organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 10| October 2014| Pages o1083-o1084

Crystal structure of 4-amino-1-benzyl-1,2,4-triazolin-5-one

aUniversity of Innsbruck, Faculty of Chemistry and Pharmacy, Innrain 80, 6020 Innsbruck, Austria, and bUniversity of Innsbruck, Institute of Mineralogy and Petrography, Innrain 52, 6020 Innsbruck, Austria
*Correspondence e-mail: gerhard.laus@uibk.ac.at

Edited by L. Farrugia, University of Glasgow, Scotland (Received 22 August 2014; accepted 26 August 2014; online 3 September 2014)

The title compound, C9H10N4O, was obtained unintentionally by hydrolysis of 4-amino-1-benzyl-5-methyl­sulfanyl-1,2,4-triazolium tetra­fluoro­borate in the presence of sodium azide. In the crystal, alternating layers of polar amino­triazolinone and apolar benzene moieties are observed. N—H⋯O hydrogen bonds between the amino and carbonyl groups form infinite chains along [010]. These infinite chains are linked by additional C—H⋯O contacts.

1. Related literature

For the pharmacological activity of 1,2,4-triazoles, see: Sheng et al. (2011[Sheng, C., Che, X., Wang, W., Wang, S., Cao, Y., Yao, J., Miao, Z. & Zhang, W. (2011). Chem. Biol. Drug Des. 78, 309-313.]); Singla & Bhat (2010[Singla, R. K. & Bhat, G. V. (2010). J. Enzyme Inhib. Med. Chem. 25, 696-701.]); Dayan et al. (2009[Dayan, F. E., Trindade, M. L. B. & Velini, E. D. (2009). Weed Sci. 57, 579-583.]); Li et al. (2003[Li, Z., Chen, S., Jiang, N. & Cui, G. (2003). Nucleosides Nucleotides Nucleic Acids, 22, 419-435.]); Todoulou et al. (1994[Todoulou, O. G., Papadaki-Valiraki, A. E., Ikeda, S. & De Clercq, E. (1994). Eur. J. Med. Chem. 29, 611-620.]). For related structures, see: Thamotharan et al. (2003[Thamotharan, S., Parthasarathi, V., Kavali, J. R., Badami, B. & Schenk, K. J. (2003). Acta Cryst. E59, o964-o966.]); Kaur et al. (2013[Kaur, M., Butcher, R. J., Jasinski, J. P., Yathirajan, H. S. & Siddaraju, B. P. (2013). Acta Cryst. E69, o603.]); Sahin et al. (2014[Sahin, O., Kantar, C., Sasmaz, S., Gümrükcüoglu, N. & Büyükgüngör, O. (2014). J. Mol. Struct. 1067, 83-87.]). For details of the synthesis, see: Becker et al. (1973a[Becker, H. G. O., Nagel, D. & Timpe, H.-J. (1973a). J. Prakt. Chem. 315, 97-105.],b[Becker, H. G. O., Nagel, D. & Timpe, H.-J. (1973b). J. Prakt. Chem. 315, 1131-1138.]). For a description of the Cambridge Structural Database, see: Groom & Allen (2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C9H10N4O

  • Mr = 190.21

  • Monoclinic, P 21 /c

  • a = 18.0861 (8) Å

  • b = 4.1690 (2) Å

  • c = 12.3694 (6) Å

  • β = 104.003 (5)°

  • V = 904.95 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.80 mm−1

  • T = 173 K

  • 0.2 × 0.2 × 0.08 mm

2.2. Data collection

  • Oxford Diffraction Xcalibur (Ruby, Gemini ultra) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.867, Tmax = 1

  • 7377 measured reflections

  • 1613 independent reflections

  • 1448 reflections with I > 2σ(I)

  • Rint = 0.030

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.092

  • S = 1.03

  • 1613 reflections

  • 133 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H32⋯O1i 0.90 (1) 2.47 (2) 3.0583 (15) 124 (1)
N3—H31⋯O1ii 0.90 (1) 2.22 (2) 3.0701 (16) 156 (2)
C2—H2⋯O1iii 0.95 2.24 3.181 (2) 168
Symmetry codes: (i) -x+1, -y-1, -z+2; (ii) -x+1, -y, -z+2; (iii) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2002 (Burla et al., 2002[Burla, M. C., Carrozzini, B., Cascarano, G. L., Giacovazzo, C. & Polidori, G. (2002). Z. Kristallogr. 217, 629-635.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

1,2,4-Triazole derivatives possess a wide spectrum of pharmacological activities (Sheng et al., 2011; Singla & Bhat, 2010; Dayan et al., 2009; Li et al., 2003; Todoulou et al., 1994). Only three 1-substituted 4-amino-1,2,4-triazolin-5-ones (Thamotharan et al., 2003; Kaur et al., 2013; Sahin et al., 2014) are found in the Cambridge Structural Database (Groom & Allen, 2014). The molecular structure of 4-amino-1-benzyl-1,2,4-triazolin-5-one is shown in Figure 1. In the crystal structure of the title compound, alternating layers of polar aminotriazolinone and apolar benzene moieties parallel to the bc plane are observed (Figure 2). The triazole rings are arranged parallel to (13 4 3) and (13 4 3) planes, with an interplanar angle of 76° (Figure 3). The amino group donates two hydrogen bonds to two neighbouring molecules, N3—H···O1i and N3—H···O1ii, forming infinite chains (Figure 4). In turn, the O atom receives a hydrogen bond from each of these two molecules. The triazole rings within the chain are parallel, with interplanar distances of 0.730 and 2.558 Å, respectively. These infinite chains are linked by additional C2—H···O1iii contacts. Symmetry operators (i): 1 - x, -1 - y, 2 - z; (ii): 1 - x, -y, 2 - z; (iii): x, -1/2 - y, -1/2 + z. Hydrogen bond geometry is shown in Table 1.

Related literature top

For the pharmacological activity of 1,2,4-triazoles, see: Sheng et al. (2011); Singla & Bhat (2010); Dayan et al. (2009); Li et al. (2003); Todoulou et al. (1994). For related structures, see: Thamotharan et al. (2003); Kaur et al. (2013); Sahin et al. (2014). For details of the synthesis, see: Becker et al. (1973a,b). For a description of the Cambridge Structural Database, see: Groom & Allen (2014).

Experimental top

The title compound was prepared from 4-amino-1-benzyl-5-methylthio-1,2,4- triazolium tetrafluoroborate (the respective iodide has been described by Becker et al., 1973b) which, in turn, was prepared from the corresponding 4-amino-1-benzyl-1,2,4-triazoline-5-thione (Becker et al., 1973a). When the 5-methylthio precursor was treated with NaN3 in MeOH/H2O, MeSH was evolved, and the triazolin-5-one was obtained. It is assumed that the intermediate 5-azido compound is highly prone to hydrolysis and therefore could not be isolated. In contrast, the 5-methylthio precursor could be stirred in H2O for 20 h without any change. Single crystals were obtained from MeOH/H2O. Melting point 119–120 °C. IR (neat): 1680 cm-1. 1H NMR (DMSO-d6, 300 MHz): 4.85 (s, 2H), 5.43 (s, 2H), 7.23–7.33 (m, 5H), 7.93 (s, 1H) p.p.m.. 13C NMR (DMSO-d6, 75 MHz): 48.7, 127.5 (3C), 128.5 (2C), 137.1, 138.4, 152.8 p.p.m..

Refinement top

Positions of hydrogen atoms bonded to carbon were generated in idealized geometries using a riding model with Uiso(H) = 1.2 Ueq(C). The fractional coordinates of the H atoms attached to N3 were identified from difference Fourier maps and refined freely with isotropic thermal displacement parameters.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SIR2002 (Burla et al., 2002); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Alternating layers of polar aminotriazolinone and apolar benzene moieties.
[Figure 3] Fig. 3. Arrangement of the triazole rings parallel to (13 4 3) and (13 4 3) planes.
[Figure 4] Fig. 4. Hydrogen bonds between the amino and carbonyl groups form infinite chains. Symmetry operators (i): 1 - x, -1 - y, 2 - z; (ii): 1 - x, -y, 2 - z.
4-Amino-1-benzyl-1,2,4-triazolin-5-one top
Crystal data top
C9H10N4OF(000) = 400
Mr = 190.21Dx = 1.396 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.5418 Å
Hall symbol: -P 2ybcCell parameters from 4064 reflections
a = 18.0861 (8) Åθ = 3.7–67.9°
b = 4.1690 (2) ŵ = 0.80 mm1
c = 12.3694 (6) ÅT = 173 K
β = 104.003 (5)°Plate, colourless
V = 904.95 (7) Å30.2 × 0.2 × 0.08 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur (Ruby, Gemini ultra)
diffractometer
1613 independent reflections
Graphite monochromator1448 reflections with I > 2σ(I)
Detector resolution: 10.3575 pixels mm-1Rint = 0.030
ω scansθmax = 68.0°, θmin = 5.0°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
h = 2121
Tmin = 0.867, Tmax = 1k = 44
7377 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0489P)2 + 0.2066P]
where P = (Fo2 + 2Fc2)/3
1613 reflections(Δ/σ)max = 0.001
133 parametersΔρmax = 0.17 e Å3
2 restraintsΔρmin = 0.14 e Å3
Crystal data top
C9H10N4OV = 904.95 (7) Å3
Mr = 190.21Z = 4
Monoclinic, P21/cCu Kα radiation
a = 18.0861 (8) ŵ = 0.80 mm1
b = 4.1690 (2) ÅT = 173 K
c = 12.3694 (6) Å0.2 × 0.2 × 0.08 mm
β = 104.003 (5)°
Data collection top
Oxford Diffraction Xcalibur (Ruby, Gemini ultra)
diffractometer
1613 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
1448 reflections with I > 2σ(I)
Tmin = 0.867, Tmax = 1Rint = 0.030
7377 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0342 restraints
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.17 e Å3
1613 reflectionsΔρmin = 0.14 e Å3
133 parameters
Special details top

Experimental. Absorption correction: CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.34.44 (release 25-10-2010 CrysAlis171 .NET) (compiled Oct 25 2010,18:11:34) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.41353 (5)0.0910 (2)1.01696 (7)0.0378 (3)
N30.47943 (7)0.4111 (3)0.84565 (10)0.0398 (3)
H310.5197 (9)0.283 (4)0.8730 (13)0.048*
H320.4789 (10)0.550 (4)0.9007 (12)0.048*
N10.32531 (6)0.0899 (3)0.85723 (8)0.0315 (3)
N40.41310 (6)0.2253 (2)0.83245 (8)0.0301 (3)
N20.31212 (6)0.0442 (3)0.74333 (9)0.0376 (3)
C10.38691 (7)0.0749 (3)0.91540 (10)0.0290 (3)
C50.14844 (8)0.0222 (3)0.81353 (11)0.0368 (3)
H50.15790.07110.7430.044*
C40.20132 (7)0.1088 (3)0.91021 (11)0.0322 (3)
C60.08204 (8)0.1351 (4)0.81894 (12)0.0404 (3)
H60.04650.19670.75230.049*
C70.06730 (8)0.2024 (4)0.92066 (13)0.0448 (4)
H70.02150.30820.92430.054*
C90.18659 (8)0.0385 (4)1.01228 (12)0.0417 (3)
H90.22250.09571.07910.05*
C20.36666 (7)0.1467 (3)0.73250 (10)0.0349 (3)
H20.37320.22210.66290.042*
C30.27350 (7)0.2839 (3)0.90400 (12)0.0384 (3)
H3A0.25960.47880.85780.046*
H3B0.30030.35340.97990.046*
C80.11940 (9)0.1154 (4)1.01708 (13)0.0492 (4)
H80.10930.1611.08740.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0376 (5)0.0452 (6)0.0301 (5)0.0017 (4)0.0073 (4)0.0004 (4)
N30.0338 (6)0.0376 (7)0.0490 (7)0.0064 (5)0.0116 (5)0.0002 (5)
N10.0302 (5)0.0293 (6)0.0356 (6)0.0001 (4)0.0094 (4)0.0003 (4)
N40.0291 (5)0.0287 (6)0.0338 (5)0.0001 (4)0.0102 (4)0.0002 (4)
N20.0363 (6)0.0427 (7)0.0332 (6)0.0007 (5)0.0070 (5)0.0045 (5)
C10.0293 (6)0.0255 (6)0.0336 (6)0.0050 (5)0.0101 (5)0.0009 (5)
C50.0363 (7)0.0378 (7)0.0369 (7)0.0016 (6)0.0101 (5)0.0006 (6)
C40.0308 (6)0.0256 (7)0.0406 (7)0.0052 (5)0.0093 (5)0.0033 (5)
C60.0330 (7)0.0420 (8)0.0446 (8)0.0002 (6)0.0060 (6)0.0033 (6)
C70.0363 (7)0.0423 (8)0.0592 (9)0.0018 (6)0.0181 (6)0.0035 (7)
C90.0394 (7)0.0463 (8)0.0379 (7)0.0050 (6)0.0065 (6)0.0040 (6)
C20.0345 (7)0.0402 (8)0.0310 (6)0.0022 (6)0.0097 (5)0.0003 (5)
C30.0345 (7)0.0289 (7)0.0533 (8)0.0005 (5)0.0136 (6)0.0073 (6)
C80.0507 (9)0.0584 (10)0.0428 (8)0.0025 (7)0.0197 (7)0.0076 (7)
Geometric parameters (Å, º) top
O1—C11.2335 (15)C4—C91.383 (2)
N3—N41.4040 (15)C4—C31.5138 (18)
N3—H310.900 (14)C6—C71.377 (2)
N3—H320.895 (14)C6—H60.95
N1—C11.3577 (17)C7—C81.378 (2)
N1—N21.3840 (15)C7—H70.95
N1—C31.4592 (16)C9—C81.388 (2)
N4—C21.3561 (17)C9—H90.95
N4—C11.3803 (16)C2—H20.95
N2—C21.2993 (18)C3—H3A0.99
C5—C61.384 (2)C3—H3B0.99
C5—C41.3861 (19)C8—H80.95
C5—H50.95
N4—N3—H31107.9 (11)C7—C6—H6119.9
N4—N3—H32106.2 (11)C5—C6—H6119.9
H31—N3—H32104.7 (15)C6—C7—C8119.63 (13)
C1—N1—N2112.77 (10)C6—C7—H7120.2
C1—N1—C3126.43 (11)C8—C7—H7120.2
N2—N1—C3120.72 (10)C4—C9—C8120.05 (13)
C2—N4—C1108.65 (10)C4—C9—H9120
C2—N4—N3124.24 (11)C8—C9—H9120
C1—N4—N3126.97 (11)N2—C2—N4111.85 (11)
C2—N2—N1103.95 (10)N2—C2—H2124.1
O1—C1—N1129.42 (12)N4—C2—H2124.1
O1—C1—N4127.80 (12)N1—C3—C4113.40 (11)
N1—C1—N4102.77 (10)N1—C3—H3A108.9
C6—C5—C4120.48 (12)C4—C3—H3A108.9
C6—C5—H5119.8N1—C3—H3B108.9
C4—C5—H5119.8C4—C3—H3B108.9
C9—C4—C5119.16 (13)H3A—C3—H3B107.7
C9—C4—C3120.48 (12)C7—C8—C9120.47 (13)
C5—C4—C3120.35 (12)C7—C8—H8119.8
C7—C6—C5120.20 (13)C9—C8—H8119.8
C1—N1—N2—C20.71 (14)C5—C6—C7—C80.7 (2)
C3—N1—N2—C2177.58 (11)C5—C4—C9—C80.3 (2)
N2—N1—C1—O1178.86 (12)C3—C4—C9—C8178.48 (13)
C3—N1—C1—O12.2 (2)N1—N2—C2—N40.32 (14)
N2—N1—C1—N40.78 (13)C1—N4—C2—N20.15 (15)
C3—N1—C1—N4177.44 (11)N3—N4—C2—N2175.76 (12)
C2—N4—C1—O1179.10 (12)C1—N1—C3—C497.82 (15)
N3—N4—C1—O15.1 (2)N2—N1—C3—C478.60 (15)
C2—N4—C1—N10.55 (13)C9—C4—C3—N1114.42 (14)
N3—N4—C1—N1175.21 (11)C5—C4—C3—N166.81 (16)
C6—C5—C4—C90.6 (2)C6—C7—C8—C90.2 (2)
C6—C5—C4—C3179.35 (12)C4—C9—C8—C70.7 (2)
C4—C5—C6—C71.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H32···O1i0.90 (1)2.47 (2)3.0583 (15)124 (1)
N3—H31···O1ii0.90 (1)2.22 (2)3.0701 (16)156 (2)
C2—H2···O1iii0.952.243.181 (2)168
Symmetry codes: (i) x+1, y1, z+2; (ii) x+1, y, z+2; (iii) x, y1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H32···O1i0.895 (14)2.471 (16)3.0583 (15)123.6 (13)
N3—H31···O1ii0.900 (14)2.224 (15)3.0701 (16)156.2 (15)
C2—H2···O1iii0.9502.2443.181 (2)168.4
Symmetry codes: (i) x+1, y1, z+2; (ii) x+1, y, z+2; (iii) x, y1/2, z1/2.
 

References

First citationBecker, H. G. O., Nagel, D. & Timpe, H.-J. (1973a). J. Prakt. Chem. 315, 97–105.  CrossRef CAS Web of Science Google Scholar
First citationBecker, H. G. O., Nagel, D. & Timpe, H.-J. (1973b). J. Prakt. Chem. 315, 1131–1138.  CrossRef CAS Web of Science Google Scholar
First citationBurla, M. C., Carrozzini, B., Cascarano, G. L., Giacovazzo, C. & Polidori, G. (2002). Z. Kristallogr. 217, 629–635.  Web of Science CrossRef CAS Google Scholar
First citationDayan, F. E., Trindade, M. L. B. & Velini, E. D. (2009). Weed Sci. 57, 579–583.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CrossRef CAS Google Scholar
First citationKaur, M., Butcher, R. J., Jasinski, J. P., Yathirajan, H. S. & Siddaraju, B. P. (2013). Acta Cryst. E69, o603.  CSD CrossRef IUCr Journals Google Scholar
First citationLi, Z., Chen, S., Jiang, N. & Cui, G. (2003). Nucleosides Nucleotides Nucleic Acids, 22, 419–435.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSahin, O., Kantar, C., Sasmaz, S., Gümrükcüoglu, N. & Büyükgüngör, O. (2014). J. Mol. Struct. 1067, 83–87.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheng, C., Che, X., Wang, W., Wang, S., Cao, Y., Yao, J., Miao, Z. & Zhang, W. (2011). Chem. Biol. Drug Des. 78, 309–313.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSingla, R. K. & Bhat, G. V. (2010). J. Enzyme Inhib. Med. Chem. 25, 696–701.  Web of Science CrossRef CAS PubMed Google Scholar
First citationThamotharan, S., Parthasarathi, V., Kavali, J. R., Badami, B. & Schenk, K. J. (2003). Acta Cryst. E59, o964–o966.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationTodoulou, O. G., Papadaki-Valiraki, A. E., Ikeda, S. & De Clercq, E. (1994). Eur. J. Med. Chem. 29, 611–620.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 10| October 2014| Pages o1083-o1084
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds