O1	-177.75 (11) 177.16 (10) -1.63 (16)	C6—N2—C11—C10 C13—C10—C11—O2 C9—C10—C11—O2	178.33 (9) 0.79 (18) -179.29 (10)
C6—N2—C7—O1 C11—N2—C7—C8	-177.75 (11) 177.16 (10) -1.63 (16) -1.55 (16)	C6—N2—C11—C10 C13—C10—C11—O2 C9—C10—C11—O2 C13—C10—C11—N2	178.33 (9) 0.79 (18) -179.29 (10) -178.55 (9)
C6—N2—C7—O1 C11—N2—C7—C8 C6—N2—C7—C8	-177.75 (11) 177.16 (10) -1.63 (16) -1.55 (16) 179.67 (8)	C6—N2—C11—C10 C13—C10—C11—O2 C9—C10—C11—O2 C13—C10—C11—N2 C9—C10—C11—N2	178.33 (9) 0.79 (18) -179.29 (10) -178.55 (9) 1.38 (16)
C6—N2—C7—O1 C11—N2—C7—C8 C6—N2—C7—C8 O1—C7—C8—C12	-177.75 (11) 177.16 (10) -1.63 (16) -1.55 (16) 179.67 (8) 2.58 (17)	C6—N2—C11—C10 C13—C10—C11—O2 C9—C10—C11—O2 C13—C10—C11—N2 C9—C10—C11—N2 C9—C8—C12—C13 ⁱ	178.33 (9) 0.79 (18) -179.29 (10) -178.55 (9) 1.38 (16) 0.44 (17)
C6—N2—C7—O1 C11—N2—C7—C8 C6—N2—C7—C8 O1—C7—C8—C12 N2—C7—C8—C12	-177.75 (11) 177.16 (10) -1.63 (16) -1.55 (16) 179.67 (8) 2.58 (17) -178.75 (9)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	178.33 (9) $0.79 (18)$ $-179.29 (10)$ $-178.55 (9)$ $1.38 (16)$ $0.44 (17)$ $-178.16 (9)$
C6—N2—C7—O1 C11—N2—C7—C8 C6—N2—C7—C8 O1—C7—C8—C12 N2—C7—C8—C12 O1—C7—C8—C12	-177.75 (11) 177.16 (10) -1.63 (16) -1.55 (16) 179.67 (8) 2.58 (17) -178.75 (9) -176.03 (10)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	178.33 (9) $0.79 (18)$ $-179.29 (10)$ $-178.55 (9)$ $1.38 (16)$ $0.44 (17)$ $-178.16 (9)$ $0.29 (18)$

Symmetry code: (i) -x, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D···A	<i>D</i> —H··· <i>A</i>
C4—H4···O1 ⁱⁱ	0.93	2.59	3.5014 (15)	165

	_		supporting	g information
С13—Н13…О2 ^{ііі}	0.93	2.51	3.3242 (15)	146
Symmetry codes: (ii) <i>x</i> -1, <i>y</i> , <i>z</i> ; (iii) - <i>x</i> -1, - <i>y</i> +2, - <i>z</i> +1.				