data reports

OPEN a ACCESS

Crystal structure of bis(4-allyl-2-methoxyphenyl) terephthalate

Sung Kwon Kang* and Byung Hee Han

Department of Chemistry, Chungnam National University, Daejeon 305-764, Republic of Korea. *Correspondence e-mail: skkang@cnu.ac.kr

Received 23 September 2014; accepted 24 September 2014

Edited by E. R. T. Tiekink, University of Malaya, Malaysia

The asymmetric unit of the title compound, $C_{28}H_{26}O_6$, contains one half-molecule, with the complete molecule generated by a crystallographic inversion center. The central terephthalate and methoxybenzene rings are approximately perpendicular, making a dihedral angle of $80.31(5)^{\circ}$. No specific directional contacts are noted in the crystal packing. The terminal vinyl group is disordered over two orientations with an occupancy ratio of 0.796 (4):0.204 (4).

Keywords: crystal structure; terephthalate; tyrosinase inhibitors.

CCDC reference: 1025706

1. Related literature

For general background to tyrosinase, see: Ha et al. (2007). For the development of tyrosinase inhibitors, see: Battaini et al. (2000); Thanigaimalai et al. (2010); Cabanes et al. (1994). For the structures of related compounds, see: Choi et al. (2011, 2012).

2. Experimental

2.1. Crystal data

$\gamma = 75.145 \ (2)^{\circ}$
V = 602.28 (4) Å ³
Z = 1
Mo $K\alpha$ radiation
$\mu = 0.09 \text{ mm}^{-1}$
T = 296 K
$0.15 \times 0.14 \times 0.12 \text{ mm}$

2.2. Data collection

Bruker SMART CCD area-detector
diffractometer
21083 measured reflections

2.3. Refinement $R[F^2 > 2\sigma(F^2)] = 0.051$ $wR(F^2) = 0.173$ S = 1.093008 reflections

3008 independent reflections 1909 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.050$

CrossMark

161 parameters H-atom parameters not refined $\Delta \rho_{\rm max} = 0.28 \text{ e} \text{ Å}^ \Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Acknowledgements

This work was supported by a research fund from Chungnam National University.

Supporting information for this paper is available from the IUCr electronic archives (Reference: TK5342).

References

- Battaini, G., Monzani, E., Casella, L., Santagostini, L. & Pagliarin, R. (2000). J. Biol. Inorg. Chem. 5, 262-268.
- Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cabanes, J., Chazarra, S. & Garcia-Carmona, F. (1994). J. Pharm. Pharmacol. 46. 982-985
- Choi, H., Shim, Y. S., Han, B. H., Kang, S. K. & Sung, C. K. (2011). Acta Cryst. E67. o2865.
- Choi, H., Shim, Y. S., Han, B. H., Kang, S. K. & Sung, C. K. (2012). Acta Cryst. E68, 0966.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Ha, Y. M., Chung, S. W., Song, S. H., Lee, H. J., Suh, H. & Chung, H. Y. (2007). Biol. Pharm. Bull. 30, 1711-1715.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Thanigaimalai, P., Hoang, T. A., Lee, K. C., Bang, S. C., Sharma, V. K., Yun, C. Y., Roh, E., Hwang, B. Y., Kim, Y. & Jung, S. H. (2010). Bioorg. Med. Chem. Lett. 20, 2991-2993.

supporting information

Acta Cryst. (2014). E70, o1138 [doi:10.1107/S1600536814021229]

Crystal structure of bis(4-allyl-2-methoxyphenyl) terephthalate

Sung Kwon Kang and Byung Hee Han

S1. Synthesis and crystallization

Terephthaloyl chloride and 4-allyl-2-methoxyphenol were purchased from Sigma Chemical Co. Solvents used for organic synthesis were redistilled before used. All other chemicals and solvents were of analytical grade and used without further purification. The title compound was prepared from the reaction of terephthaloyl chloride (0.203 g, 1 mmol) and 4-allyl-2-methoxyphenol (0.378 g, 2.3 mmol) in triethylamine (8 ml) as a solvent. After stirring for 8 h at 333 K under nitrogen, the reaction mixture was quenched with water and extracted with ethyl acetate. After drying over anhydrous calcium chloride, the solvent was removed by rotary evaporation. The crude product was purified by column chromatography on silica gel using dichloromethane: ethylacetate $(2:1, \nu/\nu)$ as an eluent. The solution was evaporated to give the product of 0.32 g (70%). Crystals were obtained by slow evaporation from its solution in ethyl alcohol at room temperature.

S2. Refinement

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93-0.97 Å, and with $U_{iso}(H)$ = $1.5U_{eq}(C)$ for methyl, and $1.2U_{eq}(C)$ for all other H atoms. The vinyl group is disordered over two positions with an occupancy ratio of 0.796 (4):0.204 (4).

Figure 1

. .

Molecular structure of the title compound, showing the atom-numbering scheme and 30% probability ellipsoids. Only major components of the disordered vinyl group are shown. Unlabeled atoms are related by -x, -y, 1-z]

Crystal structure of bis(4-allyl-2-methoxyphenyl) terephthalate

Crystal data	
$C_{28}H_{26}O_6$	<i>a</i> = 7.8853 (2) Å
$M_r = 458.49$	b = 9.0404 (3) Å
Triclinic, $P\overline{1}$	c = 9.4801 (3) Å
Hall symbol: -P 1	$\alpha = 70.660 \ (4)^{\circ}$

Cell parameters from 5115 reflections

 $\theta = 2.3 - 26.7^{\circ}$

 $\mu = 0.09 \text{ mm}^{-1}$

Block, colourless

 $0.15 \times 0.14 \times 0.12 \text{ mm}$

T = 296 K

 $\beta = 73.817 (3)^{\circ}$ $\gamma = 75.145 (2)^{\circ}$ $V = 602.28 (4) Å^{3}$ Z = 1 F(000) = 242 $D_{\rm x} = 1.264 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 Å$

Data collection

Bruker SMART CCD area-detector	1909 reflections with $I > 2\sigma(I)$
diffractometer	$R_{\rm int}=0.050$
Radiation source: fine-focus sealed tube	$\theta_{\rm max} = 28.4^{\circ}, \theta_{\rm min} = 2.3^{\circ}$
φ and ω scans	$h = -10 \rightarrow 10$
21083 measured reflections	$k = -12 \rightarrow 12$
3008 independent reflections	$l = -12 \rightarrow 12$
Refinement	

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.051$	H-atom parameters not refined
$wR(F^2) = 0.173$	$w = 1/[\sigma^2(F_o^2) + (0.0939P)^2 + 0.0172P]$
<i>S</i> = 1.09	where $P = (F_o^2 + 2F_c^2)/3$
3008 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
161 parameters	$\Delta \rho_{\rm max} = 0.28 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.28 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C1	0.13052 (18)	0.06171 (17)	0.37786 (16)	0.0472 (4)	
C2	0.17983 (19)	-0.04861 (19)	0.50781 (18)	0.0573 (4)	
H2	0.3002	-0.0812	0.5133	0.069*	
C3	-0.04832 (19)	0.10990 (19)	0.37058 (17)	0.0571 (4)	
Н3	-0.0808	0.1842	0.2832	0.068*	
C4	0.26416 (18)	0.13439 (17)	0.24324 (17)	0.0495 (4)	
O5	0.22778 (14)	0.22924 (14)	0.12885 (12)	0.0638 (3)	
O6	0.43403 (13)	0.08074 (13)	0.26489 (12)	0.0605 (3)	
C7	0.56778 (19)	0.15655 (18)	0.15091 (17)	0.0528 (4)	
C8	0.58804 (18)	0.30400 (19)	0.15298 (16)	0.0510 (4)	
С9	0.72527 (19)	0.37414 (19)	0.04596 (17)	0.0533 (4)	
Н9	0.74	0.4734	0.0448	0.064*	
C10	0.8414 (2)	0.2986 (2)	-0.05965 (17)	0.0563 (4)	
C11	0.8181 (2)	0.1522 (2)	-0.0585 (2)	0.0629 (4)	
H11	0.8951	0.1007	-0.1287	0.075*	
C12	0.6796 (2)	0.0814 (2)	0.04764 (19)	0.0606 (4)	
H12	0.6634	-0.0171	0.048	0.073*	

013	0.47003 (14)	0.36676 (15)	0.26266 (13)	0.0671 (4)	
C14	0.5024 (3)	0.5069 (3)	0.2795 (2)	0.0772 (5)	
H14A	0.4104	0.5401	0.3594	0.116*	
H14B	0.5013	0.5901	0.1852	0.116*	
H14C	0.6174	0.4852	0.3054	0.116*	
C15	0.9940 (3)	0.3774 (3)	-0.1702 (2)	0.0793 (6)	
H15A	0.9572	0.4919	-0.1881	0.095*	
H15B	1.0958	0.345	-0.1214	0.095*	
C16	1.0537 (4)	0.3429 (5)	-0.3182 (3)	0.1076 (12)	0.796 (4)
H16	0.9698	0.3704	-0.379	0.129*	0.796 (4)
C17	1.2197 (6)	0.2748 (5)	-0.3724 (4)	0.0998 (13)	0.796 (4)
H17A	1.3071	0.2457	-0.3147	0.12*	0.796 (4)
H17B	1.2481	0.2565	-0.4679	0.12*	0.796 (4)
C16A	1.1284 (19)	0.308 (2)	-0.2471 (13)	0.1076 (12)	0.204 (4)
H16A	1.2244	0.2457	-0.2032	0.129*	0.204 (4)
C17A	1.131 (2)	0.328 (2)	-0.4139 (18)	0.0998 (13)	0.204 (4)
H17C	1.0342	0.3905	-0.4567	0.12*	0.204 (4)
H17D	1.2291	0.2776	-0.4728	0.12*	0.204 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0432 (7)	0.0501 (8)	0.0454 (7)	-0.0193 (6)	-0.0051 (6)	-0.0048 (6)
C2	0.0388 (7)	0.0652 (9)	0.0570 (9)	-0.0165 (7)	-0.0099 (6)	0.0022 (7)
C3	0.0470 (8)	0.0636 (9)	0.0493 (8)	-0.0173 (7)	-0.0112 (6)	0.0050 (7)
C4	0.0437 (7)	0.0533 (8)	0.0483 (8)	-0.0176 (6)	-0.0061 (6)	-0.0064 (6)
05	0.0527 (6)	0.0754 (7)	0.0511 (6)	-0.0245 (5)	-0.0099 (5)	0.0068 (5)
06	0.0411 (5)	0.0664 (7)	0.0572 (6)	-0.0207 (5)	-0.0047 (5)	0.0078 (5)
C7	0.0397 (7)	0.0609 (9)	0.0469 (8)	-0.0186 (6)	-0.0056 (6)	0.0033 (7)
C8	0.0408 (7)	0.0666 (9)	0.0430 (7)	-0.0167 (6)	-0.0059 (6)	-0.0093 (7)
C9	0.0468 (8)	0.0635 (9)	0.0487 (8)	-0.0217 (7)	-0.0058 (6)	-0.0091 (7)
C10	0.0442 (8)	0.0669 (10)	0.0509 (8)	-0.0198 (7)	-0.0012 (6)	-0.0078 (7)
C11	0.0493 (8)	0.0692 (10)	0.0624 (10)	-0.0157 (7)	0.0028 (7)	-0.0169 (8)
C12	0.0504 (8)	0.0576 (9)	0.0676 (10)	-0.0171 (7)	-0.0050(7)	-0.0102 (8)
013	0.0565 (7)	0.0899 (9)	0.0554 (7)	-0.0283 (6)	0.0073 (5)	-0.0253 (6)
C14	0.0706 (12)	0.1002 (14)	0.0715 (12)	-0.0233 (10)	-0.0042 (9)	-0.0409 (11)
C15	0.0622 (11)	0.0902 (13)	0.0771 (12)	-0.0381 (9)	0.0212 (9)	-0.0240 (10)
C16	0.104 (2)	0.185 (3)	0.0448 (15)	-0.100 (2)	0.0031 (13)	-0.0068 (17)
C17	0.112 (3)	0.115 (3)	0.074 (2)	-0.060(2)	0.0317 (19)	-0.041 (2)
C16A	0.104 (2)	0.185 (3)	0.0448 (15)	-0.100 (2)	0.0031 (13)	-0.0068 (17)
C17A	0.112 (3)	0.115 (3)	0.074 (2)	-0.060 (2)	0.0317 (19)	-0.041 (2)

Geometric parameters (Å, °)

C1—C3	1.379 (2)	С11—Н11	0.93
C1—C2	1.385 (2)	C12—H12	0.93
C1—C4	1.4903 (18)	O13—C14	1.421 (2)
C2-C3 ⁱ	1.3844 (19)	C14—H14A	0.96

C2—H2	0.93	C14—H14B	0.96
C3—C2 ⁱ	1.3844 (19)	C14—H14C	0.96
С3—Н3	0.93	C15—C16A	1.257 (15)
C4—O5	1.1937 (17)	C15—C16	1.461 (4)
C4—O6	1.3512 (17)	C15—H15A	0.97
O6—C7	1.4123 (15)	C15—H15B	0.97
C7—C12	1.360 (2)	C16—C17	1.333 (5)
C7—C8	1.390 (2)	С16—Н16	0.93
C8—O13	1.3600 (18)	С17—Н17А	0.93
C8—C9	1.3843 (18)	С17—Н17В	0.93
C9—C10	1.388 (2)	C16A—C17A	1.53 (2)
С9—Н9	0.93	C16A—H16A	0.93
C10—C11	1.378 (2)	С17А—Н17С	0.93
C10—C15	1.5154 (19)	C17A—H17D	0.93
C11—C12	1 391 (2)		0150
	1.591 (2)		
$C_{3}-C_{1}-C_{2}$	119 99 (12)	C7—C12—H12	120.1
C_{3} $-C_{1}$ $-C_{4}$	117.51 (13)	$C_{11} - C_{12} - H_{12}$	120.1
$C_2 - C_1 - C_4$	122 49 (13)	C8-013-C14	117 13 (12)
$C_{2}^{i} = C_{2}^{i} = C_{1}^{i}$	122.49(13) 110.41(14)	013 - C14 - H144	109.5
$C3^{i} - C2 - H2$	120.3	013 - C14 - H14B	109.5
$C_1 = C_2 = H_2$	120.3	$H_{14A} = C_{14} + H_{4B}$	109.5
$C1 C3 C2^{i}$	120.5 (14)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
$C_1 = C_2 = C_2$	110.7		109.5
$C_1 = C_2 = H_2$	119.7	H14R C14 H14C	109.5
$C_2 = C_3 = H_3$	119.7	$\frac{114}{14} = \frac{114}{14} = \frac{114}{14}$	109.5
05 - C4 - C1	125.12(12) 124.72(12)	C16A - C15 - C10	124.7(0)
05-04-01	124.75(13)	C16 - C15 - C10	110.08 (18)
	112.14 (12)	C10-C15-H15A	108.3
C4 - 06 - C7	116.11 (11)	CIO-CIS-HISA	108.3
C12_C7_C8	121.45 (13)	С16—С15—Н15В	108.3
C12—C7—O6	120.02 (14)	C10—C15—H15B	108.3
C8—C7—O6	118.43 (14)	Н15А—С15—Н15В	107.4
O13—C8—C9	125.43 (14)	C17—C16—C15	124.7 (4)
O13—C8—C7	116.30 (12)	C17—C16—H16	117.6
C9—C8—C7	118.27 (14)	C15—C16—H16	117.6
C8—C9—C10	121.04 (15)	С16—С17—Н17А	120
С8—С9—Н9	119.5	C16—C17—H17B	120
С10—С9—Н9	119.5	H17A—C17—H17B	120
C11—C10—C9	119.29 (14)	C15—C16A—C17A	118.7 (15)
C11—C10—C15	121.73 (15)	C15—C16A—H16A	120.7
C9—C10—C15	118.95 (15)	C17A—C16A—H16A	120.7
C10-C11-C12	120.13 (16)	C16A—C17A—H17C	120
C10-C11-H11	119.9	C16A—C17A—H17D	120
C12—C11—H11	119.9	H17C—C17A—H17D	120
C7—C12—C11	119.82 (16)		

Symmetry code: (i) -x, -y, -z+1.