data reports

OPEN access

Crystal structure of ethyl 2-[(4-bromophenyl)amino]-3,4-dimethylpent-3enoate

Julio Zukerman-Schpector,^a* I. Caracelli,^b Hélio A. Stefani,^c Amna N. Khan^c and Edward R. T. Tiekink^d

^aDepartmento de Química, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, ^bDepartmento de Física, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, ^cDepartamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo-SP, Brazil, and ^dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia. *Correspondence e-mail: julio@power.ufscar.br

Received 10 September 2014; accepted 16 September 2014

Edited by P. C. Healy, Griffith University, Australia

In the title compound, C₁₅H₂₀BrNO₂, there are two independent molecules (A and B) comprising the asymmetric unit and these adopt very similar conformations. In A, the dihedral angle between the CO₂ and MeC=CMe₂ groups is 80.7 (3) $^{\circ}$, and these make dihedral angles of 3.5(3) and $84.09(16)^{\circ}$, respectively, with the bromobenzene ring. The equivalent dihedral angles for molecule B are 78.4(3), 2.1(3) and $78.37 (12)^\circ$, respectively. The most prominent interactions in the crystal packing are amine-N-H···O(carbonyl) hydrogen bonds between the two independent molecules, resulting in non-centrosymmetric ten-membered $\{\cdots OC_2 NH\}_2$ synthons. Statistical disorder is noted for each of the terminal methyl groups of the ethyl residues.

Keywords: crystal structure; hydrogen bonding; amine.

CCDC reference: 1024669

1. Related literature

For background to the study into new and simpler synthetic routes for β , γ -unsaturated α -amino acid derivatives, see: Stefani et al. (2013). For the use of potassium organotrifluoroborate in synthesis, see: Caracelli et al. (2007).

 $\gamma = 113.866 \ (2)^{\circ}$

Mo $K\alpha$ radiation

 $\mu = 2.54 \text{ mm}^{-1}$

T = 290 K

 $R_{\rm int} = 0.026$

Z = 4

V = 1620.20 (14) Å³

 $0.50 \times 0.34 \times 0.28 \text{ mm}$

18794 measured reflections

5927 independent reflections

4054 reflections with $I > 2\sigma(I)$

2. Experimental

2.1. Crystal data

C15H20BrNO2 $M_r = 326.22$ Triclinic, $P\overline{1}$ a = 11.8746 (6) Å b = 12.2023 (5) Å c = 13.7760 (6) Å $\alpha = 97.557$ (3)° $\beta = 110.520 \ (2)^{\circ}$

2.2. Data collection

Bruker Kappa APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.552, \ T_{\max} = 0.745$

2.3. Kerinement	
$R[F^2 > 2\sigma(F^2)] = 0.045$	H atoms treated by a mixture of
$wR(F^2) = 0.129$	independent and constrained
S = 1.03	refinement
5927 reflections	$\Delta \rho_{\rm max} = 0.70 \text{ e} \text{ \AA}^{-3}$
377 parameters	$\Delta \rho_{\rm min} = -0.73 \text{ e} \text{ \AA}^{-3}$
2 restraints	

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1-H1N\cdotsO3^{i}$	0.86	2.44	3.235 (6)	154
$N2 - H2N \cdot \cdot \cdot O1^{i}$	0.86	2.37	3.153 (5)	153

Symmetry code: (i) -x + 2, -y + 1, -z + 1.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), QMol (Gans & Shalloway, 2001) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: MarvinSketch (Chemaxon, 2010) and publCIF (Westrip, 2010).

Acknowledgements

We thank Professor Regina H. A. Santos from IQSC-USP for the X-ray data collection. The Brazilian agencies CNPq (305626/2013-2 to JZ-S; 306121/2013-2 to IC; 308320/2010-7 to HAS), CAPES (808/2009 to JZ-S and IC) and FAPESP (2012/00424-2) are acknowledged for financial support.

Supporting information for this paper is available from the IUCr electronic archives (Reference: HG5408).

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Caracelli, I., Stefani, H. A., Vieira, A. S., Machado, M. M. P. & Zukerman-Schpector, J. (2007). Z. Kristallogr. New Cryst. Struct. 222, 345-347.

- Chemaxon (2010). Marvinsketch. http://www.chemaxon.com
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854. Gans, J. D. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557-559.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Stefani, H. A., Khan, A. N., Manarin, F., Vendramini, P. H. & Eberlin, M. N. (2013). Tetrahedron Lett. 54, 6204-6207.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2014). E70, o1122-o1123 [doi:10.1107/S1600536814020832]

Crystal structure of ethyl 2-[(4-bromophenyl)amino]-3,4-dimethylpent-3-enoate

Julio Zukerman-Schpector, I. Caracelli, Hélio A. Stefani, Amna N. Khan and Edward R. T. Tiekink

S1. Synthesis and crystallization

Ytterbium triflate (10 mol%) was added to a stirred solution of (*E*)-ethyl 2-(4-bromophenylimino)acetate (0.5 mmol) in CH_2Cl_2 (5 mL). Potassium 3-methyl-2-buten-2-yltrifluoroborate (0.6 mmol) was then added and reaction mixture was stirred at room temperature until there was total consumption of the starting material. The reaction mixture was extracted with NaOH (0.5 N). The organic phase was dried using MgSO₄, and the solvent was removed under reduced pressure. Suitable crystals were obtained by slow evaporation from its EtOAc solution.

¹H NMR (CDCl₃, 300 MHz): δ 7.18 (d, J = 8.7 Hz, 2H), 6.35 (d, J = 8.7 Hz, 2H), 4.86 (s,1H), 4.59 (bs, NH), 4.17-4.08 (m, 2H), 1.87 (s, 3H), 1.65 (s, 3H), 1.42 (s, 3H), 1.21 (t, J = 7.1 Hz, 3H) ppm. ¹³C NMR (CDCl₃, 75 MHz) δ =171.9, 145.3, 131.8 (2C), 131.6, 123.6, 114.7 (2C), 109.2, 61.4, 57.7, 21.4, 20.5, 14.1, 12.6 ppm. HRMS: calcd. for C₁₅H₂₀BrNO₂ [M + H]⁺ 325.0677; found: 325.0671.

S2. Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H = 0.93 to 0.98 Å) and were included in the refinement in the riding model approximation, with $U_{iso}(H) = 1.2-1.5U_{eq}(C)$. The N—H H atoms were refined with N—H = 0.86 ± 0.01 Å, and with $U_{iso}(H) = 1.2U_{eq}(N)$. The terminal methyl group of each ethyl residue was found to be statistically disordered over two positions. These were refined so that equivalent pairs of atoms in each residue had the same anisotropic displacement parameters. Disorder in the C10–C15 benzene ring, manifested in a short average C—C bond length, *i.e.* 1.37 Å, could not be resolved.

Figure 1

The molecular structures of the two independent molecules in the title compound showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Figure 2

Overlay diagram of the two crystallographically independent molecules of the title compound. The N1- and N2- containing molecules are shown in red and blue, respectively.

Ethyl 2-[(4-bromophenyl)amino]-3,4-dimethylpent-3-enoate

Crystal data	
$C_{15}H_{20}BrNO_2$	$\gamma = 113.866 \ (2)^{\circ}$
$M_r = 326.22$	$V = 1620.20 (14) \text{ Å}^3$
Triclinic, $P\overline{1}$	Z = 4
Hall symbol: -P 1	F(000) = 672
a = 11.8746 (6) Å	$D_{\rm x} = 1.337 {\rm ~Mg} {\rm ~m}^{-3}$
b = 12.2023 (5) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
c = 13.7760 (6) Å	Cell parameters from 6830 reflections
$\alpha = 97.557 \ (3)^{\circ}$	$\theta = 2.8 - 24.5^{\circ}$
$\beta = 110.520 \ (2)^{\circ}$	$\mu = 2.54 \text{ mm}^{-1}$

T = 290 KIrregular, colourless

Data collection

Bruker Kappa APEXII CCD diffractometer	18794 measured reflections 5927 independent reflections
Radiation source: fine-focus sealed tube	4054 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.026$
ω and φ scans	$\theta_{\rm max} = 25.4^{\circ}, \theta_{\rm min} = 1.7^{\circ}$
Absorption correction: multi-scan	$h = -13 \rightarrow 14$
(SADABS; Sheldrick, 1996)	$k = -14 \rightarrow 14$
$T_{\min} = 0.552, \ T_{\max} = 0.745$	$l = -16 \rightarrow 16$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.045$	Hydrogen site location: inferred from

 $0.50 \times 0.34 \times 0.28 \text{ mm}$

Louis of an os mannin fun	
$R[F^2 > 2\sigma(F^2)] = 0.045$	Hydrogen site location: inferred from
$wR(F^2) = 0.129$	neighbouring sites
<i>S</i> = 1.03	H atoms treated by a mixture of independent
5927 reflections	and constrained refinement
377 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0596P)^2 + 0.9501P]$
2 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta ho_{ m max} = 0.70 \ { m e} \ { m \AA}^{-3}$
	$\Delta ho_{ m min}$ = -0.73 e Å ⁻³

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor w*R* and goodness of fit *S* are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Br1	0.40749 (8)	0.86878 (7)	0.59824 (4)	0.1400 (3)	
01	1.0407 (3)	0.8284 (3)	1.1303 (2)	0.0801 (8)	
02	1.0548 (2)	0.9633 (3)	1.2646 (2)	0.0763 (7)	
N1	0.8516 (4)	0.8629 (4)	0.9787 (3)	0.0780 (10)	
H1N	0.889 (4)	0.819 (3)	0.966 (3)	0.094*	
C1	0.8827 (3)	0.9110 (3)	1.0912 (3)	0.0566 (8)	
H1	0.9102	1.0012	1.1093	0.068*	
C2	1.0017 (3)	0.8954 (3)	1.1617 (3)	0.0613 (9)	
C3	1.1615 (4)	0.9495 (4)	1.3454 (3)	0.0851 (12)	0.50
H3A	1.2353	0.9647	1.3248	0.102*	0.50
H3B	1.1241	0.8643	1.3495	0.102*	0.50
C4	1.2124 (17)	1.0377 (15)	1.4481 (16)	0.095 (5)	0.50
H4A	1.2291	1.1189	1.4397	0.143*	0.50

H4B	1.2968	1.0441	1.4979	0.143*	0.50
H4C	1.1460	1.0101	1.4763	0.143*	0.50
C3′	1.1615 (4)	0.9495 (4)	1.3454 (3)	0.0851 (12)	0.50
H3C	1.2506	1.0009	1.3483	0.102*	0.50
H3D	1.1412	0.8620	1.3300	0.102*	0.50
C4′	1.157 (2)	0.998(2)	1.4551 (17)	0.191 (14)	0.50
H4D	1.1003	1.0376	1.4427	0.286*	0.50
H4E	1.2485	1.0579	1.5098	0.286*	0.50
H4F	1.1195	0.9276	1.4797	0.286*	0.50
C5	0.7633 (3)	0.8432 (3)	1.1185 (3)	0.0526 (8)	010 0
C6	0.7384(3)	0.9023(3)	1.1894 (3)	0.0576 (8)	
C7	0.6809(4)	0.7015(3)	1 0618 (3)	0.0844(12)	
<i>Н</i> 7А	0.6281	0.6623	1.0985	0.127*	
H7B	0 7424	0.6686	1.0637	0.127*	
H7C	0.6200	0.6839	0.9871	0.127*	
C8	0.6200	0.8335(5)	1 2224 (4)	0.0909(13)	
H8A	0.5672	0.7488	1.1726	0.136*	
H8B	0.5751	0.8770	1 2204	0.136*	
HSC	0.6684	0.8310	1 2951	0.136*	
C9	0.8196 (4)	1.0425(4)	1.2931 1 2481 (3)	0.0801 (11)	
НОА	0.8852	1.0590	1 3207	0.120*	
HOR	0.7583	1.0736	1.3207	0.120	
HOC	0.8671	1.0750	1.2020	0.120	
C10	0.3071 0.7498 (4)	0.8649 (3)	0.8936 (3)	0.120 0.0547 (8)	
C10	0.7490(4)	0.0049(3)	0.0930(3)	0.0547(0)	
UП H11	0.7187	0.0884	0.9009 (3)	0.0010())	
C12	0.7187 0.5895 (4)	0.9884	0.9792 0.8214 (3)	0.075	
U12 H12	0.5513	0.0012	0.8214(3)	0.0040())	
C13	0.5313	0.9912 0.8675 (4)	0.0324 0.7180 (3)	0.077	
C13	0.5402(4)	0.8073(4)	0.7109(3)	0.0090(10) 0.0709(10)	
U14 H14	0.5709	0.7714(4) 0.7407	0.6307	0.0709 (10)	
C15	0.5709 0.7030 (4)	0.7407 0.7917 (3)	0.0307	0.0614 (9)	
H15	0.7414	0.7917(3) 0.7414	0.7756	0.0014 ())	
Br?	0.7414 0.49175 (4)	0.7414 0.41287 (4)	-0.39558(3)	0.074 0.07843 (18)	
03	1.0151(3)	0.41207(4)	0.39330(3) 0.13441(19)	0.0672 (6)	
04	1.0131(3) 1.0539(3)	0.2030(2) 0.4148(3)	0.13441(19) 0.27261(18)	0.0072(0) 0.0744(7)	
N2	0.8714(3)	0.4140(3) 0.3402(3)	-0.0138(2)	0.0744(7) 0.0595(7)	
H2N	0.888(4)	0.3402(3)	-0.031(3)	0.0595 (7)	
C16	0.000(4)	0.200(2) 0.3973(3)	0.091(3)	0.071 0.0481 (7)	
H16	0.9642	0.4892	0.1181	0.058*	
C17	0.9012	0.3501(3)	0.1685(3)	0.0524 (8)	
C18	1 1336 (4)	0.3766(4)	0.1005(3) 0.3526(3)	0.0819(12)	0.50
H18A	1 2144	0.3865	0.3438	0.098*	0.50
H18B	1.0790	0.2890	0.3457	0.098*	0.50
C19	1 1732 (15)	0.4617(17)	0.4594(11)	0.126 (6)	0.50
H19A	1 2409	0 5454	0.4705	0.120(0)	0.50
H19B	1.2107	0.4314	0.5166	0.189*	0.50
H19C	1.0936	0.4636	0.4605	0.189*	0.50

C18′	1.1336 (4)	0.3766 (4)	0.3526 (3)	0.0819 (12)	0.50
H18C	1.2309	0.4325	0.3777	0.098*	0.50
H18D	1.1129	0.2913	0.3197	0.098*	0.50
C19′	1.0989 (17)	0.3819 (14)	0.4482 (13)	0.117 (5)	0.50
H19D	1.1248	0.4675	0.4831	0.175*	0.50
H19E	1.1482	0.3524	0.4997	0.175*	0.50
H19F	1.0019	0.3292	0.4225	0.175*	0.50
C20	0.7878 (3)	0.3681 (3)	0.1252 (2)	0.0484 (7)	
C21	0.7868 (3)	0.4541 (3)	0.1947 (3)	0.0550 (8)	
C22	0.6735 (4)	0.2335 (3)	0.0699 (3)	0.0700 (10)	
H22A	0.6291	0.2086	0.1156	0.105*	
H22B	0.7108	0.1793	0.0576	0.105*	
H22C	0.6078	0.2266	0.0011	0.105*	
C23	0.9035 (4)	0.5876 (4)	0.2554 (3)	0.0807 (11)	
H23A	0.9629	0.5913	0.3257	0.121*	
H23B	0.8670	0.6433	0.2649	0.121*	
H23C	0.9547	0.6130	0.2143	0.121*	
C24	0.6692 (4)	0.4254 (4)	0.2237 (3)	0.0864 (12)	
H24A	0.5903	0.3479	0.1715	0.130*	
H24B	0.6474	0.4930	0.2227	0.130*	
H24C	0.6950	0.4169	0.2955	0.130*	
C25	0.7873 (3)	0.3598 (3)	-0.0999 (2)	0.0471 (7)	
C26	0.7547 (3)	0.4562 (3)	-0.0847 (2)	0.0520 (8)	
H26	0.7915	0.5107	-0.0146	0.062*	
C27	0.6683 (3)	0.4717 (3)	-0.1726 (2)	0.0532 (8)	
H27	0.6465	0.5360	-0.1614	0.064*	
C28	0.6147 (3)	0.3936 (3)	-0.2755 (2)	0.0498 (7)	
C29	0.6476 (3)	0.2985 (3)	-0.2934 (3)	0.0560 (8)	
H29	0.6119	0.2460	-0.3640	0.067*	
C30	0.7330 (3)	0.2825 (3)	-0.2061 (3)	0.0542 (8)	
H30	0.7550	0.2186	-0.2183	0.065*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Brl	0.1954 (7)	0.2199 (7)	0.0665 (3)	0.1728 (6)	0.0380 (3)	0.0441 (4)
01	0.0827 (18)	0.110 (2)	0.0766 (17)	0.0718 (17)	0.0375 (15)	0.0241 (15)
O2	0.0632 (15)	0.1006 (19)	0.0620 (16)	0.0502 (14)	0.0184 (13)	0.0091 (14)
N1	0.093 (2)	0.121 (3)	0.0558 (18)	0.083 (2)	0.0354 (17)	0.0231 (18)
C1	0.061 (2)	0.070 (2)	0.0554 (19)	0.0412 (18)	0.0312 (17)	0.0200 (16)
C2	0.052 (2)	0.077 (2)	0.062 (2)	0.0338 (18)	0.0294 (17)	0.0218 (19)
C3	0.057 (2)	0.098 (3)	0.077 (3)	0.040 (2)	0.008 (2)	0.014 (2)
C4	0.082 (8)	0.103 (7)	0.086 (10)	0.055 (6)	0.020 (6)	-0.001 (6)
C3′	0.057 (2)	0.098 (3)	0.077 (3)	0.040 (2)	0.008 (2)	0.014 (2)
C4′	0.22 (3)	0.36 (4)	0.056 (8)	0.21 (3)	0.033 (14)	0.049 (15)
C5	0.0490 (18)	0.0557 (18)	0.0530 (18)	0.0303 (15)	0.0173 (15)	0.0164 (15)
C6	0.054 (2)	0.072 (2)	0.0556 (19)	0.0354 (17)	0.0268 (16)	0.0246 (17)
C7	0.079 (3)	0.063 (2)	0.089 (3)	0.033 (2)	0.020 (2)	0.013 (2)

C8	0.064 (3)	0.128 (4)	0.091 (3)	0.041 (3)	0.048 (2)	0.047 (3)
C9	0.100 (3)	0.075 (2)	0.080 (3)	0.048 (2)	0.053 (2)	0.017 (2)
C10	0.070 (2)	0.0635 (19)	0.0572 (19)	0.0426 (17)	0.0411 (18)	0.0254 (16)
C11	0.080(2)	0.073 (2)	0.0539 (19)	0.052 (2)	0.0379 (18)	0.0191 (17)
C12	0.089 (3)	0.076 (2)	0.066 (2)	0.060 (2)	0.046 (2)	0.0313 (19)
C13	0.097 (3)	0.088 (3)	0.059 (2)	0.065 (2)	0.042 (2)	0.037 (2)
C14	0.106 (3)	0.084 (2)	0.052 (2)	0.065 (2)	0.043 (2)	0.0235 (18)
C15	0.087 (3)	0.071 (2)	0.063 (2)	0.056 (2)	0.048 (2)	0.0292 (18)
Br2	0.0834 (3)	0.0954 (3)	0.0568 (2)	0.0548 (2)	0.01649 (19)	0.0287 (2)
03	0.0790 (17)	0.0841 (16)	0.0601 (14)	0.0583 (14)	0.0297 (13)	0.0270 (13)
O4	0.0727 (16)	0.1072 (19)	0.0448 (13)	0.0582 (15)	0.0137 (12)	0.0153 (13)
N2	0.0765 (19)	0.0811 (19)	0.0456 (15)	0.0580 (17)	0.0288 (14)	0.0222 (14)
C16	0.0514 (18)	0.0561 (17)	0.0445 (17)	0.0303 (15)	0.0236 (14)	0.0185 (14)
C17	0.0427 (18)	0.069 (2)	0.0476 (18)	0.0255 (16)	0.0226 (15)	0.0216 (16)
C18	0.065 (2)	0.120 (3)	0.057 (2)	0.051 (2)	0.0153 (19)	0.030 (2)
C19	0.123 (13)	0.23 (2)	0.051 (6)	0.124 (13)	0.023 (8)	0.043 (11)
C18′	0.065 (2)	0.120 (3)	0.057 (2)	0.051 (2)	0.0153 (19)	0.030 (2)
C19′	0.144 (15)	0.153 (14)	0.063 (7)	0.079 (10)	0.045 (10)	0.038 (9)
C20	0.0478 (18)	0.0601 (18)	0.0423 (16)	0.0306 (15)	0.0189 (14)	0.0197 (14)
C21	0.057 (2)	0.069 (2)	0.0473 (17)	0.0355 (17)	0.0266 (16)	0.0196 (16)
C22	0.057 (2)	0.067 (2)	0.076 (2)	0.0245 (18)	0.0259 (19)	0.0204 (19)
C23	0.092 (3)	0.075 (2)	0.073 (3)	0.045 (2)	0.035 (2)	0.008 (2)
C24	0.083 (3)	0.121 (3)	0.081 (3)	0.061 (3)	0.052 (2)	0.029 (3)
C25	0.0487 (18)	0.0571 (17)	0.0464 (17)	0.0295 (15)	0.0261 (14)	0.0219 (14)
C26	0.065 (2)	0.0538 (17)	0.0441 (17)	0.0350 (16)	0.0241 (15)	0.0148 (14)
C27	0.068 (2)	0.0529 (17)	0.0511 (18)	0.0365 (16)	0.0285 (16)	0.0221 (15)
C28	0.0492 (18)	0.0592 (18)	0.0470 (17)	0.0289 (15)	0.0225 (14)	0.0232 (15)
C29	0.062 (2)	0.070 (2)	0.0398 (17)	0.0363 (17)	0.0232 (15)	0.0134 (15)
C30	0.062 (2)	0.0629 (19)	0.0507 (19)	0.0393 (17)	0.0292 (16)	0.0152 (15)

Geometric parameters (Å, °)

Br1—C13	1.894 (4)	Br2—C28	1.900 (3)
O1—C2	1.194 (4)	O3—C17	1.201 (4)
O2—C2	1.318 (4)	O4—C17	1.317 (4)
O2—C3	1.451 (4)	O4—C18	1.445 (4)
N1-C10	1.369 (4)	N2—C25	1.378 (4)
N1-C1	1.438 (4)	N2—C16	1.437 (4)
N1—H1N	0.858 (10)	N2—H2N	0.856 (10)
C1—C2	1.509 (5)	C16—C17	1.513 (4)
C1—C5	1.531 (5)	C16—C20	1.530 (4)
C1—H1	0.9800	C16—H16	0.9800
C3—C4	1.413 (17)	C18—C19	1.477 (16)
С3—НЗА	0.9700	C18—H18A	0.9700
С3—Н3В	0.9700	C18—H18B	0.9700
C4—H4A	0.9600	C19—H19A	0.9600
C4—H4B	0.9600	C19—H19B	0.9600
C4—H4C	0.9600	C19—H19C	0.9600

C4′—H4D	0.9600	C19'—H19D	0.9600
C4′—H4E	0.9600	C19'—H19E	0.9600
C4′—H4F	0.9600	C19'—H19F	0.9600
C5—C6	1.323 (5)	C20—C21	1.331 (4)
C5—C7	1 515 (5)	C20—C22	1 504 (4)
C6-C9	1 505 (5)	C_{21} C_{24}	1 505 (5)
C6 C8	1.505(5)	C_{21} C_{23}	1.503(5)
C0C8	1.511(5)	$\begin{array}{c} C_{21} \\ \hline \\ C_{22} \\ \hline \\ \end{array}$	1.508 (5)
	0.9600	C22—H22A	0.9600
С/—Н/В	0.9600	C22—H22B	0.9600
С/—Н/С	0.9600	C22—H22C	0.9600
C8—H8A	0.9600	C23—H23A	0.9600
C8—H8B	0.9600	C23—H23B	0.9600
C8—H8C	0.9600	C23—H23C	0.9600
С9—Н9А	0.9600	C24—H24A	0.9600
С9—Н9В	0.9600	C24—H24B	0.9600
С9—Н9С	0.9600	C24—H24C	0.9600
C10—C15	1,386 (4)	C25—C30	1,390 (4)
C10-C11	1 392 (4)	C_{25} C_{26}	1 393 (4)
C_{11} C_{12}	1.352(1) 1.376(5)	$C_{25} = C_{20}$	1.379(4)
C11_H11	1.570(5)	$C_{20} = C_{27}$	1.379(4)
	0.9300	C_{20} H_{20}	0.9300
	1.550 (5)	C27—C28	1.558 (4)
C12—H12	0.9300	C2/—H2/	0.9300
C13—C14	1.382 (5)	C28—C29	1.385 (4)
C14—C15	1.364 (5)	C29—C30	1.371 (4)
C14—H14	0.9300	C29—H29	0.9300
C15—H15	0.9300	С30—Н30	0.9300
C2—O2—C3	117.8 (3)	C17—O4—C18	118.3 (3)
C10—N1—C1	123.0 (3)	C25—N2—C16	123.7 (2)
C10-N1-H1N	120.0(0)	C25 $N2$ $H2N$	116(2)
C1 N1 H1N	120(3) 116(3)	C_{16} N2 H2N	110(2)
$N_1 = C_1 = C_2$	100(3)	$N_2 C_{16} C_{17}$	119(2) 1082(2)
NI = CI = C2	100.2(3)	$N_2 = C_{10} = C_{17}$	100.2(2)
NI = CI = CS	114.0 (3)	$N_2 = C_{10} = C_{20}$	114.1 (3)
C2C1C5	107.8 (3)	C1/-C16-C20	108.4 (2)
N1—C1—H1	108.9	N2—C16—H16	108.7
C2—C1—H1	108.9	C17—C16—H16	108.7
C5—C1—H1	108.9	C20—C16—H16	108.7
O1—C2—O2	124.1 (3)	O3—C17—O4	124.5 (3)
O1—C2—C1	125.4 (3)	O3—C17—C16	125.2 (3)
O2—C2—C1	110.5 (3)	O4—C17—C16	110.3 (3)
O2—C3—C4	108.7 (8)	O4C18C19	104.7 (6)
O2—C3—H3A	109.9	O4—C18—H18A	110.8
С4—С3—Н3А	109.9	C19—C18—H18A	110.8
O2—C3—H3B	109.9	O4—C18—H18B	110.8
C4—C3—H3B	109 9	C19—C18—H18B	110.8
H_{3A} C_{3} H_{3B}	108.3	H18A - C18 - H18B	108.9
$H4D_C4'_H4F$	100.5	H10D C10' H10F	100.9
$\mathbf{H}_{\mathbf{D}} = \mathbf{C}_{\mathbf{A}} = \mathbf{H}_{\mathbf{D}}$	109.5		107.5
1170-04-1146	107.3	11170-019-0197	107.3

H4E—C4′—H4F	109.5	H19E—C19'—H19F	109.5
C6—C5—C7	123.1 (3)	C21—C20—C22	123.5 (3)
C6—C5—C1	122.9 (3)	C21—C20—C16	122.2 (3)
C7—C5—C1	114.0 (3)	C22—C20—C16	114.2 (3)
C5—C6—C9	124.2 (3)	C20—C21—C24	122.7 (3)
C5—C6—C8	122.6 (3)	C20—C21—C23	124.3 (3)
C9—C6—C8	113.1 (3)	C24—C21—C23	113.0 (3)
С5—С7—Н7А	109.5	C20—C22—H22A	109.5
С5—С7—Н7В	109.5	C20—C22—H22B	109.5
H7A—C7—H7B	109.5	H22A—C22—H22B	109.5
С5—С7—Н7С	109.5	C20—C22—H22C	109.5
H7A—C7—H7C	109.5	H22A—C22—H22C	109.5
H7B-C7-H7C	109.5	H22B—C22—H22C	109.5
C6-C8-H8A	109.5	C21—C23—H23A	109.5
C6—C8—H8B	109.5	C21—C23—H23B	109.5
H8A—C8—H8B	109.5	H23A—C23—H23B	109.5
C6-C8-H8C	109.5	$C_{21} = C_{23} = H_{23}C$	109.5
H8A - C8 - H8C	109.5	$H_{23}A = C_{23} = H_{23}C$	109.5
H8B-C8-H8C	109.5	$H_{23B} = C_{23} = H_{23C}$	109.5
	109.5	C_{21} C_{24} H_{24A}	109.5
C6-C9-H9B	109.5	$C_{21} - C_{24} - H_{24R}$	109.5
$H_{0}A = C_{0} = H_{0}B$	109.5	$H_{24} = C_{24} = H_{24} = H_{24}$	109.5
	109.5	C_{21} C_{24} H_{24C}	109.5
	109.5	H_{24} H	109.5
HOR CO HOC	109.5	$H_{24}A = C_{24} = H_{24}C$	109.5
N1 C10 C15	109.5	$N_2 C_{25} C_{30}$	109.5 110.0(3)
N1 = C10 = C13	120.0(3) 122.2(2)	$N_2 = C_{25} = C_{30}$	117.7(3)
10-10-11	122.3(3) 117.7(3)	$N_2 = C_{23} = C_{20}$	122.2(3) 117.0(3)
$C_{13} = C_{10} = C_{11}$	117.7(3) 120.8(2)	$C_{20} = C_{20} = C_{20}$	117.9(3) 120.6(3)
C_{12} C_{11} C_{10}	120.8 (5)	$C_2 = C_2 $	120.0 (5)
C12—C11—H11	119.0	$C_2 = C_2 $	119.7
	119.0	$C_{23} = C_{20} = H_{20}$	119.7
C13 - C12 - C11	119.8 (3)	$C_{28} = C_{27} = C_{26}$	120.5 (5)
C13—C12—H12	120.1	$C_{28} = C_{27} = H_{27}$	119.9
CII—CI2—HI2	120.1	$C_{20} = C_{27} = H_{27}$	119.9
C12 - C13 - C14	120.8 (3)	$C_2/-C_{28}-C_{29}$	120.4 (3)
C12 - C13 - Br1	120.0 (3)	$C_2/-C_28$ -Br2	120.0 (2)
C14—C13—Br1	119.2 (3)	C29—C28—Br2	119.6 (2)
C15—C14—C13	119.2 (3)	C30—C29—C28	119.5 (3)
C15—C14—H14	120.4	C30—C29—H29	120.3
C13—C14—H14	120.4	С28—С29—Н29	120.3
C14—C15—C10	121.6 (3)	C29—C30—C25	121.2 (3)
C14—C15—H15	119.2	С29—С30—Н30	119.4
C10—C15—H15	119.2	С25—С30—Н30	119.4
C10—N1—C1—C2	-178.9 (3)	C25—N2—C16—C17	178.2 (3)
C10—N1—C1—C5	61.1 (5)	C25—N2—C16—C20	57.4 (4)
C3—O2—C2—O1	-3.9 (6)	C18—O4—C17—O3	-4.1 (5)
C3—O2—C2—C1	173.9 (3)	C18—O4—C17—C16	175.2 (3)

N1-C1-C2-01	-16.7 (5)	N2-C16-C17-O3	-10.7 (4)
C5-C1-C2-O1	107.1 (4)	C20—C16—C17—O3	113.5 (3)
N1-C1-C2-O2	165.4 (3)	N2-C16-C17-O4	170.0 (3)
C5-C1-C2-O2	-70.8 (4)	C20-C16-C17-O4	-65.7 (3)
C2	174.9 (9)	C17—O4—C18—C19	-176.6 (7)
N1-C1-C5-C6	-144.0 (3)	N2-C16-C20-C21	-141.6 (3)
C2-C1-C5-C6	95.8 (4)	C17—C16—C20—C21	97.8 (3)
N1-C1-C5-C7	39.1 (4)	N2-C16-C20-C22	41.0 (4)
C2-C1-C5-C7	-81.2 (3)	C17—C16—C20—C22	-79.7 (3)
C7—C5—C6—C9	179.1 (3)	C22—C20—C21—C24	-1.0 (5)
C1—C5—C6—C9	2.5 (5)	C16—C20—C21—C24	-178.2 (3)
C7—C5—C6—C8	1.4 (5)	C22—C20—C21—C23	176.7 (3)
C1—C5—C6—C8	-175.2 (3)	C16—C20—C21—C23	-0.5 (5)
C1—N1—C10—C15	-164.7 (3)	C16—N2—C25—C30	-167.1 (3)
C1-N1-C10-C11	15.6 (6)	C16—N2—C25—C26	13.5 (5)
N1-C10-C11-C12	178.9 (3)	N2-C25-C26-C27	-178.9 (3)
C15-C10-C11-C12	-0.9 (5)	C30—C25—C26—C27	1.6 (5)
C10-C11-C12-C13	0.9 (6)	C25—C26—C27—C28	-0.6 (5)
C11—C12—C13—C14	0.0 (6)	C26—C27—C28—C29	-0.7 (5)
C11—C12—C13—Br1	179.9 (3)	C26—C27—C28—Br2	178.2 (2)
C12-C13-C14-C15	-0.9 (6)	C27—C28—C29—C30	1.0 (5)
Br1-C13-C14-C15	179.2 (3)	Br2-C28-C29-C30	-178.0 (2)
C13—C14—C15—C10	0.9 (6)	C28—C29—C30—C25	0.1 (5)
N1-C10-C15-C14	-179.9 (4)	N2-C25-C30-C29	179.2 (3)
C11—C10—C15—C14	-0.1 (5)	C26—C25—C30—C29	-1.4 (5)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
N1—H1N····O3 ⁱ	0.86	2.44	3.235 (6)	154
N2—H2N···O1 ⁱ	0.86	2.37	3.153 (5)	153

Symmetry code: (i) -x+2, -y+1, -z+1.