data reports

OPEN a ACCESS

Crystal structure of 4-((1*E*)-1-{(2*Z*)-2-[4-(4-bromophenyl)-3-phenyl-2,3-dihydro-1.3-thiazol-2-vlidenelhvdrazin-1-vlidene}ethyl)phenol hemihydrate

Joel T. Mague,^a Mehmet Akkurt,^b Shaaban K. Mohamed,^{c,d} Alaa A. Hassan^e and Mustafa R. Albavati^{f*}

^aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, ^bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, ^cChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, ^dChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, ^eChemistry Department, Faculty of Science, Mini University, 61519 El-Minia, Egypt, and ^fKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq. *Correspondence e-mail: shaabankamel@yahoo.com

Received 18 July 2014; accepted 28 August 2014

Edited by P. McArdle, National University of Ireland, Ireland

In the title compound, C₂₃H₁₈BrN₃OS·0.5H₂O, the bromophenyl, phenyl and phenol rings make dihedral angles of 46.5 (1), 66.78 (8) and 15.4 (2) $^{\circ}$, respectively, with the mean squares plane of the thiazolidene ring. In the crystal, the lattice water molecule is hydrogen bonded to the phenol group and makes a weaker O-H···N connection to an inversion-related molecule, forming a ring while weak pairwise $C-H \cdots S$ interactions involving inversion-related molecules form a second ring. Both these motifs result in the formation of two-dimensional networks lying parallel to (101).

Keywords: crystal structure; phenol; C-H···S interactions; thiazole scaffold compounds; medicinal applications.

CCDC reference: 1021529

1. Related literature

For the wide spectrum of medicinal applications of thiazole scaffold compounds, see: Pattan et al. (2009); Sharma et al. (2009); Argyropoulou et al. (2009); Trautman & Longe (1948); Surray (1949); Bhattacharya et al. (2005); Alemagna et al. (1968); Spector et al. (1998); Karade et al. (2008). For a related structure, see: Akkurt et al. (2014).

2. Experimental

2.1. Crystal data

C23H18BrN3OS·0.5H2O $M_r = 473.38$ Triclinic, $P\overline{1}$ a = 8.485 (2) Å b = 10.336(2) Å c = 12.057 (3) Å $\alpha = 80.515 \ (3)^{\circ}$ $\beta = 88.008 \ (3)^{\circ}$

2.2. Data collection

Bruker SMART APEX CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2013) $T_{\min} = 0.51, T_{\max} = 0.86$

2.3. Refinement $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.126$ S = 1.025211 reflections

18957 measured reflections 5211 independent reflections 3834 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.049$

 $\gamma = 86.249 \ (4)^{\circ}$ V = 1040.3 (4) Å³

Mo $K\alpha$ radiation

 $0.27 \times 0.23 \times 0.07 \ \text{mm}$

 $\mu = 2.10 \text{ mm}^{-1}$

T = 150 K

Z = 2

273	parameters
H-a	tom parameters constrained
$\Delta \rho$	$_{\rm max} = 0.85 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho$	$_{\rm min} = -0.32 \text{ e} \text{ Å}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1−H1···O2	0.84	1.67	2.511 (5)	173
$O2-H2A\cdots N2^{i}$	0.84	2.45	2.898 (5)	114
$C17 - H17B \cdot \cdot \cdot S1^{ii}$	0.98	3.02	3.925 (3)	154

Symmetry codes: (i) -x + 2, -y + 1, -z + 1; (ii) -x + 1, -y + 1, -z + 1.

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT; program(s) used to solve structure: SHELXT (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

Supporting information for this paper is available from the IUCr electronic archives (Reference: QM2108).

References

- Akkurt, M., Mague, J. T., Mohamed, S. K., Hassan, A. A. & Albayati, M. R. (2014). Acta Cryst. E70, 0478–0479.
- Alemagna, A., Bacchetti, T. & Beltrame, P. (1968). *Tetrahedron*, 24, 3209–3217.
- Argyropoulou, I., Geronikaki, A., Vicini, P. & Zanib, F. (2009). Arkivoc, VI, 89-102.
- Bhattacharya, P., Leonard, J. T. & Roy, K. (2005). Bioorg. Med. Chem. 13, 1159–1165.
- Brandenburg, K. & Putz, H. (2012). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (2013). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

- Karade, H. N., Acharya, B. N., Sathe, M. & Kaushik, M. P. (2008). *Med. Chem. Res.* **17**, 19–29.
- Pattan, S. R., Dighe, N. S., Nirmal, S. A., Merekar, A. N., Laware, R. B., Shinde, H. V. & Musmade, D. S. (2009). Asian J. R. Chem. 2, 196–201.
- Sharma, R. N., Xavier, F. P., Vasu, K. K., Chaturvedi, S. C. & Pancholi, S. S. (2009). J. Enzyme Inhib. Med. Chem. 24, 890–897.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
 Spector, F. C., Liang, L. H., Sivaraja, G. M. & Peterson, M. G. (1998). J. Virol. 72, 6979–6987.
- Surray, A. R. (1949). J. Am. Chem. Soc. 71, 3354-3356.
- Trautman, H. D. & Longe, L. M. (1948). J. Am. Chem. Soc. 70, 3436-3439.

supporting information

Acta Cryst. (2014). E70, o1124–o1125 [doi:10.1107/S1600536814019473]

Crystal structure of 4-((1*E*)-1-{(2*Z*)-2-[4-(4-bromophenyl)-3-phenyl-2,3-dihydro-1,3-thiazol-2-ylidene]hydrazin-1-ylidene}ethyl)phenol hemihydrate

Joel T. Mague, Mehmet Akkurt, Shaaban K. Mohamed, Alaa A. Hassan and Mustafa R. Albayati

S1. Comment

Thiazole scaffold compounds are of considerable interest from therapeutic point of view due to their utility as antibacterial and antifungal (Pattan *et al.*, 2009), anti-inflammatory (Sharma *et al.*, 2009), analgesic (Argyropoulou *et al.*, 2009), antitubercular (Trautman & Longe, 1948), central nervous system (*CNS*) stimulate (Surray, 1949), anti-HIV (Bhattacharya *et al.*, 2005), and algicidol (Alemagna *et al.*, 1968) activities. Some of thiazole derivatives have shown inhibition towards herpes simplex virus (Spector *et al.*, 1998). In addition, thiazole containing N=C=S moiety have been used as antiphychotics (Pattan *et al.*, 2009) and antimalarial (Karade *et al.*, 2008) agents. In this context and as part of our on-going study of bio-active heterocyclic molecules we herein report the synthesis and crystal structure of the title compound. In the title compound, the phenyl rings C1–C6, C10–C15 and C18–C23 make dihedral angles, respectively, of 46.5 (1), 66.78 (8) and 15.4 (2)° with the least squares plane of the thiazolidene ring. The lattice water is hydrogen bonded to the phenol group and makes a weaker connection to N2ⁱ (i: 2-*x*, 1-*y*, 1-*z*) to form a ring while weak, pairwise C17–H17B···S1 interactions with the molecule at 1-*x*, 1-*y*, 1-*z* form a second ring (Fig. 2 and Table 1). Both these motifs extend along (101).

S2. Experimental

The title compound has been prepared according to our reported method (Akkurt *et al.*, 2014). Mono-crystals suitable for X-ray diffraction have been obtained by crystallization of the crude product (I) from ethanol.

S3. Refinement

H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å) while those attached to oxygen were placed in locations derived from a difference map and their coordinates adjusted to give O—H = 0.84 Å. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. The crystals of the title compound were quite small and very weakly diffracting.

Figure 1

The title compound with numbering scheme and 50% probability displacement ellipsoids.

Figure 2

Packing viewed down the *b* axis showing the rings formed by the O—H…O (red), O—H…N (blue) and C—H…S (black) interactions.

4-((1E)-1-{(2Z)-2-[4-(4-Bromophenyl)-3-phenyl-2,3-dihydro-1,3-thiazol-2-ylidene]hydrazin-1-

ylidene}ethyl)phenol hemihydrate

Crystal data	
$C_{23}H_{18}BrN_3OS \cdot 0.5H_2O$	$\gamma = 86.249 \ (4)^{\circ}$
$M_r = 473.38$	V = 1040.3 (4) Å ³
Triclinic, $P\overline{1}$	Z = 2
a = 8.485 (2) Å	F(000) = 482
b = 10.336 (2) Å	$D_{\rm x} = 1.511 { m Mg} { m m}^{-3}$
c = 12.057 (3) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
$\alpha = 80.515 \ (3)^{\circ}$	Cell parameters from 7895 reflections
$\beta = 88.008 \ (3)^{\circ}$	$\theta = 2.4 - 28.4^{\circ}$

 $\mu = 2.10 \text{ mm}^{-1}$ T = 150 K

Data collection

Duiu conection	
Bruker SMART APEX CCD diffractometer	18957 measured reflections 5211 independent reflections
Radiation source: fine-focus sealed tube	3834 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.049$
Detector resolution: 8.3660 pixels mm ⁻¹	$\theta_{\rm max} = 28.5^{\circ}, \theta_{\rm min} = 2.0^{\circ}$
φ and ω scans	$h = -11 \rightarrow 11$
Absorption correction: multi-scan	$k = -13 \rightarrow 13$
(SADABS; Bruker, 2013)	$l = -16 \rightarrow 16$
$T_{\min} = 0.51, \ T_{\max} = 0.86$	
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.046$	Hydrogen site location: mixed
$wR(F^2) = 0.126$	H-atom parameters constrained
S = 1.02	$w = 1/[\sigma^2(F_o^2) + (0.062P)^2 + 0.5209P]$
5211 reflections	where $P = (F_o^2 + 2F_c^2)/3$
273 parameters	$(\Delta/\sigma)_{\rm max} < 0.001$
0 restraints	$\Delta ho_{ m max} = 0.85 \ { m e} \ { m \AA}^{-3}$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm min} = -0.32 \text{ e} \text{ Å}^{-3}$

Plate, orange

 $0.27 \times 0.23 \times 0.07 \text{ mm}$

direct methods

Special details

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω , collected at $\varphi = 0.00$, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ , collected at $\omega = -30.00$ and 210.00°. The scan time was 15 sec/frame.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å) while those attached to oxygen were placed in locations derived from a difference map and their coordinates adjusted to give O—H = 0.84 Å. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Br1	-0.12028 (5)	0.13286 (3)	-0.19996 (3)	0.05610 (15)	
S1	0.40464 (9)	0.58630 (7)	0.18323 (6)	0.03452 (17)	
01	0.9721 (3)	0.8848 (3)	0.5879 (3)	0.0730 (8)	
H1	1.0394	0.8562	0.6368	0.110*	
N1	0.3970 (3)	0.3403 (2)	0.16873 (18)	0.0301 (5)	
N2	0.5690 (3)	0.3796 (2)	0.3070 (2)	0.0369 (5)	
N3	0.6250 (3)	0.4875 (2)	0.34845 (19)	0.0354 (5)	
C1	0.1997 (3)	0.3384 (3)	0.0175 (2)	0.0290 (5)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C2	0.1835 (3)	0.3850 (3)	-0.0973 (2)	0.0347 (6)	
H2	0.2382	0.4593	-0.1313	0.042*	
C3	0.0891 (3)	0.3245 (3)	-0.1624 (2)	0.0370 (6)	
H3	0.0798	0.3562	-0.2406	0.044*	
C4	0.0090 (3)	0.2178 (3)	-0.1119 (2)	0.0374 (6)	
C5	0.0177 (3)	0.1714 (3)	0.0027 (2)	0.0357 (6)	
Н5	-0.0417	0.0999	0.0366	0.043*	
C6	0.1144 (3)	0.2311 (3)	0.0667 (2)	0.0343 (6)	
H6	0.1231	0.1990	0.1449	0.041*	
C7	0.2959 (3)	0.4075 (3)	0.0851 (2)	0.0296 (5)	
C8	0.2881 (3)	0.5384 (3)	0.0827 (2)	0.0336 (6)	
H8	0.2256	0.5985	0.0314	0.040*	
С9	0.4677 (3)	0.4211 (3)	0.2289 (2)	0.0319 (6)	
C10	0.4530 (3)	0.2040 (3)	0.1771 (2)	0.0304 (5)	
C11	0.4261 (3)	0.1177 (3)	0.2750 (3)	0.0396 (7)	
H11	0.3673	0.1464	0.3359	0.048*	
C12	0.4863 (4)	-0.0122 (3)	0.2834 (3)	0.0457 (8)	
H12	0.4673	-0.0727	0.3501	0.055*	
C13	0.5730 (4)	-0.0532 (3)	0.1955 (3)	0.0460 (8)	
H13	0.6136	-0.1419	0.2018	0.055*	
C14	0.6010 (4)	0.0336 (3)	0.0988 (3)	0.0426 (7)	
H14	0.6619	0.0052	0.0388	0.051*	
C15	0.5403 (3)	0.1627 (3)	0.0889 (2)	0.0369 (6)	
H15	0.5586	0.2227	0.0217	0.044*	
C16	0.6881 (3)	0.4600 (3)	0.4462 (2)	0.0321 (6)	
C17	0.6960 (4)	0.3259 (3)	0.5167 (2)	0.0383 (6)	
H17A	0.6467	0.2643	0.4769	0.058*	
H17B	0.6399	0.3296	0.5886	0.058*	
H17C	0.8067	0.2963	0.5305	0.058*	
C18	0.7578 (3)	0.5707 (3)	0.4874 (2)	0.0332 (6)	
C19	0.7384 (4)	0.6989 (3)	0.4292 (3)	0.0410 (7)	
H19	0.6745	0.7152	0.3646	0.049*	
C20	0.8087 (4)	0.8027 (3)	0.4621 (3)	0.0483 (8)	
H20	0.7939	0.8886	0.4201	0.058*	
C21	0.9007 (4)	0.7810 (3)	0.5567 (3)	0.0483 (8)	
C22	0.9198 (4)	0.6557 (3)	0.6184 (3)	0.0455 (7)	
H22	0.9815	0.6406	0.6840	0.055*	
C23	0.8486 (3)	0.5521 (3)	0.5839 (2)	0.0379 (6)	
H23	0.8620	0.4666	0.6270	0.045*	
O2	1.1835 (4)	0.8167 (5)	0.7301 (4)	0.0451 (11)	0.5
H2A	1.2451	0.8144	0.6743	0.054*	0.5
H2B	1.1914	0.7404	0.7668	0.054*	0.5

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0777 (3)	0.0379 (2)	0.0543 (2)	-0.00352(16)	-0.03883(18)	-0.00462(14)
S1	0.0432 (4)	0.0256 (3)	0.0347 (4)	-0.0034(3)	-0.0061(3)	-0.0030(3)

01	0.0642 (17)	0.0498 (16)	0.114 (3)	-0.0017 (13)	-0.0168 (16)	-0.0361 (16)
N1	0.0385 (12)	0.0249 (11)	0.0263 (11)	-0.0011 (9)	-0.0074 (9)	-0.0010 (8)
N2	0.0451 (13)	0.0337 (13)	0.0319 (12)	-0.0062 (10)	-0.0093 (10)	-0.0017 (10)
N3	0.0430 (13)	0.0340 (13)	0.0296 (12)	-0.0060 (10)	-0.0082 (10)	-0.0032 (9)
C1	0.0294 (12)	0.0261 (13)	0.0301 (13)	0.0052 (10)	-0.0044 (10)	-0.0028 (10)
C2	0.0343 (14)	0.0335 (15)	0.0332 (14)	0.0016 (11)	-0.0020 (11)	0.0018 (11)
C3	0.0408 (15)	0.0381 (16)	0.0303 (14)	0.0058 (12)	-0.0102 (12)	-0.0014 (11)
C4	0.0424 (15)	0.0304 (15)	0.0404 (15)	0.0074 (12)	-0.0170 (12)	-0.0091 (12)
C5	0.0437 (15)	0.0242 (13)	0.0386 (15)	-0.0005 (11)	-0.0093 (12)	-0.0019 (11)
C6	0.0433 (15)	0.0288 (14)	0.0294 (13)	-0.0003 (11)	-0.0054 (11)	-0.0008 (10)
C7	0.0319 (13)	0.0263 (13)	0.0292 (13)	-0.0002 (10)	-0.0031 (10)	-0.0003 (10)
C8	0.0357 (14)	0.0272 (14)	0.0367 (15)	0.0005 (11)	-0.0076 (11)	-0.0007 (11)
C9	0.0386 (14)	0.0285 (13)	0.0278 (13)	-0.0039 (11)	-0.0016 (11)	-0.0012 (10)
C10	0.0319 (13)	0.0246 (13)	0.0338 (14)	-0.0020 (10)	-0.0096 (11)	0.0004 (10)
C11	0.0404 (15)	0.0365 (16)	0.0384 (16)	0.0003 (12)	0.0003 (13)	0.0029 (12)
C12	0.0494 (17)	0.0319 (16)	0.0494 (18)	0.0003 (13)	-0.0087 (14)	0.0127 (13)
C13	0.0480 (17)	0.0315 (16)	0.058 (2)	0.0078 (13)	-0.0207 (15)	-0.0061 (14)
C14	0.0451 (17)	0.0420 (17)	0.0427 (17)	0.0022 (13)	-0.0085 (13)	-0.0134 (13)
C15	0.0424 (15)	0.0361 (15)	0.0322 (14)	-0.0024 (12)	-0.0048 (12)	-0.0047 (11)
C16	0.0351 (13)	0.0347 (15)	0.0245 (13)	0.0028 (11)	-0.0026 (10)	-0.0005 (10)
C17	0.0488 (16)	0.0353 (15)	0.0297 (14)	0.0007 (13)	-0.0087 (12)	-0.0013 (11)
C18	0.0321 (13)	0.0376 (15)	0.0294 (13)	0.0011 (11)	-0.0031 (11)	-0.0047 (11)
C19	0.0455 (16)	0.0392 (17)	0.0382 (16)	0.0023 (13)	-0.0087 (13)	-0.0063 (13)
C20	0.0512 (18)	0.0372 (17)	0.057 (2)	0.0005 (14)	-0.0099 (15)	-0.0074 (14)
C21	0.0410 (16)	0.0482 (19)	0.061 (2)	0.0012 (14)	-0.0070 (15)	-0.0239 (16)
C22	0.0374 (15)	0.058 (2)	0.0430 (17)	0.0024 (14)	-0.0106 (13)	-0.0152 (15)
C23	0.0360 (14)	0.0442 (17)	0.0332 (15)	0.0004 (12)	-0.0038 (12)	-0.0057 (12)
O2	0.0275 (19)	0.060 (3)	0.057 (3)	0.0017 (18)	-0.0138 (18)	-0.035 (2)

Geometric parameters (Å, °)

Br1—C4	1.902 (3)	C11—C12	1.394 (4)	
S1—C8	1.743 (3)	C11—H11	0.9500	
S1—C9	1.760 (3)	C12—C13	1.377 (5)	
O1—C21	1.376 (4)	C12—H12	0.9500	
O1—H1	0.8400	C13—C14	1.372 (5)	
N1—C9	1.371 (3)	C13—H13	0.9500	
N1C7	1.409 (3)	C14—C15	1.387 (4)	
N1-C10	1.446 (3)	C14—H14	0.9500	
N2-C9	1.297 (4)	C15—H15	0.9500	
N2—N3	1.411 (3)	C16—C18	1.484 (4)	
N3—C16	1.293 (3)	C16—C17	1.500 (4)	
C1—C2	1.397 (4)	C17—H17A	0.9800	
C1—C6	1.401 (4)	C17—H17B	0.9800	
C1—C7	1.467 (4)	C17—H17C	0.9800	
C2—C3	1.385 (4)	C18—C19	1.396 (4)	
С2—Н2	0.9500	C18—C23	1.397 (4)	
C3—C4	1.377 (4)	C19—C20	1.380 (5)	

С3—Н3	0.9500	С19—Н19	0.9500
C4—C5	1.388 (4)	C20—C21	1.384 (5)
C5—C6	1.385 (4)	С20—Н20	0.9500
С5—Н5	0.9500	C21—C22	1.386 (5)
С6—Н6	0.9500	C22—C23	1.391 (4)
C7—C8	1.346 (4)	С22—Н22	0.9500
C8—H8	0.9500	C23—H23	0.9500
C10—C11	1.379 (4)	O2—H2A	0.8397
C10—C15	1.384 (4)	02—H2B	0.8384
		02 1122	
C8—S1—C9	90.06 (13)	C13—C12—C11	120.4 (3)
C21—O1—H1	109.5	C13—C12—H12	119.8
C9—N1—C7	114.0 (2)	C11—C12—H12	119.8
C9—N1—C10	119.9 (2)	C14—C13—C12	120.2 (3)
C7—N1—C10	124.7 (2)	C14—C13—H13	119.9
C9—N2—N3	109.8 (2)	С12—С13—Н13	119.9
C16 - N3 - N2	115.3 (2)	C13—C14—C15	120.0 (3)
$C_2 - C_1 - C_6$	118.6 (2)	C13—C14—H14	120.0
C_{2} C_{1} C_{7}	119.8 (2)	C15—C14—H14	120.0
C6-C1-C7	121.6 (2)	C10-C15-C14	119.8(3)
C_{3} C_{2} C_{1}	121.0(2) 121.1(3)	C10-C15-H15	120.1
$C_3 - C_2 - H_2$	119 5	C14 - C15 - H15	120.1
C1 - C2 - H2	119.5	N3-C16-C18	126.1
C4-C3-C2	118.9 (3)	N3C16C17	124.2(3)
C4 - C3 - H3	120.6	C18 - C16 - C17	124.2(3) 1198(2)
C2_C3_H3	120.6	C_{16} C_{17} H_{17A}	109.5
$C_2 = C_3 = C_4 = C_5$	120.0	C_{16} C_{17} H_{17R}	109.5
$C_3 = C_4 = C_3$	121.0(3) 1105(2)	H17A C17 H17B	109.5
$C_5 = C_4 = B_{11}$	119.3(2) 118.7(2)	$\frac{1117}{A} = \frac{117}{B}$	109.5
$C_{5} = C_{4} = D_{11}$	110.7(2) 118.0(3)	H_{17} C_{17} H_{17} C_{17}	109.5
C_{0}	110.9 (3)	$\frac{1117}{A} - \frac{17}{117} - \frac{117}{117}$	109.5
C_{0}	120.0	111/B - C1/-111/C	109.3
$C_{4} = C_{5} = 0.000$	120.0	$C_{19} = C_{18} = C_{25}$	110.8(3)
$C_5 = C_6 = U_6$	120.8 (3)	$C_{19} = C_{18} = C_{10}$	121.0(2)
C_{3}	119.0	$C_{23} = C_{10} = C_{10}$	122.2(3)
$C_1 = C_0 = H_0$	119.0	C_{20} C_{19} C_{18} C_{20} C_{10} U_{10}	122.5 (5)
$C_{0} = C_{1} = C_{1}$	112.4(2)	C18 C10 H10	118.9
	125.0 (2)	C18—C19—H19	118.9
NI = C = CI	122.4(2)	C19 - C20 - C21	119.7 (3)
C/-C8-S1	113.1 (2)	C19 - C20 - H20	120.2
C/-C8-H8	123.5	$C_{21} = C_{20} = H_{20}$	120.2
$S_1 - C_0 - H_0$	123.3	01 - 021 - 020	119.2 (3)
N2	123.9 (2)	01 - 021 - 022	121.0(3)
N2-C9-S1	125.6 (2)	$C_{20} - C_{21} - C_{22}$	119.8 (3)
NI-C9-SI	110.52 (19)	$C_{21} - C_{22} - C_{23}$	119.9 (3)
C11—C10—C15	120.5 (3)	C21—C22—H22	120.1
C11—C10—N1	119.8 (2)	C23—C22—H22	120.1
C15—C10—N1	119.6 (2)	C22—C23—C18	121.5 (3)
C10-C11-C12	119.1 (3)	C22—C23—H23	119.2

C10-C11-H11	120.5	С18—С23—Н23	119.2
C12—C11—H11	120.5	H2A—O2—H2B	104.8
C9—N2—N3—C16	160.3 (2)	C8—S1—C9—N1	-1.1 (2)
C6—C1—C2—C3	-1.9 (4)	C9—N1—C10—C11	70.7 (3)
C7—C1—C2—C3	-177.8 (2)	C7—N1—C10—C11	-123.7 (3)
C1—C2—C3—C4	0.8 (4)	C9—N1—C10—C15	-105.9 (3)
C2—C3—C4—C5	1.5 (4)	C7—N1—C10—C15	59.7 (4)
C2—C3—C4—Br1	-179.6 (2)	C15-C10-C11-C12	-0.8 (4)
C3—C4—C5—C6	-2.5 (4)	N1-C10-C11-C12	-177.5 (3)
Br1-C4-C5-C6	178.6 (2)	C10-C11-C12-C13	0.8 (5)
C4—C5—C6—C1	1.3 (4)	C11—C12—C13—C14	0.0 (5)
C2-C1-C6-C5	0.8 (4)	C12—C13—C14—C15	-0.7 (5)
C7—C1—C6—C5	176.6 (2)	C11-C10-C15-C14	0.1 (4)
C9—N1—C7—C8	-0.9 (3)	N1-C10-C15-C14	176.8 (3)
C10—N1—C7—C8	-167.2 (2)	C13—C14—C15—C10	0.7 (4)
C9—N1—C7—C1	-175.1 (2)	N2-N3-C16-C18	175.8 (2)
C10—N1—C7—C1	18.5 (4)	N2-N3-C16-C17	-3.3 (4)
C2—C1—C7—C8	46.9 (4)	N3-C16-C18-C19	7.3 (4)
C6—C1—C7—C8	-128.9 (3)	C17—C16—C18—C19	-173.5 (3)
C2-C1-C7-N1	-139.6 (3)	N3-C16-C18-C23	-171.0 (3)
C6-C1-C7-N1	44.6 (4)	C17—C16—C18—C23	8.1 (4)
N1-C7-C8-S1	0.0 (3)	C23—C18—C19—C20	1.9 (4)
C1—C7—C8—S1	174.1 (2)	C16—C18—C19—C20	-176.5 (3)
C9—S1—C8—C7	0.6 (2)	C18—C19—C20—C21	-0.7 (5)
N3—N2—C9—N1	177.1 (2)	C19—C20—C21—O1	179.1 (3)
N3—N2—C9—S1	-1.5 (3)	C19—C20—C21—C22	-0.9 (5)
C7—N1—C9—N2	-177.5 (3)	O1—C21—C22—C23	-178.9 (3)
C10—N1—C9—N2	-10.4 (4)	C20—C21—C22—C23	1.0 (5)
C7—N1—C9—S1	1.3 (3)	C21—C22—C23—C18	0.3 (5)
C10—N1—C9—S1	168.41 (19)	C19—C18—C23—C22	-1.7 (4)
C8—S1—C9—N2	177.7 (3)	C16—C18—C23—C22	176.7 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	Н…А	D··· A	D—H···A	
01—H1…O2	0.84	1.67	2.511 (5)	173	
O2— $H2A$ ···N2 ⁱ	0.84	2.45	2.898 (5)	114	
C17—H17 B ····S1 ⁱⁱ	0.98	3.02	3.925 (3)	154	

Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+1, -z+1.