

OPEN 3 ACCESS

Crystal structure of 1*H*-imidazol-3-ium 2-(1,3-dioxoisoindolin-2-yl)acetate

Shaaban K. Mohamed,^{a,b} Mehmet Akkurt,^c* Herman Potgieter^d and Muizz Ali^a

^aChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, ^bChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, ^cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and ^dAnalytical Development Division, Manchester Metropolitan University, Manchester M1 5GD, England. *Correspondence e-mail: akkurt@erciyes.edu.tr

Received 22 July 2014; accepted 31 July 2014

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China

The title salt, $C_3H_5N_2^+ \cdot C_{10}H_6NO_4^-$, was obtained during a study of the co-crystallization of N'-[bis(1*H*-imidazol-1-yl)methylene]isonicotinohydrazide with (1,3-dioxoisoindolin-2-yl)acetic acid under aqueous conditions. The 1,3-dioxoisoindolinyl ring system of the anion is essentially planar [maximum deviation = 0.023 (2) Å]. In the crystal, cations and anions are linked *via* classical N-H···O hydrogen bonds and weak C-H···O hydrogen bonds, forming a three-dimensional network. Weak C-H··· π interactions and π - π stacking interactions [centroid–centroid distances = 3.4728 (13) and 3.7339 (13) Å] also occur in the crystal.

Keywords: crystal structure; 1*H*-imidazol-3-ium salt; 2-(1,3-dioxoisoindolin-2-yl)acetate salt; hydrogen bonding; π - π stacking interactions; co-crystallization; pharmaceuticals.

CCDC reference: 1017262

1. Related literature

For the use of co-crystals in drug design, see: Babu & Nangia (2011); Sekhon (2013); Frantz (2006); Pan *et al.* (2008); Vermeire *et al.* (2001).

2. Experimental

2.1. Crystal data $C_{3}H_{5}N_{2}^{+} \cdot C_{10}H_{6}NO_{4}^{-}$ $M_{r} = 273.25$ Monoclinic, $P2_{1}/c$ a = 9.8750 (7) Å b = 18.0543 (15) Å c = 7.0942 (5) Å $\beta = 100.955$ (7)°

2.2. Data collection

Agilent SuperNova, Single source at offset, Eos diffractometer Absorption correction: multi-scan (*CrysAlis PRO*; Agilent, 2013) $T_{\min} = 0.859, T_{\max} = 1.000$

```
2.3. Refinement
```

```
R[F^2 > 2\sigma(F^2)] = 0.053
wR(F^2) = 0.118
S = 1.06
2756 reflections
189 parameters
```

 $V = 1241.75 (16) Å^{3}$ Z = 4 Mo K\alpha radiation $\mu = 0.11 \text{ mm}^{-1}$ T = 150 K 0.09 \times 0.02 \times 0.02 mm

4781 measured reflections 2756 independent reflections 1993 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.028$

H atoms treated by a mixture of
independent and constrained
refinement
$\Delta \rho_{\rm max} = 0.26 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, $^\circ).$

Cg4 is the centroid of the N2/N3/C11-C13 ring.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2N\cdots O4^{i}$	0.99 (3)	1.69 (3)	2.6846 (19)	178 (4)
$N3-H3N\cdots O4^{ii}$	0.97(2)	1.71 (2)	2.680 (2)	175 (2)
C3-H3···O4 ⁱⁱⁱ	0.95	2.45	3.321 (3)	153
C5−H5···O3 ^{iv}	0.95	2.48	3.266 (3)	141
$C9 - H9B \cdot \cdot \cdot O2^{i}$	0.99	2.41	3.397 (3)	172
$C11 - H11 \cdots O3^{ii}$	0.95	2.40	2.987 (3)	120
$C13-H13\cdots O1^{v}$	0.95	2.54	3.352 (2)	143
$C2-H2\cdots Cg4$	0.95	2.87	3.805 (2)	166

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) -x + 1, -y + 1, -z + 1; (iii) $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}$; (iv) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (v) x + 1, y, z + 1.

Data collection: *CrysAlis PRO* (Agilent, 2013); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS2013* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2013* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and *PLATON* (Spek, 2009); software used to prepare material for publication: *PLATON* (Spek, 2009).

Acknowledgements

The authors express their thanks to Dr Robin Pritchard, The University of Manchester, for providing the X-ray diffraction data.

Supporting information for this paper is available from the IUCr electronic archives (Reference: XU5807).

References

- Agilent (2013). CrysAlis PRO. Agilent Tehnologies Ltd, Yarnton, England. Babu, N. J. & Nangia, A. (2011). Cryst. Growth Des. **11**, 2662–2679.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
- Frantz, S. (2006). Nat. Rev. Drug Discov. 5, 881–882.
- Pan, F., Chernew, M. E. & Fendrick, A. M. (2008). J. Gen. Intern. Med. 23, 611–614.
- Sekhon, B. S. (2013). Int. Bull. Drug Res. 1, 24-39.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Vermeire, E., Hearnshaw, H., Van Royen, P. & Denekens, J. (2001). J. Clin. Pharm. Ther. 26, 331-342.

supporting information

Acta Cryst. (2014). E70, o979-o980 [doi:10.1107/S1600536814017619]

Crystal structure of 1*H*-imidazol-3-ium 2-(1,3-dioxoisoindolin-2-yl)acetate

Shaaban K. Mohamed, Mehmet Akkurt, Herman Potgieter and Muizz Ali

S1. Comment

The use of co-crystals in drug design see and delivery and as functional materials with potential applications as pharmaceuticals has recently attracted a significant amount of interest in the pharmaceutical industry (Babu & Nangia, 2011). Co-crystallization in particular is a reliable technique for the modification of the physical properties of a drug as it enables the control of physical properties of Active Pharmaceutical Ingredient (API) molecules such as dissolution, stability, solubility, bioavailability, hygroscopisity and compressibility without changing the chemical composition of the API (Sekhon, 2013). Multi-API co-crystals are also possible solid forms for the delivery of combination drugs that can be tested to overcome problems related with traditional combination drugs (Frantz, 2006). Another benefit of multi-API co-crystal is the ability to reduce the number of pills being taken by a patient due to the improvement of patients long-term medication compliance in long-term drug therapy, since fewer pills need to be taken (Pan *et al.*, 2008; Vermeire *et al.*, 2001). The title compound was obtained during our study on co-crystallization reaction of *N*^r-(di-1*H*-imidazol-1-yl-methylene)isonicotinohydrazide with (1,3-dioxoisoindolin-2-yl)acetic acid under aqouse condition.

Fig. 1 shows one 1*H*-imidazol-3-ium cation and one (1,3-dioxoisoindolin-2-yl)acetate anion in the asymmetric unit of the title compound (I).

The five-membered ring (N2/N3/C11—C13) of the 1*H*-imidazol-3-ium cation is essentially planar [maximum deviation = 0.003 (2) Å for C12]. The nine-membered ring system (N1/C1–C8) of the (1,3-dioxoisoindolin-2-yl)acetate anion is also essentially planar [maximum deviation = -0.023 (2) Å for C8].

In the crystal structure, the anions and cations of (I) are linked *via* N—H···O and C—H···O hydrogen bonds (Table 1, Fig. 2), forming three dimensional network. Further C—H··· π interactions (Table 1) and face-to-face π - π stacking interactions [Cg1···Cg2 (x, 1/2 - y, -1/2 + z) = 3.4728 (13) Å, Cg2···Cg2 (x, 1/2-y, 1/2+z) = 3.7339 (13) Å, where Cg1 and Cg2 are the centroids of the N1/C1/C6–C8 and C1–C6 rings, respectively] presents in the three-dimensional framework.

S2. Experimental

A mixture of 1 mmol (281 mg) of *N*'-(di-1*H*-imidazol-1-ylmethylene)isonicotinohydrazide and 1 mmol (205 mg) of (1,3dioxoisoindolin-2-yl)acetic acid was stirred in 30 ml ethanol at room temperature. Few drops of glacial acetic acid as a catalyst was added to the reaction mixture and allowed to reflux at 351 K for 5 h. The reaction progress was monitored by TLC using a mixture of cyclohexane and ethyl acetate (1:1) as an eluent. On completion, the reaction mixture was poured on crushed ice (50 g). The resulting solid was filtered off, washed with cold ethanol dried under vacuum and recrystallized from ethanol to yield colourless blocks of the title compound (74% yield).

S3. Refinement

H atoms attached to carbon were placed in calculated positions (C—H = 0.95 and 0.99 Å) and were included as riding contributions with isotropic displacement parameters 1.2 those of the attached atoms. H-atoms attached to nitrogen were

placed in locations derived from a difference map and they were refined freely.

Figure 1

Perspective view of the title compound (I). Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

Packing viewed down the *a* axis showing the intermolecular interactions as dotted lines.

1H-imidazol-3-ium (1,3-dioxoisoindolin-2-yl)acetate

Crystal data

C₃H₅N₂^{+·}C₁₀H₆NO₄⁻ $M_r = 273.25$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 9.8750 (7) Å b = 18.0543 (15) Å c = 7.0942 (5) Å $\beta = 100.955$ (7)° V = 1241.75 (16) Å³ Z = 4

Data collection

Agilent SuperNova, Single source at offset, Eos
diffractometer
Radiation source: SuperNova (Mo) X-ray
Source
Mirror monochromator
Detector resolution: 8.0714 pixels mm ⁻¹
ω scans
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
D (1)

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.053$	H atoms treated by a mixture of independent
$wR(F^2) = 0.118$	and constrained refinement
S = 1.06	$w = 1/[\sigma^2(F_o^2) + (0.0327P)^2 + 0.2765P]$
2756 reflections	where $P = (F_o^2 + 2F_c^2)/3$
189 parameters	$(\Delta/\sigma)_{\rm max} < 0.001$
0 restraints	$\Delta ho_{ m max} = 0.26 \ m e \ m \AA^{-3}$
	$\Delta ho_{\min} = -0.26 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The observed criterion of $F^2 > \sigma(F^2)$ is used only for calculating *-R*-factor-obs *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

F(000) = 568

 $\theta = 4.0-27.4^{\circ}$ $\mu = 0.11 \text{ mm}^{-1}$

Block, colourless

 $0.09 \times 0.02 \times 0.02$ mm

 $T_{\min} = 0.859, T_{\max} = 1.000$ 4781 measured reflections 2756 independent reflections 1993 reflections with $I > 2\sigma(I)$

 $\theta_{\text{max}} = 29.1^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$

T = 150 K

 $R_{\rm int} = 0.028$

 $h = -12 \rightarrow 12$ $k = -9 \rightarrow 23$ $l = -9 \rightarrow 5$

 $D_{\rm x} = 1.462 {\rm Mg m^{-3}}$

Mo *K* α radiation, $\lambda = 0.7107$ Å

Cell parameters from 1373 reflections

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.16235 (14)	0.29586 (8)	-0.05484 (19)	0.0277 (5)	
O2	0.54966 (15)	0.42729 (9)	0.1952 (2)	0.0316 (5)	
O3	0.24304 (16)	0.45939 (9)	0.33073 (19)	0.0310 (5)	
O4	0.14750 (14)	0.54438 (8)	0.11691 (18)	0.0236 (5)	
N1	0.33840 (16)	0.37710 (10)	0.0589 (2)	0.0202 (5)	

C1	0.5087 (2)	0.29370 (12)	0.1790 (3)	0.0215 (6)
C2	0.6297 (2)	0.25882 (14)	0.2609 (3)	0.0292 (7)
C3	0.6299 (2)	0.18176 (14)	0.2585 (3)	0.0344 (8)
C4	0.5146 (3)	0.14112 (14)	0.1752 (3)	0.0343 (8)
C5	0.3917 (2)	0.17722 (12)	0.0932 (3)	0.0265 (7)
C6	0.3923 (2)	0.25360 (12)	0.0988 (3)	0.0207 (6)
C7	0.2809 (2)	0.30730 (12)	0.0234 (3)	0.0199 (6)
C8	0.4768 (2)	0.37384 (13)	0.1526 (3)	0.0221 (6)
С9	0.2655 (2)	0.44563 (12)	0.0027 (3)	0.0231 (7)
C10	0.2159 (2)	0.48474 (12)	0.1675 (3)	0.0212 (6)
N2	0.90678 (17)	0.40848 (10)	0.2486 (2)	0.0228 (6)
N3	0.91310 (17)	0.40494 (10)	0.5539 (2)	0.0221 (6)
C11	0.8627 (2)	0.44091 (13)	0.3939 (3)	0.0227 (6)
C12	0.9894 (2)	0.34962 (12)	0.3193 (3)	0.0244 (7)
C13	0.9924 (2)	0.34743 (12)	0.5102 (3)	0.0247 (7)
H2	0.70950	0.28620	0.31660	0.0350*
H3	0.71140	0.15610	0.31560	0.0410*
H4	0.51900	0.08860	0.17370	0.0410*
Н5	0.31170	0.15030	0.03640	0.0320*
H9A	0.18490	0.43490	-0.09980	0.0280*
H9B	0.32720	0.47940	-0.05150	0.0280*
H2N	0.885 (3)	0.4263 (15)	0.114 (4)	0.061 (8)*
H3N	0.894 (2)	0.4211 (13)	0.677 (3)	0.040 (7)*
H11	0.80430	0.48310	0.38420	0.0270*
H12	1.03540	0.31680	0.24770	0.0290*
H13	1.04070	0.31250	0.59820	0.0300*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0257 (8)	0.0262 (9)	0.0296 (8)	-0.0052 (7)	0.0014 (6)	-0.0001 (7)
O2	0.0293 (8)	0.0287 (10)	0.0353 (9)	-0.0110 (7)	0.0026 (6)	0.0010 (7)
O3	0.0450 (10)	0.0266 (10)	0.0218 (8)	0.0109 (8)	0.0074 (7)	0.0055 (7)
O4	0.0313 (8)	0.0196 (9)	0.0195 (7)	0.0062 (7)	0.0040 (6)	0.0007 (6)
N1	0.0209 (8)	0.0159 (10)	0.0235 (9)	0.0004 (7)	0.0038 (7)	-0.0011 (7)
C1	0.0241 (10)	0.0227 (12)	0.0191 (10)	0.0015 (9)	0.0080 (8)	0.0019 (9)
C2	0.0248 (11)	0.0383 (15)	0.0259 (11)	0.0047 (11)	0.0083 (9)	0.0046 (10)
C3	0.0383 (14)	0.0365 (16)	0.0308 (13)	0.0171 (12)	0.0130 (10)	0.0083 (11)
C4	0.0523 (15)	0.0262 (14)	0.0280 (12)	0.0147 (12)	0.0168 (11)	0.0067 (11)
C5	0.0395 (13)	0.0205 (13)	0.0209 (11)	-0.0008 (10)	0.0090 (9)	-0.0030 (9)
C6	0.0270 (11)	0.0205 (12)	0.0164 (10)	0.0007 (9)	0.0091 (8)	-0.0002 (9)
C7	0.0237 (10)	0.0199 (12)	0.0174 (10)	-0.0018 (9)	0.0069 (8)	-0.0009 (9)
C8	0.0211 (10)	0.0267 (13)	0.0191 (10)	-0.0018 (9)	0.0057 (8)	0.0015 (9)
C9	0.0257 (11)	0.0199 (12)	0.0233 (11)	0.0017 (9)	0.0039 (8)	0.0016 (9)
C10	0.0217 (10)	0.0206 (12)	0.0206 (10)	-0.0034 (9)	0.0025 (8)	0.0003 (9)
N2	0.0241 (9)	0.0260 (11)	0.0190 (9)	0.0016 (8)	0.0061 (7)	0.0021 (8)
N3	0.0245 (9)	0.0233 (11)	0.0184 (9)	0.0000 (8)	0.0038 (7)	0.0003 (8)
C11	0.0223 (10)	0.0240 (12)	0.0212 (11)	0.0017 (9)	0.0025 (8)	0.0007 (9)

supporting information

C12	0.0225 (10)	0.0234 (13)	0.0285 (12)	0.0052 (9)	0.0079 (8)	0.0010 (10)
C13	0.0236 (11)	0.0208 (13)	0.0289 (12)	0.0059 (9)	0.0033 (9)	0.0057 (9)

Geometric parameters (Å, °)

Geometric parameters (A,)			
O1—C7	1.214 (2)	C2—C3	1.391 (4)
O2—C8	1.207 (3)	C3—C4	1.389 (3)
O3—C10	1.227 (3)	C4—C5	1.403 (3)
O4—C10	1.285 (3)	C5—C6	1.380 (3)
N1—C7	1.386 (3)	C6—C7	1.488 (3)
N1—C8	1.403 (3)	C9—C10	1.524 (3)
N1—C9	1.449 (3)	С2—Н2	0.9500
N2—C11	1.329 (3)	С3—Н3	0.9500
N2—C12	1.375 (3)	C4—H4	0.9500
N3—C11	1.320 (3)	С5—Н5	0.9500
N3—C13	1.371 (3)	С9—Н9А	0.9900
N2—H2N	0.99 (3)	С9—Н9В	0.9900
N3—H3N	0.97 (2)	C12—C13	1.350 (3)
C1—C8	1.485 (3)	C11—H11	0.9500
C1—C2	1.378 (3)	C12—H12	0.9500
C1—C6	1.386 (3)	C13—H13	0.9500
C7—N1—C8	112.13 (17)	O3—C10—O4	125.81 (19)
C7—N1—C9	124.17 (16)	O3—C10—C9	120.46 (19)
C8—N1—C9	123.69 (18)	O4—C10—C9	113.72 (17)
C11—N2—C12	108.47 (16)	С3—С2—Н2	121.00
C11—N3—C13	108.44 (16)	C1—C2—H2	121.00
C12—N2—H2N	127.4 (16)	С2—С3—Н3	119.00
C11—N2—H2N	124.1 (16)	С4—С3—Н3	119.00
C13—N3—H3N	130.3 (13)	C3—C4—H4	120.00
C11—N3—H3N	121.2 (13)	С5—С4—Н4	120.00
C2C1C8	130.2 (2)	C4—C5—H5	122.00
C6—C1—C8	108.52 (18)	С6—С5—Н5	122.00
C2—C1—C6	121.3 (2)	С10—С9—Н9А	109.00
C1—C2—C3	117.1 (2)	N1—C9—H9B	109.00
C2—C3—C4	122.1 (2)	Н9А—С9—Н9В	108.00
C3—C4—C5	120.4 (2)	N1—C9—H9A	109.00
C4—C5—C6	117.0 (2)	С10—С9—Н9В	109.00
C1—C6—C5	122.19 (19)	N2—C11—N3	108.95 (19)
C1—C6—C7	107.83 (18)	N2—C12—C13	106.68 (18)
C5—C6—C7	129.97 (19)	N3—C13—C12	107.47 (18)
N1—C7—C6	106.14 (17)	N2—C11—H11	126.00
O1—C7—N1	124.34 (19)	N3—C11—H11	126.00
O1—C7—C6	129.5 (2)	N2—C12—H12	127.00
N1	105.36 (18)	C13—C12—H12	127.00
O2—C8—C1	130.18 (19)	N3—C13—H13	126.00
O2—C8—N1	124.5 (2)	C12—C13—H13	126.00
N1—C9—C10	113.57 (17)		

C9-N1-C7-C6 $C7-N1-C8-O2$ $C9-N1-C8-O2$ $C7-N1-C8-C1$ $C8-N1-C7-O1$ $C9-N1-C7-O1$ $C8-N1-C7-C6$ $C8-N1-C9-C10$ $C9-N1-C8-C1$ $C7-N1-C9-C10$ $C12-N2-C11-N3$ $C11-N2-C12-C13$ $C13-N3-C11-N2$ $C11-N3-C13-C12$ $C2-C1-C8-O2$ $C2-C1-C8-N1$ $C3-C1-C6-C7$	178.15 (17) $178.4 (2)$ $-0.4 (3)$ $-0.3 (2)$ $179.48 (19)$ $-1.7 (3)$ $-0.7 (2)$ $-79.5 (2)$ $-179.10 (17)$ $101.9 (2)$ $-0.4 (2)$ $0.5 (2)$ $0.0 (2)$ $0.3 (2)$ $0.7 (4)$ $179.3 (2)$ $-170.89 (19)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1.2 (3) 0.3 (3) -1.6 (2) 177.06 (19) -177.4 (2) 1.2 (2) 0.9 (3) -1.3 (3) 0.4 (3) 179.2 (2) 0.8 (3) -178.8 (2) -177.1 (2) 1.4 (2) 2.7 (4) -177.97 (17) 2.7 (3)
C2—C1—C8—N1	179.3 (2)	N1—C9—C10—O4	-177.97 (17)
C2—C1—C6—C7	-179.89 (19)	N1—C9—C10—O3	2.7 (3)
C8—C1—C2—C3	-177.6 (2)	N2—C12—C13—N3	-0.5 (2)

Hydrogen-bond geometry (Å, °) Cg4 is the centroid of the N2/N3/C11–C13 ring.

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H···A	D··· A	D—H··· A
N2—H2N····O4 ⁱ	0.99 (3)	1.69 (3)	2.6846 (19)	178 (4)
N3—H3 <i>N</i> ···O3 ⁱⁱ	0.97 (2)	2.54 (2)	3.087 (2)	115.4 (16)
N3—H3 <i>N</i> ···O4 ⁱⁱ	0.97 (2)	1.71 (2)	2.680 (2)	175 (2)
C3—H3····O4 ⁱⁱⁱ	0.95	2.45	3.321 (3)	153
С5—Н5…ОЗ ^і	0.95	2.48	3.266 (3)	141
С9—Н9А…О1	0.99	2.55	2.891 (3)	100
C9—H9 <i>B</i> ···O2 ⁱ	0.99	2.41	3.397 (3)	172
С11—Н11…ОЗіі	0.95	2.40	2.987 (3)	120
C13—H13…O1 ^v	0.95	2.54	3.352 (2)	143
C2—H2…Cg4	0.95	2.87	3.805 (2)	166

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*; (ii) -*x*+1, -*y*+1, -*z*+1; (iii) -*x*+1, *y*-1/2, -*z*+1/2; (iv) *x*, -*y*+1/2, *z*-1/2; (v) *x*+1, *y*, *z*+1.