

OPEN a ACCESS

Crystal structure of (5R)-5-[(1S)-1,2-dihydroxyethyl]-4-methoxy-3-phenyl-2,5dihydrofuran-2-one

Santosh R. Kote,^a Shankar R. Thopate,^a* Sushil K. Gupta^b and Ray J. Butcher^c

^aDepartment of Chemistry, Post Graduate School for Biological Studies, Ahmednagar College, Ahmednagar 414 001, India, ^bSchool of Studies in Chemistry, Jiwaji University, Gwalior 474 011, India, and ^cDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA. *Correspondence e-mail: srthopate@gmail.com

Received 15 September 2014; accepted 26 September 2014

Edited by A. J. Lough, University of Toronto, Canada

In the title compound, $C_{13}H_{14}O_5$, the furan ring is essentially planar [maximum deviation = 0.031(3) Å] with a stereogenic center (R) at the sp^3 hybridized C atom. The C atom bearing the dihydroxy ethyl group is S. The absolute configuration is based on the precursor in the synthesis. The two O-H groups are in an anti conformation with respect to each other. The mean plane of the furanone group is twisted by 8.2 $(4)^{\circ}$ from that of the phenyl ring. In the crystal, molecules are linked by O−H···O hydrogen bonds involving furanone C=O groups and symmetry-related hydroxy groups, forming a two-dimensional network parallel to (001). Weak C-H···O hydrogen bonds are observed within the two-dimensional network.

Keywords: Crystal structure; L-ascorbic acid derivative; hydrogen bonding.; crystal structure.

CCDC reference: 998610

1. Related literature

For the biological activity of 5,6-O-modified and 2,3-di-Oalkyl derivatives of L-ascorbic acid, see: Tanuma et al. (1993); Gazivoda et al. (2007); Wittine et al. (2012); Kote et al. (2014). For related structures, see: Koo & McDonald (2005); Tanaka et al. (1986); Sugimura (1990). For a description of the Cambridge Structural Database, see: Allen (2002).

V = 615.97 (8) Å³

Mo $K\alpha$ radiation

 $0.4\,\times\,0.3\,\times\,0.08$ mm

8346 measured reflections

1243 independent reflections

655 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 $\mu = 0.10 \text{ mm}^{-1}$

T = 293 K

 $R_{\rm int} = 0.034$

1 restraint

 $\Delta \rho_{\rm max} = 0.13 \ {\rm e} \ {\rm \AA}^{-1}$

 $\Delta \rho_{\rm min} = -0.15 \text{ e} \text{ Å}^{-3}$

Z = 2

2. Experimental

2.1. Crystal data

C13H14O5 $M_r = 250.24$ Monoclinic, P21 a = 7.5110 (5) Å b = 4.9298 (3) Å c = 16.6625 (16) Å $\beta = 93.268$ (6)

2.2. Data collection

Agilent Xcalibur, Ruby, Gemini diffractometer Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) $T_{\min} = 0.714, T_{\max} = 1.000$

2.3. Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.059$ $wR(F^2) = 0.126$ S = 1.051243 reflections 166 parameters

Table 1

		0	
Hydrogen-bond	geometry ((Å, °`).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O4-H4···O5 ⁱ	0.82	1.89	2.707 (5)	178
$O5-H5\cdots O1^{ii}$	0.82	1.94	2.741 (6)	165
$C12-H12B\cdots O4^{iii}$	0.97	2.58	3.365 (8)	139
$C12-H12B\cdots O4^{m}$	0.97	2.58	3.365 (8)	139

Symmetry codes: (i) -x + 1, $y - \frac{1}{2}$, -z + 1; (ii) -x + 2, $y + \frac{1}{2}$, -z + 1; (iii) x, y + 1, z.

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/6 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Acknowledgements

This work was supported by the Department of Science and Technology (DST), New Delhi, India (No. SR/S1/OC-19/ 2007). SRK thanks the DST for the award of a JRF. RJB the NSF-MRI program acknowledges (grant No. CHE0619278) for funds to purchase the X-ray diffractometer. SKG wishes to thank the USIEF for the award of a Fulbright– Nehru Senior Research Fellowship.

Supporting information for this paper is available from the IUCr electronic archives (Reference: LH5729).

References

Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England. Allen, F. H. (2002). Acta Cryst. B**58**, 380–388.

Gazivoda, T., Raić-Malić, S., Marjanović, M., Kralj, M., Pavelić, K., Balzarini, J., De Clercq, E. & Mintas, M. (2007). *Bioorg. Med. Chem.* **15**, 749–758.

Koo, B. & McDonald, F. E. (2005). Org. Lett. 7, 3621-3624.

- Kote, S. R., Mishra, R., Khan, A. A. & Thopate, S. R. (2014). Med. Chem. Res. 23, 1257–1266.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sugimura, H. (1990). Tetrahedron Lett. 31, 5909-5912.
- Tanaka, T., Nonaka, G., Nishioka, I., Miyahara, K. & Kawasaki, T. (1986). J. Chem. Soc. Perkin Trans. 1, pp. 369–376.
- Tanuma, S., Shiokawa, D., Tanimoto, Y., Ikekita, M., Sakagami, H., Takeda, M., Fukuda, S. & Kochi, M. (1993). *Biochem. Biophys. Res. Commun.* 194, 29–35.
- Wittine, K., Stipković Babić, M., Makuc, D., Plavec, J., Kraljević Pavelić, S., Sedić, M., Pavelić, K., Leyssen, P., Neyts, J., Balzarini, J. & Mintas, M. (2012). *Bioorg. Med. Chem.* 20, 3675–3685.

supporting information

Acta Cryst. (2014). E70, o1141-o1142 [doi:10.1107/S1600536814021370]

Crystal structure of (5*R*)-5-[(1*S*)-1,2-dihydroxyethyl]-4-methoxy-3-phenyl-2,5dihydrofuran-2-one

Santosh R. Kote, Shankar R. Thopate, Sushil K. Gupta and Ray J. Butcher

S1. Comment

5,6-O-modified L-ascorbic acid derivatives have been found to be effective anti-tumor agents for various human cancers, and induce apoptosis in tumor cells (Tanuma *et al.*, 1993; Gazivoda *et al.*, 2007; Wittine *et al.*, 2012). We have recently reported that 2,3-di-O-alkyl derivatives of 5,6-O-isopropylidene-L-ascorbic acid exhibit anticancer activity against human breast cancer cell line (MCF-7), leukemic cell line (HL-60) and cervical cell line (HeLa) (Kote *et al.*, 2014). A search of the Cambridge Structural Database (Version 5.35, updates to November 2013, Allen, 2002) revealed the crystal structures of four related compounds, *viz.* dimethyl-2',3,3', 3a',4,4a,5',6',6a',9a-decahydro-6'-hydroxy-1,3a',7,8,9a-pentamethoxy-2',10- dioxo-1,4-ethano-1H-pyrano(3,4-b)benzofuran-3-spiro-3'-furo(3,2-b)furan-4,5- dicarboxylate (Tanaka *et al.*, 1986); 2,2-dimethyl-7-methoxy-1,3,6- trioxa-8-phenyl-4-(2,2-dimethyl-1,3-dioxacyclopropan-4-yl)bicyclo-(4.3.0)nonane (Sugimura, 1990); 3,6-dihydroxy-7-methoxy-5-methyl-3-phenylhexahydro-2H-furo (3,2-b)pyran-2-one methanol solvate and 3,6,7-trihydroxy-5-methyl-3-phenyl- hexahydro-2H-furo(3,2-b)pyran-2-one (Koo & McDonald, 2005). In view of the importance of the title compound, (I), herein we report its synthesis and crystal structure.

In the title compound (Fig. 2) the furanone ring is essentially planar [maximum atomic deviation = 0.031 (3) Å] with a stereogenic center (*R*) at atom C9 and (*S*) at atom C11, which bears the dihydroxy ethyl group. The two O—H groups are in an *anti* conformation with respect to each other, as reflected by torsion angles O5—C12—C11—C9 of 170.5 (6)° and O4—C11—C12—O5 of -69.4 (6)°. The C—C, C_{aromatic}—C_{aromatic}, C—O and C=O bond lengths in (I) are within their normal ranges. The mean plane of the furan ring (C7/C8/O2/C9/C10) is twisted by 8.2 (4)° from that of the phenyl ring (C1–C6). In the crystal, molecules are linked by intermolecular O—H…O hydrogen bonds involving furanone C=O groups and symmetry-related hydroxy groups (Fig. 3, Table 1) to form a two-dimensional network paralllel to (001). Weak C—H…O hydrogen bonds are observed within the two-dimensional network.

S2. Experimental

Referring to Fig. 1, to a solution of (*R*)-5-((*S*)-2,2-dimethyl-1,3-dioxolan- 4-yl)-4-methoxy-3-phenylfuran-2-(5H)-one (0.570 g) in 5.0 mL THF was added 2.00 mL of 20% H₂SO₄ at room temperature. The reaction mixture was stirred for 6 h at room temperature before it was quenched with NaHCO₃ solution. The organic layer was extracted with ethyl acetate (3 × 10 mL), combined organic layer was dried over anhydrous Na₂SO₄, concentrated under vacuum and eluted through a silica column using a mixture of hexane and ethyl acetate (2:3) as an eluent to afford a white solid. Yield: 0.447 g (91%); HRMS: m/z = 251.0919 (calculated), m/z = 251.0927 [MH⁺] (found). ¹H NMR (DMSO-d₆ + CDCl₃): δ [ppm] = 6.90 (d, *J* = 7.2 Hz, 2H, Ar—H), 6.71 (m, 3H, Ar—H), 4.44 (s, 1H, C4—H), 4.14 (d, *J* = 6.0 Hz, 1H, C6—H), 3.95 (t, *J* = 6 Hz, 1H, C6—H), 3.43 (m, 1H, C5—H), 3.21 (s, 3H, -OCH3). ¹³C NMR (DMSO-d₆ + CDCl₃): δ [ppm] = 168.5, 168.4, 125.4, 125.0, 123.3, 123.0, 100.1, 72.4, 65.2, 58.2, 55.4. IR (KBr): 3349, 3268, 2958, 2920, 1713, 1628, 1465, 1312, 980, 781 cm⁻¹. [α]_D²⁵ +2.43° (c 0.28, MeOH). X-ray quality crystals were grown by slow evaporation of a solution of the title

compound in a mixture of ethyl acetate and hexane.

S3. Refinement

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances of 0.93–0.98 Å, O—H = 0.82Å and with $U_{iso}(H) = 1.2-1.5 U_{eq}(C)$. In the absence of anomalous dispersion effects the Friedel pairs were merged before refinement. The absolute configuration is based on the precursor in the synthesis.

Figure 1

Scheme showing the synthesis of the title compound.

Figure 2

The molecular structure of (I) showing 50% probability displacement ellipsoids.

Figure 3

The molecular packing of the title compound, viewed along the b-axis, showing two-dimensional network parallel to (001). Dashed lines indicate hydrogen bonds.

(5*R*)-5-[(1*S*)-1,2-dihydroxyethyl]-4-methoxy-3-phenyl-2,5-dihydrofuran-2-one

Crystal data	
$C_{13}H_{14}O_5$	F(000) = 264
$M_r = 250.24$	$D_{\rm x} = 1.349 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 7.5110(5) Å	Cell parameters from 613 reflections
b = 4.9298 (3) Å	$\theta = 3.6 - 28.4^{\circ}$
c = 16.6625 (16) Å	$\mu = 0.10 \text{ mm}^{-1}$
$\beta = 93.268 \ (6)^{\circ}$	T = 293 K
$V = 615.97 (8) Å^3$	Plate, colorless
Z = 2	$0.4 \times 0.3 \times 0.08 \text{ mm}$

Data collection

Agilent Xcalibur, Ruby, Gemini diffractometer Radiation source: Enhance (Mo) X-ray Source Graphite monochromator Detector resolution: 10.5081 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2011) $T_{\min} = 0.714, T_{\max} = 1.000$	8346 measured reflections 1243 independent reflections 655 reflections with $I > 2\sigma(I)$ $R_{int} = 0.034$ $\theta_{max} = 25.3^{\circ}, \theta_{min} = 3.6^{\circ}$ $h = -9 \rightarrow 9$ $k = 0 \rightarrow 5$ $l = 0 \rightarrow 19$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.059$ $wR(F^2) = 0.126$ S = 1.05 1243 reflections 166 parameters 1 restraint Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.039P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.13$ e Å ⁻³ $\Delta\rho_{min} = -0.15$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	1.1330 (5)	0.1548 (13)	0.2979 (3)	0.0999 (17)	
O2	0.9642 (4)	0.4569 (9)	0.3574 (3)	0.0705 (13)	
03	0.5525 (5)	0.4727 (10)	0.2375 (3)	0.0830 (14)	
04	0.6722 (4)	0.1838 (8)	0.4222 (3)	0.0727 (13)	
H4	0.5683	0.1386	0.4272	0.109*	
05	0.6695 (4)	0.5242 (11)	0.5641 (2)	0.0776 (14)	
Н5	0.7173	0.5875	0.6054	0.116*	
C1	0.8238 (8)	0.0846 (12)	0.1705 (4)	0.0609 (16)	
C2	0.6797 (10)	0.0982 (15)	0.1143 (5)	0.090 (2)	
H2A	0.5888	0.2215	0.1225	0.108*	
C3	0.6670 (12)	-0.0633 (19)	0.0476 (5)	0.107 (3)	
H3A	0.5686	-0.0482	0.0114	0.128*	
C4	0.7970 (13)	-0.2454 (16)	0.0338 (5)	0.098 (3)	
H4A	0.7883	-0.3561	-0.0114	0.117*	
C5	0.9404 (11)	-0.2637 (16)	0.0873 (6)	0.100 (3)	
H5A	1.0301	-0.3882	0.0783	0.120*	
C6	0.9552 (9)	-0.1003 (15)	0.1549 (5)	0.085 (2)	
H6A	1.0551	-0.1154	0.1903	0.102*	
C7	0.8339 (7)	0.2571 (12)	0.2420 (4)	0.0565 (17)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C8	0.9895 (8)	0.2716 (15)	0.2967 (4)	0.071 (2)	
С9	0.7819 (6)	0.5560 (13)	0.3479 (4)	0.0609 (16)	
H9	0.7814	0.7541	0.3428	0.073*	
C10	0.7144 (7)	0.4319 (12)	0.2723 (4)	0.0602 (17)	
C11	0.6847 (7)	0.4704 (14)	0.4227 (4)	0.0584 (16)	
H11A	0.5640	0.5469	0.4189	0.070*	
C12	0.7805 (7)	0.5703 (14)	0.4989 (4)	0.0681 (18)	
H12A	0.8925	0.4742	0.5081	0.082*	
H12B	0.8061	0.7624	0.4944	0.082*	
C13	0.4443 (8)	0.6955 (16)	0.2630 (4)	0.094 (2)	
H13A	0.3670	0.7554	0.2186	0.142*	
H13B	0.5201	0.8424	0.2812	0.142*	
H13C	0.3739	0.6366	0.3060	0.142*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.061 (2)	0.158 (5)	0.081 (4)	0.027 (3)	0.005 (2)	0.004 (3)
O2	0.054 (2)	0.090 (3)	0.068 (3)	-0.011 (2)	0.003 (2)	0.000 (3)
03	0.071 (2)	0.092 (3)	0.083 (4)	0.024 (3)	-0.018 (2)	-0.017 (3)
O4	0.066 (2)	0.060 (3)	0.094 (4)	-0.006 (2)	0.016 (2)	0.002 (2)
05	0.060 (2)	0.113 (4)	0.061 (3)	0.005 (2)	0.011 (2)	0.006 (3)
C1	0.069 (4)	0.056 (4)	0.058 (5)	0.000 (3)	0.007 (4)	0.001 (4)
C2	0.109 (5)	0.084 (6)	0.077 (6)	0.017 (5)	0.000 (5)	-0.015 (5)
C3	0.125 (6)	0.104 (7)	0.090 (7)	0.010 (6)	-0.008 (5)	-0.019 (6)
C4	0.148 (7)	0.077 (6)	0.070 (7)	-0.009 (6)	0.025 (6)	-0.011 (5)
C5	0.110 (6)	0.086 (6)	0.107 (8)	0.013 (5)	0.039 (6)	-0.014 (6)
C6	0.079 (4)	0.087 (6)	0.091 (6)	0.014 (4)	0.015 (4)	-0.005 (5)
C7	0.053 (3)	0.056 (4)	0.061 (5)	0.001 (3)	0.007 (3)	0.007 (4)
C8	0.063 (4)	0.087 (6)	0.064 (5)	-0.003 (4)	0.012 (4)	0.004 (4)
C9	0.056 (3)	0.058 (4)	0.068 (5)	-0.002 (3)	-0.001 (3)	0.006 (4)
C10	0.054 (3)	0.062 (4)	0.063 (5)	-0.004 (4)	-0.002 (3)	0.006 (4)
C11	0.051 (3)	0.056 (4)	0.068 (5)	-0.005 (3)	0.007 (3)	0.002 (4)
C12	0.061 (3)	0.077 (4)	0.066 (5)	-0.009 (3)	0.007 (3)	-0.002 (4)
C13	0.077 (4)	0.097 (6)	0.109 (7)	0.025 (5)	0.001 (4)	-0.004 (5)

Geometric parameters (Å, °)

01-C8	1.221 (7)	C4—H4A	0.9300
O2—C8	1.384 (8)	C5—C6	1.384 (10)
О2—С9	1.454 (6)	C5—H5A	0.9300
O3—C10	1.332 (6)	C6—H6A	0.9300
O3—C13	1.445 (7)	C7—C10	1.362 (7)
O4—C11	1.416 (7)	C7—C8	1.442 (8)
O4—H4	0.8200	C9—C10	1.464 (8)
O5—C12	1.424 (6)	C9—C11	1.539 (7)
O5—H5	0.8200	С9—Н9	0.9800
C1—C6	1.379 (8)	C11—C12	1.507 (8)

C1—C2	1.392 (8)	C11—H11A	0.9800
C1—C7	1.462 (8)	C12—H12A	0.9700
C2—C3	1.367 (10)	C12—H12B	0.9700
C2—H2A	0.9300	C13—H13A	0.9600
C3—C4	1.355 (10)	C13—H13B	0.9600
С3—НЗА	0.9300	C13—H13C	0.9600
C4—C5	1.362 (9)		
C8—O2—C9	108.0 (5)	O2—C9—C10	103.4 (5)
C10—O3—C13	120.1 (5)	O2—C9—C11	107.8 (5)
C11—O4—H4	109.5	C10—C9—C11	115.1 (5)
С12—О5—Н5	109.5	O2—C9—H9	110.1
C6—C1—C2	116.3 (6)	С10—С9—Н9	110.1
C6—C1—C7	122.3 (6)	С11—С9—Н9	110.1
C2—C1—C7	121.5 (6)	O3—C10—C7	122.6 (6)
C3—C2—C1	122.3 (7)	O3—C10—C9	125.1 (5)
C3—C2—H2A	118.8	C7—C10—C9	112.3 (5)
C1—C2—H2A	118.8	O4—C11—C12	111.0 (5)
C4—C3—C2	120.4 (8)	O4—C11—C9	107.7 (5)
С4—С3—Н3А	119.8	C12—C11—C9	111.5 (5)
С2—С3—НЗА	119.8	O4—C11—H11A	108.8
C3—C4—C5	118.9 (8)	C12—C11—H11A	108.8
C3—C4—H4A	120.5	C9—C11—H11A	108.8
С5—С4—Н4А	120.5	O5-C12-C11	108.6 (4)
C4—C5—C6	121.2 (7)	O5—C12—H12A	110.0
C4—C5—H5A	119.4	C11—C12—H12A	110.0
C6—C5—H5A	119.4	O5—C12—H12B	110.0
C1—C6—C5	120.8 (7)	C11—C12—H12B	110.0
С1—С6—Н6А	119.6	H12A—C12—H12B	108.4
С5—С6—Н6А	119.6	O3—C13—H13A	109.5
C10—C7—C8	105.2 (6)	O3—C13—H13B	109.5
C10—C7—C1	131.7 (6)	H13A—C13—H13B	109.5
C8—C7—C1	123.1 (6)	O3—C13—H13C	109.5
O1—C8—O2	117.1 (6)	H13A—C13—H13C	109.5
O1—C8—C7	132.0 (7)	H13B—C13—H13C	109.5
O2—C8—C7	110.8 (5)		
C6-C1-C2-C3	0.5 (10)	C8-02-C9-C10	-5.6 (6)
C7—C1—C2—C3	-179.3 (6)	C8—O2—C9—C11	116.8 (5)
C1—C2—C3—C4	0.1 (12)	C13—O3—C10—C7	-168.3 (5)
C2—C3—C4—C5	-0.3 (12)	C13—O3—C10—C9	14.6 (8)
C3—C4—C5—C6	0.0 (12)	C8—C7—C10—O3	-179.8 (5)
C2-C1-C6-C5	-0.8 (9)	C1—C7—C10—O3	0.7 (9)
C7—C1—C6—C5	179.0 (6)	C8—C7—C10—C9	-2.4 (6)
C4—C5—C6—C1	0.6 (11)	C1C7C10C9	178.2 (5)
C6-C1-C7-C10	-173.2 (6)	O2—C9—C10—O3	-177.6 (5)
C2-C1-C7-C10	6.6 (9)	C11—C9—C10—O3	65.0 (8)
С6—С1—С7—С8	7.5 (8)	O2—C9—C10—C7	5.0 (6)

supporting information

	172 7 (()	G11 G0 G10 G7	112 4 (6)
$C_2 - C_1 - C_7 - C_8$	-1/2.7(6)	C11—C9—C10—C/	-112.4 (6)
C9—O2—C8—O1	-175.9 (5)	O2—C9—C11—O4	-66.2 (6)
C9—O2—C8—C7	4.6 (6)	C10—C9—C11—O4	48.7 (6)
C10-C7-C8-O1	179.2 (7)	O2—C9—C11—C12	55.9 (7)
C1—C7—C8—O1	-1.4 (10)	C10-C9-C11-C12	170.7 (5)
C10-C7-C8-O2	-1.4 (6)	O4—C11—C12—O5	-69.4 (6)
C1—C7—C8—O2	178.1 (5)	C9—C11—C12—O5	170.5 (6)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D····A	D—H··· A	
O4—H4…O5 ⁱ	0.82	1.89	2.707 (5)	178	
O5—H5…O1 ⁱⁱ	0.82	1.94	2.741 (6)	165	
C12—H12 <i>B</i> ···O4 ⁱⁱⁱ	0.97	2.58	3.365 (8)	139	

Symmetry codes: (i) -*x*+1, *y*-1/2, -*z*+1; (ii) -*x*+2, *y*+1/2, -*z*+1; (iii) *x*, *y*+1, *z*.