

OPEN a ACCESS

Crystal structure of triclopyr

Seonghwa Cho, Jineun Kim,* Youngeun Jeon and Tae Ho Kim*

Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 660-701, Republic of Korea. *Correspondence e-mail: thkim@gnu.ac.kr, jekim@gnu.ac.kr

Received 9 July 2014; accepted 21 July 2014

Edited by G. Smith, Queensland University of Technology, Australia

In the title compound {systematic name: 2-[(3,5,6-trichloropyridin-2-yl)oxylacetic acid}, the herbicide triclopyr, $C_7H_4Cl_3NO_3$, the asymmetric unit comprises two independent molecules in which the dihedral angles between the mean plane of the carboxylic acid group and the pyridyl ring plane are 79.3 (6) and 83.8 (5)°. In the crystal, pairs of intermolecular O-H···O hydrogen bonds form dimers through an $R_2^2(8)$ ring motif and are extended into chains along [100] by weak $\pi - \pi$ interactions [ring centroid separations = 3.799 (4) and 3.810 (4) Å]. In addition, short intermolecular $Cl \cdots Cl$ contacts [3.458 (2) Å] connect the chains, yielding a twodimensional architecture extending parallel to (020). The crystal studied was found to be non-merohedrally twinned with the minor component being 0.175(4).

Keywords: crystal structure; herbicide; triclopyr; hydrogen-bonded dimers; $\pi - \pi$ interactions; non-merohedral twinning.

CCDC reference: 1015180

1. Related literature

For information on the toxicity and herbicidal properties of the title compound, see: McMullin et al. (2011); Carney et al. (2007). For a related crystal structure, see: Smith et al. (1976). Non-merohedral twinning in the crystal was identified usinTwinRotMat within PLATON (Spek, 2009).

2. Experimental

2.1. Crystal data

C ₇ H ₄ Cl ₃ NO ₃	V = 1879.1 (4) Å ³
$M_r = 256.46$	Z = 8
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 7.5771 (9) Å	$\mu = 0.95 \text{ mm}^{-1}$
b = 25.409 (3) Å	T = 173 K
c = 10.1668 (12) Å	$0.50 \times 0.09 \times 0.06 \text{ mm}$
$\beta = 106.261 \ (8)^{\circ}$	

CrossMark

2.2. Data collection

Bruker APEXII CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
$T_{\min} = 0.648, T_{\max} = 0.945$

2.3. Refinement $R[F^2 > 2\sigma(F^2)] = 0.044$

 $wR(F^2) = 0.096$ S = 1.123699 reflections

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O3−H3 <i>O</i> ···O6	0.84	1.85	2.688 (3)	174
O5−H5 <i>O</i> ···O2	0.84	1.84	2.671 (3)	172

3699 measured reflections

 $R_{\rm int} = 0.000$

256 parameters

 $\Delta \rho_{\rm max} = 0.32 \text{ e} \text{ \AA}^-$

 $\Delta \rho_{\rm min} = -0.28 \text{ e} \text{ } \text{\AA}^{-3}$

3699 independent reflections

3080 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL.

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (grant No. 2014R1A1A4A01009105).

Supporting information for this paper is available from the IUCr electronic archives (Reference: ZS2309).

References

- Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Carney, E. W., Billington, R. & Barlow, S. M. (2007). Reprod. Toxicol. 23, 165-174.
- McMullin, R. T., Bell, F. W. & Newmaster, S. G. (2011). For. Ecol. Manage. 264, 90-97.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Smith, G., Kennard, C. H. L. & White, A. H. (1976). Aust. J. Chem. 29, 2727-2730.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2014). E70, o940 [doi:10.1107/S160053681401681X]

Crystal structure of triclopyr

Seonghwa Cho, Jineun Kim, Youngeun Jeon and Tae Ho Kim

S1. Comment

Triclopyr, $C_7H_4Cl_3NO_3$, is a herbicide used extensively in the control of woody plants and broadleaf weeds (McMullin *et al.*, 2011; Carney *et al.*, 2007), and its crystal structure is reported herein. In this compound (Scheme 1, Fig. 1). The asymmetric unit is composed of two independent molecules (Molecule A and Molecule B). The dihedral angles between the mean plane of the carboxyl groups and the pyridyl ring systems are 79.3 (6)° and 83.8 (5)° for Molecule A and Molecule B, respectively. All bond lengths and bond angles are normal and comparable to those observed in the crystal structure of a similar compound (Smith *et al.*, 1976).

In the crystal structure (Fig. 2), two carboxylic acid O—H···O hydrogen bonds are observed (Table 1), forming dimers through an $R_2^2(8)$ ring motif. In addition, weak intermolecular π - π interactions between the pyridyl ring systems [Cg1··· $Cg2^i$, 3.799 (4) Å and Cg2··· $Cg1^{ii}$, 3.810 (4) Å], link the dimers into one-dimensional chains extending along (100) (Cg1 and Cg2 are the centeroids of the N1···C5 and N2···C12 rings, respectively). In addition, a short C1···C1 contact [C11···C11ⁱⁱⁱ, 3.458 (2) Å] is present [for symmetry codes: (i), -*x* + 1, -*y* + 1, -*z* + 1, (ii), -*x* + 2, -*y*+ + 1, -*z* + 1, and (iii), -*x* + 1, -*y* + 1, -*z* + 2]. The crystal studied was found to be affected by non-merohedral twinning (Spek, 2009) and the data was treated accordingly, giving a final refined BASF parameter of 0.175 (4).

S2. Experimental

The title compound was purchased from the Dr. Ehrenstorfer GmbH Company. Slow evaporation of a solution in CHCl₃ gave single crystals suitable for X-ray analysis.

S3. Refinement

All H-atoms were positioned geometrically and refined using a riding model with d(C-H) = 0.95 Å, $U_{iso} = 1.2U_{eq}(C)$ for aromatic C-H, d(C-H) = 0.99 Å, $U_{iso} = 1.2U_{eq}(C)$ for Csp³-H, and d(O-H) = 0.84 Å, $U_{iso} = 1.5U_{eq}(C)$ for O-H groups. Non-merohedral twinning in the crystal was identified [TwinRotMat within PLATON (Spek, 2009)]: [twin law -1 0 0, 0 -1 0, 0.751 0 1] giving a final refined BASF parameter of 0.175 (4).

Figure 1

The asymmetric unit of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius.

Figure 2

Crystal packing viewed along the *a* axis. The intermolecular O—H···O hydrogen bonds, weak π - π interactions, and short Cl···Cl contacts are shown as dashed lines.

2-[(3,5,6-Trichloropyridin-2-yl)oxy]acetic acid

Crystal data	
C ₇ H ₄ Cl ₃ NO ₃	F(000) = 1024
$M_r = 256.46$	$D_{\rm x} = 1.813 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 3761 reflections
a = 7.5771 (9) Å	$\theta = 2.2 - 25.5^{\circ}$
b = 25.409 (3) Å	$\mu=0.95~\mathrm{mm^{-1}}$
c = 10.1668 (12) Å	T = 173 K
$\beta = 106.261 \ (8)^{\circ}$	Needle, colourless
$V = 1879.1 (4) Å^3$	$0.50 \times 0.09 \times 0.06 \text{ mm}$
Z = 8	

Data collection

Bruker APEXII CCD	3699 measured reflections
diffractometer	3699 independent reflections
Radiation source: fine-focus sealed tube	3080 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.000$
φ and ω scans	$\theta_{\rm max} = 26.0^\circ, \theta_{\rm min} = 1.6^\circ$
Absorption correction: multi-scan	$h = -9 \longrightarrow 8$
(SADABS; Bruker, 2009)	$k = -31 \rightarrow 31$
$T_{\min} = 0.648, \ T_{\max} = 0.945$	$l = -5 \rightarrow 12$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.044$	Hydrogen site location: inferred from
$wR(F^2) = 0.096$	neighbouring sites
S = 1.12	H-atom parameters constrained
3699 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0219P)^2 + 2.0682P]$
256 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.32 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.28 \ { m e} \ { m \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	0.66278 (13)	0.53311 (3)	0.94222 (8)	0.0336 (2)	
C12	0.86627 (14)	0.62564 (3)	1.13208 (9)	0.0397 (2)	
C13	0.67175 (14)	0.75251 (3)	0.69082 (10)	0.0408 (2)	
Cl4	1.00995 (14)	0.31553 (3)	0.50221 (9)	0.0380 (2)	
C15	0.79593 (15)	0.23214 (3)	0.28102 (10)	0.0432 (3)	
C16	0.66657 (14)	0.38875 (3)	-0.09150 (8)	0.0403 (2)	
01	0.4722 (3)	0.65825 (8)	0.5624 (2)	0.0317 (5)	
O2	0.6886 (3)	0.58941 (10)	0.4787 (3)	0.0386 (6)	
03	0.4491 (3)	0.53970 (9)	0.3695 (3)	0.0382 (6)	
H3O	0.5290	0.5231	0.3434	0.057*	
O4	0.9075 (3)	0.44645 (8)	0.1341 (2)	0.0315 (5)	
05	0.9552 (3)	0.54570 (9)	0.3905 (2)	0.0316 (5)	
H5O	0.8784	0.5599	0.4250	0.047*	
06	0.7219 (3)	0.49064 (9)	0.2971 (3)	0.0361 (6)	
N1	0.5733 (4)	0.60258 (10)	0.7479 (3)	0.0248 (6)	
N2	0.9432 (4)	0.38215 (10)	0.3000 (3)	0.0258 (6)	

C1	0.6641 (4)	0.59584 (11)	0.8776 (3)	0.0242 (7)	
C2	0.7565 (5)	0.63593 (12)	0.9613 (3)	0.0267 (7)	
C3	0.7598 (5)	0.68502 (11)	0.9024 (3)	0.0278 (7)	
Н3	0.8254	0.7133	0.9552	0.033*	
C4	0.6673 (5)	0.69213 (11)	0.7674 (3)	0.0254 (7)	
C5	0.5714 (4)	0.64974 (12)	0.6938 (3)	0.0241 (7)	
C6	0.3859 (5)	0.61313 (13)	0.4863 (3)	0.0331 (8)	
H6A	0.2905	0.6247	0.4032	0.040*	
H6B	0.3251	0.5920	0.5430	0.040*	
C7	0.5265 (5)	0.57983 (12)	0.4455 (3)	0.0283 (7)	
C8	0.9176 (5)	0.33276 (12)	0.3324 (3)	0.0266 (7)	
C9	0.8219 (5)	0.29661 (12)	0.2378 (3)	0.0276 (7)	
C10	0.7423 (5)	0.31367 (12)	0.1045 (3)	0.0279 (7)	
H10	0.6717	0.2901	0.0376	0.033*	
C11	0.7668 (5)	0.36496 (12)	0.0706 (3)	0.0266 (7)	
C12	0.8738 (4)	0.39780 (11)	0.1722 (3)	0.0255 (7)	
C13	1.0054 (5)	0.48192 (12)	0.2385 (3)	0.0301 (8)	
H13A	1.0624	0.5100	0.1967	0.036*	
H13B	1.1048	0.4627	0.3053	0.036*	
C14	0.8768 (5)	0.50619 (12)	0.3117 (3)	0.0269 (7)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0447 (5)	0.0215 (4)	0.0343 (4)	-0.0055 (4)	0.0106 (4)	0.0039 (3)
Cl2	0.0511 (6)	0.0334 (4)	0.0276 (4)	-0.0038 (4)	-0.0006 (4)	0.0000 (3)
C13	0.0532 (6)	0.0246 (4)	0.0453 (5)	-0.0031 (4)	0.0153 (5)	0.0085 (4)
Cl4	0.0483 (6)	0.0327 (4)	0.0293 (4)	0.0081 (4)	0.0048 (4)	0.0055 (3)
C15	0.0617 (7)	0.0248 (4)	0.0466 (5)	-0.0052 (4)	0.0210 (5)	0.0019 (4)
Cl6	0.0517 (6)	0.0405 (5)	0.0244 (4)	0.0102 (4)	0.0035 (4)	0.0000 (3)
O1	0.0372 (14)	0.0290 (12)	0.0261 (12)	0.0025 (11)	0.0044 (11)	-0.0002 (9)
O2	0.0295 (15)	0.0436 (14)	0.0423 (15)	-0.0027 (12)	0.0092 (12)	-0.0138 (11)
O3	0.0304 (14)	0.0387 (14)	0.0430 (15)	-0.0022 (12)	0.0064 (12)	-0.0143 (11)
O4	0.0415 (15)	0.0223 (11)	0.0290 (12)	0.0005 (10)	0.0072 (11)	0.0008 (9)
O5	0.0290 (13)	0.0293 (12)	0.0355 (13)	-0.0032 (11)	0.0074 (11)	-0.0063 (10)
O6	0.0315 (15)	0.0296 (12)	0.0471 (15)	-0.0033 (11)	0.0110 (12)	-0.0094 (11)
N1	0.0244 (15)	0.0246 (13)	0.0270 (14)	-0.0031 (12)	0.0098 (12)	-0.0019 (11)
N2	0.0274 (16)	0.0230 (13)	0.0253 (14)	0.0030 (12)	0.0044 (12)	-0.0023 (11)
C1	0.0277 (18)	0.0185 (14)	0.0297 (17)	-0.0006 (13)	0.0136 (15)	0.0012 (12)
C2	0.0278 (19)	0.0281 (16)	0.0238 (16)	-0.0001 (14)	0.0066 (14)	-0.0012 (13)
C3	0.033 (2)	0.0186 (15)	0.0332 (18)	-0.0043 (14)	0.0117 (16)	-0.0043 (13)
C4	0.0314 (19)	0.0181 (14)	0.0301 (17)	0.0001 (14)	0.0141 (15)	0.0033 (12)
C5	0.0248 (18)	0.0252 (16)	0.0244 (16)	0.0021 (13)	0.0105 (14)	-0.0001 (12)
C6	0.031 (2)	0.0383 (19)	0.0274 (18)	0.0025 (16)	0.0038 (16)	-0.0071 (14)
C7	0.034 (2)	0.0296 (17)	0.0194 (16)	0.0003 (15)	0.0038 (15)	0.0009 (13)
C8	0.0269 (19)	0.0256 (16)	0.0279 (17)	0.0085 (14)	0.0089 (15)	0.0038 (13)
C9	0.0301 (19)	0.0227 (15)	0.0331 (18)	0.0020 (14)	0.0138 (16)	0.0015 (13)
C10	0.0268 (19)	0.0272 (16)	0.0305 (18)	-0.0004 (14)	0.0096 (15)	-0.0083 (13)

supporting information

C11	0.0265 (18)	0.0297 (16)	0.0235 (16)	0.0066 (15)	0.0069 (15)	-0.0018 (13)
C12	0.0252 (18)	0.0210 (15)	0.0322 (18)	0.0063 (14)	0.0113 (15)	-0.0021 (13)
C13	0.032 (2)	0.0223 (15)	0.0353 (19)	-0.0010 (14)	0.0080 (16)	-0.0012 (14)
C14	0.031 (2)	0.0197 (15)	0.0267 (17)	0.0019 (15)	0.0028 (15)	0.0028 (13)

Geometric parameters (Å, °)

Cl1—C1	1.725 (3)	N2—C12	1.319 (4)
Cl2—C2	1.722 (3)	N2—C8	1.325 (4)
Cl3—C4	1.725 (3)	C1—C2	1.385 (4)
Cl4—C8	1.728 (3)	C2—C3	1.387 (4)
Cl5—C9	1.721 (3)	C3—C4	1.367 (4)
Cl6—C11	1.720 (3)	С3—Н3	0.9500
O1—C5	1.354 (4)	C4—C5	1.394 (4)
O1—C6	1.434 (4)	C6—C7	1.507 (5)
O2—C7	1.204 (4)	C6—H6A	0.9900
O3—C7	1.314 (4)	С6—Н6В	0.9900
O3—H3O	0.8400	C8—C9	1.379 (4)
O4—C12	1.341 (4)	C9—C10	1.389 (4)
O4—C13	1.431 (4)	C10—C11	1.374 (4)
O5—C14	1.318 (4)	C10—H10	0.9500
O5—H5O	0.8400	C11—C12	1.397 (4)
O6—C14	1.208 (4)	C13—C14	1.513 (5)
N1—C1	1.317 (4)	C13—H13A	0.9900
N1—C5	1.317 (4)	C13—H13B	0.9900
C5—O1—C6	116.6 (2)	O2—C7—O3	125.0 (3)
С7—О3—НЗО	109.5	O2—C7—C6	123.6 (3)
C12—O4—C13	117.9 (2)	O3—C7—C6	111.3 (3)
C14—O5—H5O	109.5	N2—C8—C9	122.8 (3)
C1—N1—C5	118.6 (3)	N2—C8—C14	116.2 (2)
C12—N2—C8	119.0 (3)	C9—C8—C14	120.9 (2)
N1—C1—C2	123.5 (3)	C8—C9—C10	118.1 (3)
N1—C1—Cl1	116.4 (2)	C8—C9—C15	122.1 (3)
C2—C1—Cl1	120.1 (2)	C10—C9—C15	119.7 (2)
C1—C2—C3	117.6 (3)	C11—C10—C9	119.3 (3)
C1—C2—Cl2	121.7 (2)	C11—C10—H10	120.4
C3—C2—Cl2	120.7 (2)	C9—C10—H10	120.4
C4—C3—C2	119.1 (3)	C10—C11—C12	118.1 (3)
С4—С3—Н3	120.5	C10—C11—Cl6	121.3 (3)
С2—С3—Н3	120.5	C12—C11—C16	120.5 (2)
C3—C4—C5	118.7 (3)	N2-C12-O4	120.4 (3)
C3—C4—Cl3	120.1 (2)	N2-C12-C11	122.5 (3)
C5—C4—Cl3	121.2 (2)	O4—C12—C11	117.0 (3)
N1-C5-01	119.7 (3)	O4—C13—C14	110.5 (3)
N1-C5-C4	122.4 (3)	O4—C13—H13A	109.6
O1—C5—C4	117.9 (3)	C14—C13—H13A	109.6
O1—C6—C7	110.3 (3)	O4—C13—H13B	109.6

O1—C6—H6A	109.6	C14—C13—H13B	109.6
C7—C6—H6A	109.6	H13A—C13—H13B	108.1
O1—C6—H6B	109.6	O6—C14—O5	125.5 (3)
C7—C6—H6B	109.6	O6—C14—C13	122.9 (3)
H6A—C6—H6B	108.1	O5—C14—C13	111.5 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.8 \ (5) \\ -179.5 \ (2) \\ -3.1 \ (5) \\ 177.2 \ (2) \\ 177.6 \ (3) \\ -2.1 \ (4) \\ 2.3 \ (5) \\ -178.4 \ (3) \\ 0.5 \ (5) \\ -179.1 \ (3) \\ -177.0 \ (3) \\ 2.3 \ (5) \\ -4.9 \ (4) \\ 175.7 \ (3) \\ -3.0 \ (5) \\ 176.6 \ (2) \\ 176.4 \ (3) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.3 \ (5) \\ -179.1 \ (2) \\ -3.0 \ (5) \\ 176.4 \ (2) \\ 178.1 \ (3) \\ -2.5 \ (4) \\ 2.3 \ (5) \\ -178.8 \ (3) \\ 0.8 \ (5) \\ -178.3 \ (2) \\ -175.5 \ (3) \\ 3.1 \ (5) \\ -5.8 \ (4) \\ 175.5 \ (3) \\ -3.6 \ (5) \\ 175.5 \ (2) \\ 175.0 \ (3) \end{array}$
Cl3—C4—C5—O1	-4.1 (4)	Cl6—Cl1—Cl2—O4	-5.9 (4)
C5—O1—C6—C7	-75.3 (3)	Cl2—O4—Cl3—Cl4	-80.9 (3)
O1—C6—C7—O2	3.1 (5)	O4—Cl3—Cl4—O6	11.0 (4)
O1—C6—C7—O3	-176.7 (3)	O4—Cl3—Cl4—O5	-168.6 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	<i>D</i> —H··· <i>A</i>
03—H3 <i>O</i> …O6	0.84	1.85	2.688 (3)	174
О5—H5 <i>O</i> …O2	0.84	1.84	2.671 (3)	172