

OPEN d ACCESS

Crystal structure of 3-methyl-1-phenyl-5-(1*H*-pyrrol-1-yl)-1*H*-pyrazole-4-carbaldehyde

Joel T. Mague,^a Shaaban K. Mohamed,^{b,c} Mehmet Akkurt,^d Talaat I. El-Emary^e and Mustafa R. Albayati^{f*}

^aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, ^bChemistry and Environmental Division, Manchester Metropolitan University, Manchester, M1 5GD, England, ^cChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, ^dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, ^eDepartment of Chemistry, Faculty of Science, Assiut University, 71515 Assiut, Egypt, and ^fKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq. *Correspondence e-mail: shaabankamel@yahoo.com

Received 19 September 2014; accepted 20 September 2014

Edited by J. Simpson, University of Otago, New Zealand

In the title compound, $C_{15}H_{13}N_3O$, the pyrrolyl and phenyl rings make dihedral angles of 58.99 (5) and 34.95 (5)°, respectively, with the central pyrazole ring. In the crystal, weak, pairwise $C-H\cdots O$ interactions across centers of symmetry form dimers, which are further associated into corrugated sheets running approximately parallel to (100) *via* weak $C-H\cdots N$ interactions.

Keywords: crystal structure; pyrazole ring; pyrrolyl ring; dimers.

CCDC reference: 1025251

1. Related literature

For the biological activity of pyrazoline-containing compounds see: Nauduri & Reddy (1998); Korgaokar *et al.* (1996); Taylor & Patel (1992); Ozdemir *et al.* (2007); Ruhoğlu *et al.* (2005); Palaska *et al.* (2001); Rajendra Prasad *et al.* (2005); Udupi *et al.* (1998). For synthetic and industrial applications of pyrazolo[3,4-b]pyrazines see: Rangnekar & Dhamnaskar (1990); Kopp *et al.* (2001); Farghaly & El-Kashef (2005).

2. Experimental

2.1. Crystal data

 $\begin{array}{l} C_{15}H_{13}N_{3}O\\ M_{r}=251.28\\ Monoclinic, P2_{1}/c\\ a=9.5807\,(8)\ \AA\\ b=15.1720\,(13)\ \AA\\ c=8.7370\,(8)\ \AA\\ \beta=93.6180\,(11)^{\circ} \end{array}$

2.2. Data collection

Bruker SMART APEX CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2014) $T_{min} = 0.98, T_{max} = 1.00$

2.3. Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.114$ S = 1.073321 reflections 26282 measured reflections 3321 independent reflections 2527 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.053$

V = 1267.46 (19) Å³

 $0.29 \times 0.17 \times 0.04~\text{mm}$

Mo $K\alpha$ radiation

 $\mu = 0.09 \text{ mm}^{-1}$

T = 150 K

Z = 4

173 parameters	
H-atom parameters constra	ined
$\Delta \rho_{\rm max} = 0.31 \text{ e } \text{\AA}^{-3}$	
$\Delta \rho_{\rm min} = -0.25 \text{ e } \text{\AA}^{-3}$	

Table 1			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{l} C15-H15\cdots N1^{i}\\ C12-H12\cdots O1^{ii} \end{array}$	0.95 0.95	2.48 2.52	3.3931 (17) 3.4255 (17)	161 159

Symmetry codes: (i) $x, -y + \frac{3}{2}, z - \frac{1}{2}$; (ii) -x + 1, -y + 1, -z + 2.

Data collection: *APEX2* (Bruker, 2014); cell refinement: *SAINT* (Bruker, 2014); data reduction: *SAINT*; program(s) used to solve structure: *SHELXT* (Bruker, 2014); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg & Putz, 2012); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Acknowledgements

The authors would like to thank Professor Hussein M. S. El-Kashef for his contribution to this study. JTM would like to express his thanks to Tulane University for support of the Tulane Crystallography Laboratory. Supporting information for this paper is available from the IUCr electronic archives (Reference: SJ5428).

References

- Brandenburg, K. & Putz, H. (2012). *DIAMOND*, Crystal Impact GbR, Bonn, Germany.
- Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS, Madison, Wisconsin, USA.
- Farghaly, A. & El-Kashef, H. (2005). Monatsh. Chem. 136, 217-227.
- Kopp, M., Lancelot, J.-C., Dallemagne, P. & Rault, S. (2001). J. Heterocycl. Chem. 38, 1045–1050.
- Korgaokar, S. S., Patil, P. H., Shah, M. J. & Parekh, H. H. (1996). Indian J. Pharm. Sci. 58, 222–225.

Nauduri, D. & Reddy, G. B. (1998). Chem. Pharm. Bull. 46, 1254-1260.

- Ozdemir, Z., Kandilci, H. B., Gümüşel, B., Caliş, U. & Bilgin, A. A. (2007). Eur. J. Med. Chem. 42, 373–379.
- Palaska, E., Aytemir, M., Uzbay, I. T. & Erol, D. (2001). Eur. J. Med. Chem. 36, 539–543.
- Rajendra Prasad, Y., Lakshmana Rao, A., Prasoona, L., Murali, K. & Ravi Kumar, P. (2005). Bioorg. Med. Chem. Lett. 15, 5030–5034.
- Rangnekar, D. W. & Dhamnaskar, S. V. (1990). J. Chem. Technol. Biotechnol. 49, 311–320.
- Ruhoğlu, O., Ozdemir, Z., Caliş, U., Gümüşel, B. & Bilgin, A. A. (2005). Arzneimittelforschung, 55, 431–436.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Taylor, E. C. & Patel, H. H. (1992). Tetrahedron, 48, 8089-8100.
- Udupi, R. H., Kushnoor, A. S. & Bhat, A. R. (1998). Indian J. Heterocycl. Chem. 8, 63-66.

supporting information

Acta Cryst. (2014). E70, o1131-o1132 [doi:10.1107/S1600536814020984]

Crystal structure of 3-methyl-1-phenyl-5-(1*H*-pyrrol-1-yl)-1*H*-pyrazole-4carbaldehyde

Joel T. Mague, Shaaban K. Mohamed, Mehmet Akkurt, Talaat I. El-Emary and Mustafa R. Albayati

S1. Comment

Pyrazolines and substituted pyrazolines exhibit a variety of biological activities displaying anti-bacterial (Nauduri & Reddy, 1998), anti-fungal (Korgaokar *et al.*, 1996), anti-tumor (Taylor & Patel, 1992), anticonvulsant (Ozdemir *et al.*, 2007; Ruhoğlu *et al.*, 2005), anti-depressant (Palaska *et al.*, 2001; Rajendra Prasad *et al.*, 2005) and anti-inflammatory (Udupi *et al.*, 1998) properties. Moreover, pyrazolo[3,4-*b*]pyrazines are also used as fluorescent and disperse dyes in dye chemistry (Rangnekar & Dhamnaskar, 1990; Kopp *et al.*, 2001). In addition the title compound and its analogs have proved to be versatile compounds for use in the synthesis of several heterocycles (Farghaly & El-Kashef, 2005). Based on these findings and as part of our on-going study of the synthesis of bio-heterocyclic molecules, we report in this study the crystal structure of the title compound.

In the title compound (Fig. 1), the central pyrazole ring makes dihedral angles of 58.99 (5) and 34.95 (5)°, respectively, with the the pyrrolyl and phenyl rings. Weak, pairwise C12—H12…O1 interactions across centers of symmetry form dimers which are further associated into corrugated sheets running approximately parallel to (100) *via* weak C15—H15…N1 interactions (Table 1, Fig. 2 and Fig. 3).

S2. Experimental

A mixture of 2.01 g (0.01 mol) 5-amino-3-methyl-1-phenyl-1*H*-pyrazole-4-carbaldehyde and 1.32 g (0.01 mol) of 2,5-dimethoxytetrahydrofuran in acetic acid (15 ml) was heated under reflux for 2 h. After cooling the mixture was poured into cold water (50 ml) and the precipitate was filtered off, washed with water, dried under vacuum and crystallized from dioxane-water (3:1vv) to afford the product in 85% yield. Colourless plate-like crystals for X-ray diffraction were obtained by further crystallization of the product from acetic acid. *M*.p. 409 – 411 K.

S3. Refinement

H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å). All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Figure 1

Perspective view of the title molecule with labeling scheme and 50% probability ellipsoids for non-H atoms.

Figure 2

Packing viewed down the *c* axis showing an edge view of one corrugated sheet with hydrogen bonds drawn as red and blue dashed lines.

ON C C

Figure 3

Packing viewed down the *a* axis showing the C—H…O and C—H…N interactions as red and blue dashed lines, respectively.

3-Methyl-1-phenyl-5-(1H-pyrrol-1-yl)-1H-pyrazole-4-carbaldehyde

Crystal data

C₁₅H₁₃N₃O $M_r = 251.28$ Monoclinic, $P2_1/c$ a = 9.5807 (8) Å b = 15.1720 (13) Å c = 8.7370 (8) Å $\beta = 93.6180$ (11)° V = 1267.46 (19) Å³ Z = 4

Data collection

Bruker SMART APEX CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 8.3660 pixels mm⁻¹ φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2014) $T_{\min} = 0.98, T_{\max} = 1.00$ F(000) = 528 $D_x = 1.317 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6992 reflections $\theta = 2.5-29.1^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 150 KPlate, colourless $0.29 \times 0.17 \times 0.04 \text{ mm}$

26282 measured reflections 3321 independent reflections 2527 reflections with $I > 2\sigma(I)$ $R_{int} = 0.053$ $\theta_{max} = 29.2^{\circ}, \theta_{min} = 2.1^{\circ}$ $h = -13 \rightarrow 13$ $k = -20 \rightarrow 20$ $l = -11 \rightarrow 11$ Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.044$	Hydrogen site location: inferred from
$wR(F^2) = 0.114$	neighbouring sites
S = 1.07	H-atom parameters constrained
3321 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0533P)^2 + 0.2193P]$
173 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.31 \ m e \ m \AA^{-3}$
direct methods	$\Delta \rho_{\min} = -0.25 \text{ e} \text{ Å}^{-3}$

Special details

Experimental. The diffraction data were collected in three sets of 400 frames (0.5° width in ω) at $\varphi = 0, 120$ and 240°. A scan time of 80 sec/frame was used. Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and Rfactors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å). All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
0.33317 (10)	0.54403 (7)	0.91467 (11)	0.0336 (2)	
0.59037 (11)	0.76421 (7)	0.80193 (12)	0.0234 (2)	
0.67710 (11)	0.71108 (7)	0.72255 (12)	0.0211 (2)	
0.70035 (11)	0.55911 (6)	0.64732 (12)	0.0210 (2)	
0.63304 (13)	0.62637 (8)	0.72276 (14)	0.0208 (3)	
0.51547 (13)	0.62272 (8)	0.80704 (14)	0.0217 (3)	
0.49451 (13)	0.71148 (8)	0.85367 (14)	0.0230 (3)	
0.38179 (14)	0.74728 (10)	0.94605 (16)	0.0306 (3)	
0.3977	0.8103	0.9644	0.046*	
0.3827	0.7162	1.0445	0.046*	
0.2909	0.7388	0.8901	0.046*	
0.43357 (14)	0.54534 (9)	0.83563 (15)	0.0253 (3)	
0.4597	0.4916	0.7896	0.030*	
0.79899 (13)	0.74965 (8)	0.66330 (14)	0.0206 (3)	
0.92330 (13)	0.70303 (8)	0.66282 (14)	0.0242 (3)	
	x 0.33317 (10) 0.59037 (11) 0.67710 (11) 0.67710 (11) 0.63304 (13) 0.51547 (13) 0.49451 (13) 0.38179 (14) 0.3977 0.3827 0.2909 0.43357 (14) 0.4597 0.79899 (13) 0.92330 (13)	x y $0.33317 (10)$ $0.54403 (7)$ $0.59037 (11)$ $0.76421 (7)$ $0.67710 (11)$ $0.71108 (7)$ $0.70035 (11)$ $0.55911 (6)$ $0.63304 (13)$ $0.62637 (8)$ $0.51547 (13)$ $0.62272 (8)$ $0.49451 (13)$ $0.71148 (8)$ $0.38179 (14)$ $0.74728 (10)$ 0.3827 0.7162 0.2909 0.7388 $0.43357 (14)$ $0.54534 (9)$ 0.4597 0.4916 $0.79899 (13)$ $0.70303 (8)$	xyz $0.33317(10)$ $0.54403(7)$ $0.91467(11)$ $0.59037(11)$ $0.76421(7)$ $0.80193(12)$ $0.67710(11)$ $0.71108(7)$ $0.72255(12)$ $0.70035(11)$ $0.55911(6)$ $0.64732(12)$ $0.63304(13)$ $0.62637(8)$ $0.72276(14)$ $0.51547(13)$ $0.62272(8)$ $0.80704(14)$ $0.49451(13)$ $0.71148(8)$ $0.85367(14)$ $0.38179(14)$ $0.74728(10)$ $0.94605(16)$ 0.3977 0.8103 0.9644 0.3827 0.7162 1.0445 0.2909 0.7388 0.8901 $0.43357(14)$ $0.54534(9)$ $0.83563(15)$ 0.4597 0.4916 0.7896 $0.79899(13)$ $0.74965(8)$ $0.66232(14)$ $0.92330(13)$ $0.70303(8)$ $0.66282(14)$	xyz $U_{iso}*/U_{eq}$ 0.33317 (10)0.54403 (7)0.91467 (11)0.0336 (2)0.59037 (11)0.76421 (7)0.80193 (12)0.0234 (2)0.67710 (11)0.71108 (7)0.72255 (12)0.0211 (2)0.70035 (11)0.55911 (6)0.64732 (12)0.0210 (2)0.63304 (13)0.62637 (8)0.72276 (14)0.0208 (3)0.51547 (13)0.62272 (8)0.80704 (14)0.0217 (3)0.49451 (13)0.71148 (8)0.85367 (14)0.0230 (3)0.38179 (14)0.74728 (10)0.94605 (16)0.0306 (3)0.39770.81030.96440.046*0.38270.71621.04450.046*0.29090.73880.89010.046*0.43357 (14)0.54534 (9)0.83563 (15)0.0253 (3)0.45970.49160.78960.030*0.79899 (13)0.74965 (8)0.66330 (14)0.0206 (3)0.92330 (13)0.70303 (8)0.66282 (14)0.0242 (3)

H7	0.9285	0.6441	0.6997	0.029*	
C8	1.03977 (14)	0.74327 (9)	0.60798 (15)	0.0269 (3)	
H8	1.1251	0.7115	0.6063	0.032*	
C9	1.03304 (14)	0.82956 (9)	0.55550 (15)	0.0276 (3)	
H9	1.1131	0.8567	0.5172	0.033*	
C10	0.90846 (15)	0.87586 (9)	0.55948 (15)	0.0276 (3)	
H10	0.9040	0.9354	0.5256	0.033*	
C11	0.79111 (13)	0.83644 (8)	0.61199 (15)	0.0240 (3)	
H11	0.7057	0.8682	0.6132	0.029*	
C12	0.76608 (14)	0.48753 (8)	0.71948 (15)	0.0250 (3)	
H12	0.7625	0.4720	0.8245	0.030*	
C13	0.83647 (15)	0.44366 (9)	0.61277 (15)	0.0288 (3)	
H13	0.8913	0.3920	0.6299	0.035*	
C14	0.81336 (14)	0.48874 (9)	0.47146 (15)	0.0276 (3)	
H14	0.8493	0.4722	0.3767	0.033*	
C15	0.73103 (14)	0.55959 (8)	0.49470 (14)	0.0240 (3)	
H15	0.7001	0.6018	0.4198	0.029*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0322 (5)	0.0361 (6)	0.0335 (5)	-0.0085 (4)	0.0099 (4)	0.0015 (4)
N1	0.0209 (5)	0.0216 (5)	0.0282 (6)	0.0022 (4)	0.0048 (4)	-0.0046 (4)
N2	0.0209 (5)	0.0177 (5)	0.0251 (5)	0.0001 (4)	0.0044 (4)	-0.0023 (4)
N3	0.0249 (5)	0.0171 (5)	0.0214 (5)	0.0011 (4)	0.0038 (4)	-0.0007 (4)
C1	0.0233 (6)	0.0172 (6)	0.0216 (6)	-0.0004 (5)	0.0002 (5)	-0.0002 (4)
C2	0.0217 (6)	0.0222 (6)	0.0211 (6)	-0.0005 (5)	0.0012 (5)	-0.0007 (5)
C3	0.0214 (6)	0.0242 (6)	0.0232 (6)	0.0006 (5)	0.0007 (5)	-0.0024 (5)
C4	0.0258 (7)	0.0327 (7)	0.0341 (7)	0.0010 (6)	0.0071 (6)	-0.0065 (6)
C5	0.0274 (6)	0.0254 (6)	0.0229 (6)	-0.0033 (5)	0.0008 (5)	0.0006 (5)
C6	0.0218 (6)	0.0197 (6)	0.0204 (6)	-0.0025 (5)	0.0033 (5)	-0.0022 (5)
C7	0.0249 (6)	0.0208 (6)	0.0270 (6)	0.0007 (5)	0.0028 (5)	-0.0009(5)
C8	0.0234 (6)	0.0277 (7)	0.0299 (7)	-0.0003 (5)	0.0044 (5)	-0.0049 (5)
C9	0.0279 (7)	0.0279 (7)	0.0275 (7)	-0.0077 (5)	0.0067 (5)	-0.0042 (5)
C10	0.0331 (7)	0.0214 (6)	0.0284 (7)	-0.0041 (5)	0.0026 (5)	0.0005 (5)
C11	0.0253 (6)	0.0192 (6)	0.0272 (6)	0.0010 (5)	0.0005 (5)	-0.0011 (5)
C12	0.0315 (7)	0.0184 (6)	0.0250 (6)	0.0016 (5)	0.0002 (5)	0.0021 (5)
C13	0.0342 (7)	0.0209 (6)	0.0313 (7)	0.0062 (5)	0.0012 (6)	-0.0015 (5)
C14	0.0318 (7)	0.0276 (7)	0.0238 (6)	0.0024 (5)	0.0043 (5)	-0.0041 (5)
C15	0.0294 (7)	0.0234 (6)	0.0195 (6)	0.0012 (5)	0.0028 (5)	0.0002 (5)

Geometric parameters (Å, °)

01—C5	1.2191 (16)	C6—C11	1.3915 (17)	
N1—C3	1.3191 (16)	С7—С8	1.3838 (18)	
N1—N2	1.3762 (14)	С7—Н7	0.9500	
N2—C1	1.3529 (15)	С8—С9	1.3873 (19)	
N2—C6	1.4319 (15)	C8—H8	0.9500	

N3—C15	1.3835 (16)	C9—C10	1.3873 (19)
N3-C12	1.3869 (16)	С9—Н9	0.9500
N3—C1	1.3946 (15)	C10—C11	1.3775 (18)
C1—C2	1.3852 (17)	С10—Н10	0.9500
$C^2 - C^3$	1 4248 (17)	C11—H11	0.9500
C_{2}^{-}	1.427(17)	C12-C13	1 3589 (19)
$C_2 = C_2$	1.4909(17)	C12—H12	0.9500
C4—H4A	0.9800	C12 - C12	1 4165 (19)
CA HAB	0.9800	C13 H13	0.9500
$C_4 = H_4C$	0.9800	C14 C15	1 3562 (18)
C5 H5	0.9500	C14 H14	0.9500
C6 C7	1.3854(17)	C15 H15	0.9500
0-07	1.3834 (17)		0.9300
C3—N1—N2	105.85 (10)	C8—C7—C6	119.21 (12)
C1—N2—N1	110.94 (10)	С8—С7—Н7	120.4
C1—N2—C6	130.57 (10)	С6—С7—Н7	120.4
N1—N2—C6	118.36 (10)	C7—C8—C9	120.60 (12)
C15 - N3 - C12	108.92 (10)	C7—C8—H8	119.7
C15 - N3 - C1	125.76 (10)	C9—C8—H8	119.7
C12 - N3 - C1	124 63 (10)	C10-C9-C8	119.45 (12)
$N_2 - C_1 - C_2$	107 63 (10)	C10-C9-H9	120.3
N2-C1-N3	122.74 (11)	C8-C9-H9	120.3
$C_2 - C_1 - N_3$	129.63 (11)	$C_{11} - C_{10} - C_{9}$	120.5 120.67(12)
C1 - C2 - C3	104 38 (11)	$C_{11} - C_{10} - H_{10}$	119 7
C1 - C2 - C5	126 44 (11)	C9-C10-H10	119.7
C_{3} C_{2} C_{5}	120.11(11) 129.17(12)	C10-C11-C6	119.7 119.30(12)
$N_1 - C_3 - C_2$	129.17(12) 111 19(11)	C10-C11-H11	120.4
N1 - C3 - C4	120 56 (11)	C6_C11_H11	120.4
$C_2 - C_3 - C_4$	120.30(11) 128.25(12)	C_{13} C_{12} N3	120.4
$C_2 = C_3 = C_4 = H_4 \Delta$	109.5	C_{13} C_{12} H_{12}	126.2
$C_3 - C_4 - H_4B$	109.5	N3_C12_H12	126.2
$H_{4} - C_{4} - H_{4} B$	109.5	C_{12} C_{12} C_{13} C_{14}	120.2 107 73 (12)
$C_3 = C_4 = H_4C_5$	109.5	$C_{12} = C_{13} = C_{14}$	126.1
$H_{4} - C_{4} - H_{4}C$	109.5	C12 - C13 - H13	126.1
	109.5	$C_{14} = C_{13} = 113$	120.1 108 21 (12)
$\begin{array}{c} 114D - C4 - 114C \\ 01 C5 C2 \end{array}$	109.5	$C_{15} = C_{14} = C_{15}$	125.0
01 - 05 - 02	124.03 (12)	$C_{13} = C_{14} = H_{14}$	125.9
C_{2} C_{5} H_{5}	117.7	C13 - C14 - 1114 C14 - C15 - N3	123.3 107 53 (11)
$C_2 = C_3 = H_3$	117.7	$C_{14} = C_{15} = N_5$	107.33 (11)
C^{7}	120.73(11) 120.88(11)	$N_{14} = C_{15} = H_{15}$	120.2
$C_1 = C_0 = N_2$	120.00(11) 118.21(11)	N3-C15-1115	120.2
C11-C0-N2	118.51 (11)		
C3—N1—N2—C1	1.28 (13)	C3—C2—C5—O1	-4.1 (2)
C3—N1—N2—C6	-174.98 (10)	C1—N2—C6—C7	-32.38 (19)
N1—N2—C1—C2	-1.18 (13)	N1—N2—C6—C7	143.01 (12)
C6—N2—C1—C2	174.49 (11)	C1—N2—C6—C11	150.22 (13)
N1—N2—C1—N3	178.45 (10)	N1—N2—C6—C11	-34.39 (16)
C6—N2—C1—N3	-5.88 (19)	C11—C6—C7—C8	-1.13 (19)
	× /		· /

C15 - N3 - C1 - N2 $C12 - N3 - C1 - N2$ $C15 - N3 - C1 - C2$ $C12 - N3 - C1 - C2$ $N2 - C1 - C2 - C3$ $N3 - C1 - C2 - C3$ $N2 - C1 - C2 - C5$ $N3 - C1 - C2 - C5$ $N3 - C1 - C2 - C5$ $N2 - N1 - C3 - C2$ $N2 - N1 - C3 - C4$ $C1 - C2 - C3 - N1$ $C5 - C2 - C3 - N1$ $C1 - C2 - C3 - C4$	$\begin{array}{c} -53.33 \ (18) \\ 116.10 \ (14) \\ 126.21 \ (14) \\ -64.36 \ (19) \\ 0.59 \ (13) \\ -179.00 \ (12) \\ 179.33 \ (11) \\ -0.3 \ (2) \\ -0.88 \ (14) \\ -179.99 \ (11) \\ 0.20 \ (14) \\ -178.50 \ (12) \\ 179.21 \ (12) \\ 0.5 \ (2) \end{array}$	$N2-C6-C7-C8\\C6-C7-C8-C9\\C7-C8-C9-C10\\C8-C9-C10-C11\\C9-C10-C11-C6\\C7-C6-C11-C10\\N2-C6-C11-C10\\C15-N3-C12-C13\\C1-N3-C12-C13\\N3-C12-C13\\N3-C12-C13-C14\\C12-C13-C14-C15\\C13-C14-C15-N3\\C12-N3-C15-C14\\C1-N3-C15-C15\\C1-N3-C15-C14\\C1-N3-C15-C14\\C1-N3-C15-C14\\C1-N3-C15-C14\\C1-N3-C15-C14\\C1-N3-C15-C14\\C1-N3-C15-C14\\C1-N3-C15-C14\\C1-N3-C15-C14\\C1-N3-C15-C14\\C1-N3-C15-C15\\C1-N3-C15-C14\\C1-N3-C15-C15\\C1-N3-C15-C15\\C1-N3-C15\\C1-N3-C15\\C1-N3-C15\\C1-N3-C15\\C1-N3-C15\\C1-N3-C1$	-178.47 (11) 0.68 (19) 0.54 (19) -1.3 (2) 0.87 (19) 0.37 (19) 177.77 (11) -0.26 (15) -171.20 (11) -0.27 (15) 0.71 (16) -0.86 (15) 0.70 (15) 171.52 (12)
C1—C2—C3—C4 C5—C2—C3—C4 C1—C2—C5—O1	179.21 (12) 0.5 (2) 177.49 (13)	C12—N3—C15—C14 C1—N3—C15—C14	0.70 (15) 171.52 (12)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H···A
C15—H15…N1 ⁱ	0.95	2.48	3.3931 (17)	161
C12—H12…O1 ⁱⁱ	0.95	2.52	3.4255 (17)	159

Symmetry codes: (i) *x*, -*y*+3/2, *z*-1/2; (ii) -*x*+1, -*y*+1, -*z*+2.