data reports

OPEN a ACCESS

Crystal structure of 3-[4-(benzyloxy)phenyl]-2,3-dihydro-1*H*-benzo[*f*]chromen-1-one

R. Vasanthi,^a D. Reuben Jonathan,^b K. S. Ezhilarasi.^a S. Sathva^a and G. Usha^a*

^aPG and Research Department of Physics, Queen Mary's College, Chennai-4, Tamilnadu, India, and ^bDepartment of Chemistry, Madras Christian College, Chennai-59, India. *Correspondence e-mail: gugmc@yahoo.com

Received 12 September 2014; accepted 17 September 2014

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

In the title compound, $C_{26}H_{20}O_3$, the pyran ring has a distorted half-chair conformation and its mean plane is inclined to the naphthalene ring system, to which it is fused, by 10.79 $(9)^{\circ}$. The dihedral angles between the napthalene unit and the benzene and phenyl rings are 54.39 (9) and $52.65 (12)^{\circ}$, respectively, while the benzene and phenyl rings are inclined to one another by 74.80 (14)°. There is a short C- $H \cdots O$ contact in the chromen-1-one unit. In the crystal, molecules are linked by two pairs of C-H···O hydrogen bonds, forming inversion dimers described by graph set motifs $R_2^2(8)$ and $R_2^2(10)$, giving rise to chains running parallel to (101). The chains are linked via $C-H\cdots\pi$ interactions, forming sheets lying parallel to (010).

Keywords: crystal structure; flavone; chalcone; chromenone; C-H···O hydrogen bonding.

CCDC reference: 1024680

1. Related literature

For the biological activity of flavone derivatives, see: Thomas et al. (2013); Kumar et al. (2014); Lee et al. (2014). For the synthesis of the title compound, see: Kumar et al. (2014).

2. Experimental

2.1. Crystal data

$C_{26}H_{19}O_3$	V = 1912.1 (2) Å ³
$M_r = 379.41$	Z = 4
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
a = 6.9632 (4) Å	$\mu = 0.09 \text{ mm}^{-1}$
b = 35.846 (2) Å	T = 293 K
c = 7.7879 (5) Å	$0.35 \times 0.30 \times 0.23$
$\beta = 100.375 \ (3)^{\circ}$	

2.2. Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2008) $T_{\min} = 0.971, \ T_{\max} = 0.979$

2.3. Refinement $R[F^2 > 2\sigma(F^2)] = 0.058$ $wR(F^2) = 0.172$ S = 0.983956 reflections

m .25 mm

26372 measured reflections 3956 independent reflections 2814 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.067$

262 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.56 \text{ e } \text{\AA}^ \Delta \rho_{\rm min} = -0.45 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

Cg2 and Cg4 are the centroids of rings C1-C6 and C14-C19, respectively.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C8 - H8 \cdot \cdot \cdot O3^{i}$	0.93	2.50	3.342 (3)	150
$C13 - H13 \cdots O2^{ii}$	0.98	2.51	3.314 (3)	140
$C7 - H7 \cdots Cg4^{i}$	0.93	2.96	3.688 (2)	136
$C16 - H16 \cdots Cg2^{iii}$	0.93	2.90	3.602 (2)	133
$C19-H19\cdots Cg2^{iv}$	0.93	2.97	3.593 (2)	126
Symmetry codes:	(i) $-x + 1, -$	-y, -z + 2;	(ii) $-x + 2, -y,$, -z + 1; (iii)

-x + 1, -y, -z + 1; (iv) -x + 2, -y, -z + 2.

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Acknowledgements

The authors thank Professor D. Velmurugan, Centre for Advanced Study in Crystallography and Biophysics, University of Madras, for providing data-collection and computer facilities.

Supporting information for this paper is available from the IUCr electronic archives (Reference: SU2785).

References

- Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Kumar, B., Kumari, B., Singh, N., Ram, B. & Balram, B. (2014). J. Appl. Chem. 3, 1468–1474.
- Lee, M. S., Yong, Y., Lee, J. M., Koh, D., Shin, S. Y. & Lee, Y. H. (2014). *Biol. Chem.* 57, 129–132.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Thomas, N. & Zachariah, S. M. (2013). Asian J. Pharm. Clin. Res. 6, Suppl. 2, 11–15.

supporting information

Acta Cryst. (2014). E70, o1116–o1117 [doi:10.1107/S1600536814020868]

Crystal structure of 3-[4-(benzyloxy)phenyl]-2,3-dihydro-1*H*-benzo[*f*]chromen-1-one

R. Vasanthi, D. Reuben Jonathan, K. S. Ezhilarasi, S. Sathya and G. Usha

S1. Experimental

The title compound was synthesized following the reported procedure (Kumar *et al.*, 2014). The crude product produced was recrystallized twice from chloroform yielding block-like colourless crystals.

S2. Refinement

H atoms were positioned geometrically and treated as riding on their parent atoms, with C—H distance of 0.93–0.98 Å, with $U_{iso}(H)= 1.5 U_{eq}(C-methyl)$ and $U_{iso}(H)= 1.2 Ueq(C)$ for other H atom.

Figure 1

The molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

The crystal packing viewed along the a axis of the title compound. The dashed lines indicate the hydrogen bonds (see Table 1 for details).

3-[4-(Benzyloxy)phenyl]-2,3-dihydro-1H-benzo[f]chromen-1-one

Crystal data

C₂₆H₁₉O₃ $M_r = 379.41$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 6.9632 (4) Å b = 35.846 (2) Å c = 7.7879 (5) Å $\beta = 100.375$ (3)° V = 1912.1 (2) Å³

Data collection

Bruker APEXII CCD	26372 measured reflections
diffractometer	3956 independent reflections
Radiation source: fine-focus sealed tube	2814 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.067$
ω and φ scan	$\theta_{\text{max}} = 26.5^{\circ}, \ \theta_{\text{min}} = 1.1^{\circ}$
Absorption correction: multi-scan	$h = -8 \rightarrow 8$
(SADABS; Bruker, 2008)	$k = -44 \longrightarrow 44$
$T_{\min} = 0.971, \ T_{\max} = 0.979$	$l = -8 \rightarrow 9$

Refinement

Secondary atom site location: difference Fourier
map
Hydrogen site location: inferred from
neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.0897P)^2 + 0.9692P]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{\rm max} = 0.56 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.45 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Z = 4

F(000) = 796.0

 $\mu = 0.09 \text{ mm}^{-1}$ T = 293 K

Block, colourless

 $0.35 \times 0.30 \times 0.25 \text{ mm}$

 $D_{\rm x} = 1.318 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 3956 reflections

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C22	0.0790 (5)	0.22907 (8)	0.9025 (5)	0.0828 (10)	
H22	0.0911	0.2093	0.9810	0.099*	
C23	0.0400 (6)	0.26438 (9)	0.9588 (5)	0.0856 (10)	
H23	0.0287	0.2683	1.0746	0.103*	
C25	0.0388 (5)	0.28758 (8)	0.6783 (5)	0.0820 (10)	

H25	0.0254	0.3075	0.6004	0.098*
C1	0.9499 (3)	-0.06874 (5)	0.7729 (3)	0.0373 (5)
C2	1.1154 (3)	-0.08336 (6)	0.7143 (3)	0.0450 (5)
H2	1.2012	-0.0671	0.6736	0.054*
C3	1.1523 (4)	-0.12073 (7)	0.7161 (3)	0.0543 (6)
Н3	1.2610	-0.1295	0.6746	0.065*
C4	1.0296 (4)	-0.14605 (6)	0.7791 (3)	0.0568 (7)
H4	1.0565	-0.1715	0.7800	0.068*
C5	0.8703 (4)	-0.13318 (6)	0.8392 (3)	0.0514 (6)
Н5	0.7891	-0.1500	0.8822	0.062*
C6	0.8258 (3)	-0.09490 (6)	0.8376 (3)	0.0412 (5)
C7	0.6594 (3)	-0.08175 (6)	0.8992 (3)	0.0482 (6)
H7	0.5810	-0.0987	0.9451	0.058*
C8	0.6111 (3)	-0.04520 (6)	0.8932 (3)	0.0465 (5)
H8	0.5002	-0.0373	0.9338	0.056*
С9	0.7292 (3)	-0.01921 (6)	0.8251 (3)	0.0375 (5)
C10	0.8997 (3)	-0.02972 (5)	0.7698 (3)	0.0344 (4)
C11	1.0247 (3)	0.00040 (6)	0.7191 (3)	0.0364 (5)
C12	0.9490 (3)	0.03946 (6)	0.7283 (3)	0.0408 (5)
H12	1.0277	0.0604	0.7525	0.049*
C13	0.7290 (3)	0.04024 (5)	0.6933 (3)	0.0373 (5)
H13	0.6829	0.0297	0.5770	0.045*
C14	0.6330 (3)	0.07754 (5)	0.7027 (3)	0.0371 (5)
C15	0.4393 (3)	0.08196 (6)	0.6255 (3)	0.0481 (6)
H15	0.3734	0.0620	0.5656	0.058*
C16	0.3404 (3)	0.11518 (6)	0.6346 (3)	0.0498 (6)
H16	0.2101	0.1173	0.5815	0.060*
C17	0.4364 (3)	0.14510 (5)	0.7228 (3)	0.0400 (5)
C18	0.6314 (3)	0.14146 (6)	0.7982 (3)	0.0507 (6)
H18	0.6982	0.1617	0.8553	0.061*
C19	0.7269 (3)	0.10812 (6)	0.7892 (3)	0.0492 (6)
H19	0.8573	0.1060	0.8422	0.059*
C20	0.1518 (4)	0.18447 (7)	0.6774 (4)	0.0630(7)
H20A	0.0746	0.1657	0.7234	0.076*
H20B	0.1266	0.1827	0.5510	0.076*
C21	0.1004 (3)	0.22258 (6)	0.7340 (4)	0.0529 (6)
C24	0.0182 (4)	0.29332 (7)	0.8453 (5)	0.0685 (8)
H24	-0.0108	0.3170	0.8822	0.082*
C26	0.0797 (5)	0.25237 (8)	0.6224 (4)	0.0744 (9)
H26	0.0935	0.2489	0.5070	0.089*
01	0.3549 (2)	0.17907 (4)	0.7444 (2)	0.0519 (4)
O2	1.1831 (2)	-0.00482 (4)	0.6780 (2)	0.0514 (4)
O3	0.6623 (2)	0.01632 (4)	0.8212 (2)	0.0444 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
C22	0.116 (3)	0.0570 (18)	0.085 (2)	0.0332 (17)	0.042 (2)	0.0208 (15)

C23	0.116 (3)	0.072 (2)	0.076 (2)	0.0312 (19)	0.036 (2)	0.0007 (16)
C25	0.106 (3)	0.0529 (17)	0.093 (3)	0.0263 (16)	0.034 (2)	0.0219 (16)
C1	0.0407 (11)	0.0366 (11)	0.0335 (11)	0.0028 (8)	0.0035 (9)	-0.0002 (8)
C2	0.0477 (13)	0.0410 (12)	0.0466 (13)	0.0067 (9)	0.0088 (10)	0.0024 (10)
C3	0.0565 (14)	0.0479 (14)	0.0575 (15)	0.0153 (11)	0.0076 (12)	-0.0022 (11)
C4	0.0704 (17)	0.0349 (12)	0.0602 (16)	0.0083 (11)	-0.0015 (13)	-0.0017 (11)
C5	0.0586 (15)	0.0365 (12)	0.0555 (15)	-0.0049 (10)	0.0009 (12)	0.0033 (10)
C6	0.0447 (12)	0.0372 (11)	0.0396 (12)	-0.0039 (9)	0.0016 (9)	0.0034 (9)
C7	0.0489 (13)	0.0425 (13)	0.0553 (14)	-0.0072 (10)	0.0148 (11)	0.0086 (10)
C8	0.0433 (12)	0.0494 (13)	0.0506 (13)	0.0003 (10)	0.0183 (10)	0.0058 (10)
C9	0.0409 (11)	0.0353 (11)	0.0378 (11)	0.0007 (8)	0.0108 (9)	0.0011 (8)
C10	0.0369 (10)	0.0356 (10)	0.0313 (10)	0.0016 (8)	0.0079 (8)	0.0023 (8)
C11	0.0360 (11)	0.0389 (11)	0.0347 (11)	0.0008 (8)	0.0077 (8)	0.0019 (8)
C12	0.0389 (11)	0.0337 (11)	0.0507 (13)	-0.0011 (8)	0.0109 (9)	0.0012 (9)
C13	0.0411 (11)	0.0344 (11)	0.0379 (11)	0.0008 (8)	0.0110 (9)	0.0015 (8)
C14	0.0396 (11)	0.0359 (11)	0.0371 (11)	0.0028 (8)	0.0099 (9)	0.0001 (8)
C15	0.0471 (13)	0.0356 (12)	0.0585 (15)	0.0005 (9)	0.0010 (11)	-0.0072 (10)
C16	0.0422 (12)	0.0426 (13)	0.0608 (15)	0.0060 (9)	-0.0008 (11)	-0.0040 (11)
C17	0.0469 (12)	0.0311 (10)	0.0430 (12)	0.0051 (9)	0.0106 (10)	0.0023 (8)
C18	0.0493 (13)	0.0392 (12)	0.0602 (15)	-0.0005 (10)	0.0011 (11)	-0.0102 (10)
C19	0.0400 (12)	0.0430 (13)	0.0615 (16)	0.0045 (9)	0.0010 (10)	-0.0060 (10)
C20	0.0506 (14)	0.0508 (15)	0.083 (2)	0.0120 (11)	0.0008 (13)	-0.0111 (13)
C21	0.0452 (13)	0.0426 (13)	0.0702 (17)	0.0091 (10)	0.0090 (12)	-0.0011 (11)
C24	0.0710 (18)	0.0450 (15)	0.093 (2)	0.0124 (12)	0.0234 (16)	-0.0042 (14)
C26	0.094 (2)	0.0689 (19)	0.0622 (18)	0.0301 (16)	0.0193 (16)	0.0089 (14)
01	0.0497 (9)	0.0351 (8)	0.0694 (11)	0.0092 (7)	0.0063 (8)	-0.0039 (7)
O2	0.0432 (9)	0.0484 (9)	0.0678 (11)	0.0025 (7)	0.0236 (8)	0.0018 (8)
O3	0.0485 (9)	0.0363 (8)	0.0545 (10)	0.0070 (6)	0.0256 (7)	0.0050 (7)

Geometric parameters (Å, °)

C22—C21	1.367 (4)	C10—C11	1.484 (3)	
C22—C23	1.383 (4)	C11—O2	1.218 (2)	
С22—Н22	0.9300	C11—C12	1.502 (3)	
C23—C24	1.353 (4)	C12—C13	1.507 (3)	
С23—Н23	0.9300	C12—H12	0.9300	
C25—C24	1.350 (5)	C13—O3	1.453 (2)	
C25—C26	1.381 (4)	C13—C14	1.503 (3)	
С25—Н25	0.9300	C13—H13	0.9800	
C1—C2	1.414 (3)	C14—C15	1.384 (3)	
C1—C6	1.428 (3)	C14—C19	1.387 (3)	
C1-C10	1.441 (3)	C15—C16	1.384 (3)	
С2—С3	1.364 (3)	C15—H15	0.9300	
С2—Н2	0.9300	C16—C17	1.380 (3)	
C3—C4	1.394 (4)	C16—H16	0.9300	
С3—Н3	0.9300	C17—O1	1.367 (2)	
C4—C5	1.360 (4)	C17—C18	1.385 (3)	
C4—H4	0.9300	C18—C19	1.376 (3)	

C5—C6	1.406 (3)	C18—H18	0.9300
С5—Н5	0.9300	C19—H19	0.9300
C6—C7	1.412 (3)	C20—O1	1.430 (3)
C7—C8	1.352 (3)	C20—C21	1,499 (3)
C7—H7	0.9300	C20—H20A	0.9700
C^{8}	1 408 (2)	C20 H20R	0.9700
C_{0}	0.0200	C21 C26	0.3700
	0.9300	$C_{21} = C_{20}$	1.308 (4)
C9—03	1.355 (2)	C24—H24	0.9300
C9—C10	1.386 (3)	C26—H26	0.9300
C21 - C22 - C23	121 5 (3)	С11—С12—Н12	124 4
$C_{21} C_{22} C_{23}$	110.3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	124.4
$C_{21} = C_{22} = H_{22}$	119.5	C13 - C12 - C14	124.4
C23—C22—H22	119.5	03 - 013 - 012	106.96 (15)
$C_{24} = C_{23} = C_{22}$	120.0 (3)		107.76 (16)
С24—С23—Н23	120.0	C14—C13—C12	117.02 (17)
С22—С23—Н23	120.0	O3—C13—H13	108.3
C24—C25—C26	120.4 (3)	C14—C13—H13	108.3
С24—С25—Н25	119.8	С12—С13—Н13	108.3
C26—C25—H25	119.8	C15—C14—C19	117.26 (19)
C2—C1—C6	116.79 (19)	C15—C14—C13	119.22 (18)
C2-C1-C10	124.30 (19)	C19—C14—C13	123.50 (19)
C6-C1-C10	118.91 (19)	C14—C15—C16	122.1 (2)
C3—C2—C1	121.6 (2)	C14—C15—H15	118.9
С3—С2—Н2	119.2	C16—C15—H15	118.9
C1—C2—H2	119.2	C17—C16—C15	119.6 (2)
$C_{2}-C_{3}-C_{4}$	121 1 (2)	C17—C16—H16	120.2
$C_2 - C_3 - H_3$	119.4	C_{15} C_{16} H_{16}	120.2
C_{4} C_{3} H_{3}	110 /	01 017 016	120.2 125.4(2)
$C_{4} = C_{3} = 113$	119.4	01 - 017 - 018	123.4(2)
$C_5 = C_4 = C_5$	119.3 (2)	01 - 017 - 018	113.40(19)
$C_3 = C_4 = H_4$	120.3	C10 - C17 - C18	119.21 (19)
C3—C4—H4	120.3	C19—C18—C17	120.4 (2)
C4—C5—C6	121.3 (2)	C19—C18—H18	119.8
C4—C5—H5	119.3	C17—C18—H18	119.8
С6—С5—Н5	119.3	C18—C19—C14	121.4 (2)
C5—C6—C7	121.0 (2)	C18—C19—H19	119.3
C5—C6—C1	119.8 (2)	C14—C19—H19	119.3
C7—C6—C1	119.11 (19)	O1—C20—C21	106.8 (2)
C8—C7—C6	121.8 (2)	O1—C20—H20A	110.4
С8—С7—Н7	119.1	C21—C20—H20A	110.4
С6—С7—Н7	119.1	O1—C20—H20B	110.4
C7—C8—C9	119.7 (2)	C21—C20—H20B	110.4
С7—С8—Н8	120.1	H20A—C20—H20B	108.6
С9—С8—Н8	120.1	C26—C21—C22	117.4 (2)
03-09-010	123 98 (18)	$C_{26} - C_{21} - C_{20}$	1219(3)
03-09-08	114 13 (18)	$C_{22} = C_{21} = C_{20}$	1207(2)
$C_{10} - C_{9} - C_{8}$	121.89 (10)	C_{23} C_{24} C_{25}	120.7(2) 1196(3)
$C_{10} - C_{2} - C_{0}$	121.09(19) 118 51 (18)	$C_{23} = C_{24} = C_{23}$	120.2
$C_{2} = C_{10} = C_{11}$	110.31(10) 117.45(17)	$C_{23} = C_{24} = 1124$	120.2
U9-U10-U11	11/.43(1/)	UZJ—UZ4—IIZ4	120.2

C1—C10—C11	123.97 (18)	C21—C26—C25	121.1 (3)
O2—C11—C10	124.10 (18)	C21—C26—H26	119.4
O2—C11—C12	119.87 (18)	C25—C26—H26	119.4
C10-C11-C12	115.97 (17)	C17—O1—C20	118.75 (18)
C11—C12—C13	111.26 (17)	C9—O3—C13	114.78 (15)
C21—C22—C23—C24	1.3 (6)	C11—C12—C13—C14	178.52 (17)
C6—C1—C2—C3	1.4 (3)	O3—C13—C14—C15	-77.2 (2)
C10-C1-C2-C3	-178.2 (2)	C12—C13—C14—C15	161.9 (2)
C1—C2—C3—C4	-1.2 (4)	O3—C13—C14—C19	101.1 (2)
C2—C3—C4—C5	0.2 (4)	C12—C13—C14—C19	-19.8 (3)
C3—C4—C5—C6	0.6 (4)	C19—C14—C15—C16	-0.7 (4)
C4—C5—C6—C7	179.6 (2)	C13—C14—C15—C16	177.7 (2)
C4C5C1	-0.4 (3)	C14—C15—C16—C17	0.1 (4)
C2-C1-C6-C5	-0.6 (3)	C15—C16—C17—O1	-178.6(2)
C10—C1—C6—C5	178.97 (19)	C15—C16—C17—C18	1.1 (4)
C2-C1-C6-C7	179.5 (2)	O1—C17—C18—C19	178.1 (2)
C10—C1—C6—C7	-1.0 (3)	C16—C17—C18—C19	-1.7 (4)
C5—C6—C7—C8	-177.8 (2)	C17—C18—C19—C14	1.1 (4)
C1—C6—C7—C8	2.2 (3)	C15—C14—C19—C18	0.1 (4)
C6—C7—C8—C9	-0.4(4)	C13—C14—C19—C18	-178.2 (2)
C7—C8—C9—O3	178.1 (2)	C23—C22—C21—C26	-0.6 (5)
C7—C8—C9—C10	-2.7 (3)	C23—C22—C21—C20	177.2 (3)
O3—C9—C10—C1	-177.06 (19)	O1—C20—C21—C26	102.0 (3)
C8—C9—C10—C1	3.8 (3)	O1—C20—C21—C22	-75.7 (3)
O3—C9—C10—C11	5.9 (3)	C22—C23—C24—C25	-1.3 (6)
C8—C9—C10—C11	-173.2 (2)	C26—C25—C24—C23	0.7 (5)
C2-C1-C10-C9	177.6 (2)	C22—C21—C26—C25	0.0 (5)
C6-C1-C10-C9	-1.9 (3)	C20—C21—C26—C25	-177.8 (3)
C2-C1-C10-C11	-5.6 (3)	C24—C25—C26—C21	0.0 (5)
C6-C1-C10-C11	174.91 (19)	C16—C17—O1—C20	2.6 (3)
C9—C10—C11—O2	175.6 (2)	C18—C17—O1—C20	-177.1 (2)
C1—C10—C11—O2	-1.3 (3)	C21—C20—O1—C17	175.0 (2)
C9—C10—C11—C12	-1.8 (3)	C10-C9-O3-C13	24.6 (3)
C1-C10-C11-C12	-178.61 (19)	C8—C9—O3—C13	-156.19 (19)
O2—C11—C12—C13	152.1 (2)	C14—C13—O3—C9	177.39 (17)
C10-C11-C12-C13	-30.4 (2)	C12—C13—O3—C9	-56.0 (2)
C11—C12—C13—O3	58.0 (2)		

Hydrogen-bond geometry (Å, °)

Cg2 and Cg4 are the centroids of rings C1–C6 and C14–C19, respectively.

D—H···A	D—H	Н…А	D···· A	D—H···A	_
C8—H8…O3 ⁱ	0.93	2.50	3.342 (3)	150	
C13—H13…O2 ⁱⁱ	0.98	2.51	3.314 (3)	140	
C7—H7··· $Cg4^{i}$	0.93	2.96	3.688 (2)	136	

			supporting information		
С16—Н16…Сg2 ^{ііі}	0.93	2.90	3.602 (2)	133	
C19—H19···· $Cg2^{iv}$	0.93	2.97	3.593 (2)	126	

Symmetry codes: (i) -x+1, -y, -z+2; (ii) -x+2, -y, -z+1; (iii) -x+1, -y, -z+1; (iv) -x+2, -y, -z+2.