metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 10| October 2014| Pages m345-m346

Crystal structure of azido­(η5-cyclo­penta­dien­yl)bis­­(tri­phenyl­phosphane-κP)ruthenium(II) di­chloro­methane hemisolvate

aCentro de Química del Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, San Manuel, 72570, Puebla, Puebla, Mexico, and bFacultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, San Manuel, 72570, Puebla, Puebla, Mexico
*Correspondence e-mail: armando.ramirez@correo.buap.mx

Edited by M. Weil, Vienna University of Technology, Austria (Received 15 August 2014; accepted 25 August 2014; online 6 September 2014)

The title solvated complex, [Ru(η5-C5H5)(N3){P(C6H5)3}2]·0.5CH2Cl2, displays a typical piano-stool geometry about the RuII atom. The bond lengths and angles of the cyclo­penta­dienyl and phosphane ligands are very similar to that of the unsolvated complex [Taqui Khan et al. (1994[Taqui Khan, M. M., Bhadbhade, M. M., Siddiqui, M. R. H., Venkatasubramanian, K. & Tikhonova, J. A. (1994). Acta Cryst. C50, 502-504.]). Acta Cryst. C50, 502–504]. The azide anion displays similar N—N distances of 1.173 (3) and 1.156 (3) Å and has an N—N—Ru angle of 119.20 (15)°, indicating a greater contribution of the canonical form Ru—N=N(+)=N(-) for the bonding situation. An intra­molecular C—H⋯N hydrogen-bonding inter­action between one ortho H atom of a phosphane ligand and the N atom coordinating to the metal is observed. A similar inter­molecular inter­action is observed between a meta H atom of a phosphane ligand and the terminal azide N atom of a neighbouring complex. Finally, two C—H⋯N inter­actions exists between the H atoms of the di­chloro­methane solvent mol­ecule and the terminal N atom of two azide anions. The solvent mol­ecule is located about a twofold rotation axis and shows disorder of the Cl atoms with an occupancy ratio of 0.62 (3):0.38 (3).

1. Related literature

The structure of the unsolvated ruthenium(II) complex was determined by Taqui Khan et al. (1994[Taqui Khan, M. M., Bhadbhade, M. M., Siddiqui, M. R. H., Venkatasubramanian, K. & Tikhonova, J. A. (1994). Acta Cryst. C50, 502-504.]). For other azide ruthenium(II) complexes, see: Moura et al. (1999[Moura, E. M., Dickman, M. H., Siebald, H. G. L. & Gama, G. J. (1999). Polyhedron, 18, 2899-2906.]); Govinda­swamy et al. (2005[Govindaswamy, P., Carroll, P. J., Mozharivskyj, Y. A. & Kollipara, M. R. (2005). J. Organomet. Chem. 690, 885-894.]). For metal azide chemistry, see: Fehlhammer & Beck (2013[Fehlhammer, W. P. & Beck, W. (2013). Z. Anorg. Allg. Chem. 639, 1053-1082.]); Seok & Klapötke (2010[Seok, W. K. & Klapötke, T. M. (2010). Bull. Korean Chem. Soc. 31, 781-788.]). Non-classical hydrogen bonds were assigned on basis of distances that are shorter than the sum of the van der Waals radii (Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]) of respective atoms. For synthetic details, see: Moura et al. (2002[Moura, E. M., Siebald, H. G. L. & de Lima, G. M. (2002). Polyhedron, 21, 2323-2331.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Ru(C5H5)(N3)(C18H15P)2]·0.5CH2Cl2

  • Mr = 775.19

  • Monoclinic, I 2/a

  • a = 20.1817 (4) Å

  • b = 12.4559 (3) Å

  • c = 28.6781 (6) Å

  • β = 94.213 (2)°

  • V = 7189.7 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.63 mm−1

  • T = 293 K

  • 0.72 × 0.51 × 0.20 mm

2.2. Data collection

  • Agilent Xcalibur Atlas Gemini diffractometer

  • Absorption correction: analytical [CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.]) using a multi=faceted crystal model based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.737, Tmax = 0.897

  • 36924 measured reflections

  • 7106 independent reflections

  • 6038 reflections with I > 2σ(I)

  • Rint = 0.032

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.065

  • S = 1.06

  • 7106 reflections

  • 449 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18⋯N1 0.93 2.35 3.204 (3) 153
C23—H23⋯N3i 0.93 2.62 3.537 (4) 167
C42—H42A⋯N3ii 0.97 2.4 3.338 (4) 162
C42—H42B⋯N3i 0.97 2.4 3.338 (4) 162
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+1, z]; (ii) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.]); program(s) used to solve structure: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Synthesis and crystallization top

The title compound was synthesized following a slightly modified procedure developed by Moura et al. (2002). Under a dry nitro­gen atmosphere, to [Ru(η5-C5H5)(PPh3)2Cl] (0.100 g, 0.138 mmol) dissolved in 20 ml of dry ethanol was added NaN3 (0.134 g, 2.061 mmol). The stirred mixture was refluxed for 6 h. After this time, the solvent was removed under vacuum and the product was extracted with 4 ml of dry di­chloro­methane. To the resulting orange solution, 8 ml of degassed hexanes were added in order to induce crystallization at 281 K. Red-orange colored crystals of the title compound were obtained in 82% yield. M.p. 393 K (dec.); IR (KBr) ν(N3) 2023 cm-1.

Refinement top

All hydrogen atoms were generated at calculated positions with C—H distances constrained to 0.93–0.97 Å. All hydrogen atoms were refined using a riding model approximation with Uiso(H) = 1.2 Ueq(C). The di­chloro­methane molecule is located about a twofold rotation axis. Its chlorine atoms are disordered over two positions, with refined occupancies of 0.62 (3) and 0.38 (3).

Related literature top

The structure of the unsolvated ruthenium(II) complex was determined by Taqui Khan et al.(1994). For other azide ruthenium(II) complexes, see: Moura et al. (1999); Govindaswamy et al. (2005). For metal azide chemistry, see: Fehlhammer & Beck (2013); Seok & Klapötke (2010). Non-classical hydrogen bonds were assigned on basis of distances that are shorter than the sum of the van der Waals radii (Bondi, 1964) of respective atoms. For synthetic details, see: Moura et al. (2002).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: OLEX2 (Dolomanov et al., 2009); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Only the major component of the disordered dichloromethane solvate is shown. Hydrogen atoms of the metal complex have been removed for clarity.
[Figure 2] Fig. 2. View of the molecular arrangement in the title structure viewed along [010]. Hydrogen bonds are denoted by dashed lines.
Azido(η5-cyclopentadienyl)bis(triphenylphosphane-κP)ruthenium(II) dichloromethane hemisolvate top
Crystal data top
[Ru(C5H5)(N3)(C18H15P)2]·0.5CH2Cl2F(000) = 3176
Mr = 775.19Dx = 1.432 Mg m3
Monoclinic, I2/aMo Kα radiation, λ = 0.71073 Å
a = 20.1817 (4) ÅCell parameters from 13778 reflections
b = 12.4559 (3) Åθ = 3.5–29.5°
c = 28.6781 (6) ŵ = 0.63 mm1
β = 94.213 (2)°T = 293 K
V = 7189.7 (3) Å3Prism, orange
Z = 80.72 × 0.51 × 0.20 mm
Data collection top
Agilent Xcalibur Atlas Gemini
diffractometer
7106 independent reflections
Radiation source: Enhance (Mo) X-ray Source6038 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 10.5564 pixels mm-1θmax = 26.1°, θmin = 3.3°
ω scansh = 2424
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2012) using a multi=faceted crystal model based on expressions derived by Clark & Reid (1995)]
k = 1515
Tmin = 0.737, Tmax = 0.897l = 3535
36924 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.027 w = 1/[σ2(Fo2) + (0.022P)2 + 9.5067P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.065(Δ/σ)max = 0.001
S = 1.06Δρmax = 0.33 e Å3
7106 reflectionsΔρmin = 0.49 e Å3
449 parametersExtinction correction: SHELXL
0 restraintsExtinction coefficient: 0.00036 (4)
Crystal data top
[Ru(C5H5)(N3)(C18H15P)2]·0.5CH2Cl2V = 7189.7 (3) Å3
Mr = 775.19Z = 8
Monoclinic, I2/aMo Kα radiation
a = 20.1817 (4) ŵ = 0.63 mm1
b = 12.4559 (3) ÅT = 293 K
c = 28.6781 (6) Å0.72 × 0.51 × 0.20 mm
β = 94.213 (2)°
Data collection top
Agilent Xcalibur Atlas Gemini
diffractometer
7106 independent reflections
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2012) using a multi=faceted crystal model based on expressions derived by Clark & Reid (1995)]
6038 reflections with I > 2σ(I)
Tmin = 0.737, Tmax = 0.897Rint = 0.032
36924 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.065H-atom parameters constrained
S = 1.06Δρmax = 0.33 e Å3
7106 reflectionsΔρmin = 0.49 e Å3
449 parameters
Special details top

Experimental. none

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. None

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.49378 (9)0.46227 (15)0.32350 (7)0.0298 (4)
C20.55095 (10)0.44269 (18)0.35275 (8)0.0385 (5)
H20.54990.39090.37610.046*
C30.60895 (11)0.4986 (2)0.34772 (9)0.0471 (6)
H30.64660.48370.36730.057*
C40.61134 (12)0.5763 (2)0.31387 (10)0.0519 (6)
H40.65050.61380.31040.062*
C50.55533 (12)0.59808 (19)0.28509 (9)0.0483 (6)
H50.55670.6510.26230.058*
C60.49689 (11)0.54182 (16)0.28979 (8)0.0363 (5)
H60.45940.55750.27020.044*
C70.43752 (10)0.25218 (16)0.34102 (7)0.0344 (5)
C80.49774 (12)0.20901 (19)0.33053 (9)0.0461 (6)
H80.52920.25270.31780.055*
C90.51178 (15)0.1019 (2)0.33864 (11)0.0608 (7)
H90.55290.07430.3320.073*
C100.46576 (18)0.0364 (2)0.35632 (11)0.0688 (9)
H100.47580.03530.36250.083*
C110.40434 (17)0.0766 (2)0.36496 (12)0.0711 (9)
H110.37220.03130.37580.085*
C120.39027 (13)0.18415 (19)0.35761 (10)0.0525 (6)
H120.34880.2110.36380.063*
C130.37121 (10)0.38670 (16)0.27572 (7)0.0320 (4)
C140.40484 (12)0.37479 (18)0.23548 (8)0.0431 (5)
H140.4510.3740.23760.052*
C150.37038 (14)0.3640 (2)0.19232 (9)0.0540 (7)
H150.39350.35640.16560.065*
C160.30208 (15)0.3646 (2)0.18854 (9)0.0582 (7)
H160.2790.35880.15940.07*
C170.26818 (13)0.3737 (2)0.22806 (9)0.0554 (7)
H170.2220.37280.22560.066*
C180.30229 (11)0.38420 (18)0.27166 (8)0.0422 (5)
H180.27880.38960.29830.051*
C190.42371 (10)0.72523 (17)0.41116 (7)0.0350 (5)
C200.40982 (12)0.79993 (19)0.44478 (8)0.0454 (6)
H200.3660.81230.45140.054*
C210.46075 (14)0.8563 (2)0.46864 (10)0.0589 (7)
H210.45090.90640.49120.071*
C220.52559 (14)0.8392 (2)0.45935 (10)0.0585 (7)
H220.55950.87710.47570.07*
C230.54049 (12)0.7659 (2)0.42584 (9)0.0516 (6)
H230.58440.75470.41920.062*
C240.48992 (11)0.70906 (19)0.40198 (8)0.0433 (5)
H240.50020.65920.37950.052*
C250.28225 (10)0.70450 (18)0.39722 (7)0.0360 (5)
C260.26325 (12)0.8048 (2)0.37980 (9)0.0479 (6)
H260.28950.83970.35920.058*
C270.20570 (14)0.8534 (2)0.39266 (10)0.0627 (8)
H270.19370.92080.38090.075*
C280.16642 (15)0.8026 (3)0.42271 (11)0.0722 (9)
H280.12770.83510.43140.087*
C290.18428 (16)0.7042 (3)0.43981 (12)0.0785 (10)
H290.15750.66960.46010.094*
C300.24230 (13)0.6544 (2)0.42730 (9)0.0551 (7)
H300.2540.58720.43940.066*
C310.35924 (10)0.68670 (16)0.32038 (7)0.0307 (4)
C320.39666 (11)0.77203 (19)0.30534 (8)0.0438 (5)
H320.42610.80760.32650.053*
C330.39017 (12)0.8041 (2)0.25902 (9)0.0498 (6)
H330.41450.86250.24940.06*
C340.34825 (12)0.7507 (2)0.22735 (8)0.0493 (6)
H340.34490.77160.19610.059*
C350.31111 (12)0.6662 (2)0.24174 (8)0.0471 (6)
H350.28280.62950.22020.057*
C360.31569 (11)0.63574 (17)0.28805 (7)0.0368 (5)
H360.28910.58020.29770.044*
C370.35806 (14)0.4319 (3)0.47670 (9)0.0638 (8)
H370.31590.43770.49140.077*
C380.40514 (15)0.5138 (2)0.47330 (8)0.0561 (7)
H380.40150.58710.48540.067*
C390.45983 (12)0.4716 (2)0.45186 (8)0.0482 (6)
H390.50120.50960.44690.058*
C400.44716 (12)0.3625 (2)0.44317 (8)0.0478 (6)
H400.4780.31180.43010.057*
C410.38453 (14)0.3368 (2)0.45750 (9)0.0576 (7)
H410.36390.26550.45660.069*
C420.750.8824 (4)0.50.0924 (16)
H42A0.77130.83640.52390.111*0.5
H42B0.72870.83640.47610.111*0.5
N10.27184 (9)0.42428 (17)0.37835 (7)0.0448 (5)
N20.24204 (9)0.36167 (17)0.39907 (7)0.0442 (5)
N30.20984 (13)0.3008 (3)0.41775 (11)0.0928 (10)
P10.41536 (2)0.39566 (4)0.33427 (2)0.02831 (12)
P20.35969 (3)0.64007 (4)0.38088 (2)0.03007 (12)
Ru10.37307 (2)0.46072 (2)0.40230 (2)0.02988 (7)
Cl10.6866 (3)0.9604 (3)0.52581 (15)0.095 (2)0.62 (3)
Cl1A0.7012 (8)0.9520 (10)0.5236 (4)0.202 (7)0.38 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0275 (10)0.0285 (10)0.0335 (11)0.0023 (8)0.0018 (8)0.0054 (8)
C20.0348 (11)0.0401 (12)0.0399 (12)0.0015 (9)0.0021 (9)0.0012 (10)
C30.0309 (11)0.0516 (14)0.0573 (15)0.0033 (11)0.0067 (10)0.0057 (12)
C40.0354 (13)0.0510 (15)0.0700 (18)0.0136 (11)0.0088 (12)0.0033 (13)
C50.0481 (14)0.0410 (13)0.0563 (15)0.0072 (11)0.0080 (12)0.0065 (11)
C60.0329 (11)0.0338 (11)0.0421 (12)0.0003 (9)0.0019 (9)0.0028 (9)
C70.0378 (11)0.0292 (11)0.0349 (11)0.0014 (9)0.0065 (9)0.0007 (9)
C80.0497 (14)0.0359 (12)0.0526 (15)0.0029 (11)0.0023 (11)0.0033 (11)
C90.0625 (17)0.0407 (15)0.077 (2)0.0136 (13)0.0066 (15)0.0112 (14)
C100.096 (2)0.0297 (13)0.078 (2)0.0058 (15)0.0107 (18)0.0013 (13)
C110.087 (2)0.0357 (14)0.091 (2)0.0197 (15)0.0089 (18)0.0075 (15)
C120.0510 (14)0.0377 (13)0.0691 (18)0.0081 (11)0.0071 (13)0.0015 (12)
C130.0382 (11)0.0249 (10)0.0318 (11)0.0031 (9)0.0052 (9)0.0007 (8)
C140.0462 (13)0.0418 (13)0.0406 (13)0.0009 (10)0.0016 (10)0.0065 (10)
C150.0780 (19)0.0496 (15)0.0337 (13)0.0074 (13)0.0002 (12)0.0066 (11)
C160.0781 (19)0.0524 (15)0.0404 (14)0.0139 (14)0.0213 (13)0.0007 (12)
C170.0486 (14)0.0575 (16)0.0562 (17)0.0130 (12)0.0213 (12)0.0006 (13)
C180.0398 (12)0.0444 (13)0.0411 (13)0.0081 (10)0.0060 (10)0.0011 (10)
C190.0355 (11)0.0340 (11)0.0347 (11)0.0022 (9)0.0020 (9)0.0014 (9)
C200.0449 (13)0.0444 (13)0.0463 (14)0.0006 (11)0.0002 (11)0.0106 (11)
C210.0678 (18)0.0505 (16)0.0567 (17)0.0048 (13)0.0071 (14)0.0197 (13)
C220.0559 (16)0.0509 (15)0.0648 (18)0.0131 (13)0.0214 (13)0.0070 (13)
C230.0366 (13)0.0532 (15)0.0634 (17)0.0039 (11)0.0069 (11)0.0034 (13)
C240.0390 (12)0.0425 (13)0.0477 (14)0.0000 (10)0.0021 (10)0.0055 (11)
C250.0340 (11)0.0439 (13)0.0300 (11)0.0017 (10)0.0020 (9)0.0062 (9)
C260.0478 (14)0.0539 (15)0.0425 (13)0.0109 (12)0.0062 (11)0.0011 (11)
C270.0627 (17)0.0670 (18)0.0582 (17)0.0276 (15)0.0039 (14)0.0034 (14)
C280.0520 (17)0.094 (2)0.072 (2)0.0228 (17)0.0162 (15)0.0151 (18)
C290.0668 (19)0.091 (2)0.083 (2)0.0081 (18)0.0440 (18)0.0031 (19)
C300.0544 (15)0.0570 (16)0.0567 (16)0.0065 (13)0.0219 (13)0.0033 (13)
C310.0305 (10)0.0302 (10)0.0318 (11)0.0047 (8)0.0045 (8)0.0003 (8)
C320.0426 (13)0.0443 (13)0.0443 (13)0.0107 (11)0.0028 (10)0.0006 (11)
C330.0496 (14)0.0524 (15)0.0489 (15)0.0078 (12)0.0133 (12)0.0144 (12)
C340.0499 (14)0.0645 (16)0.0341 (12)0.0049 (13)0.0071 (11)0.0131 (12)
C350.0494 (14)0.0566 (15)0.0344 (12)0.0012 (12)0.0036 (10)0.0010 (11)
C360.0389 (12)0.0350 (11)0.0363 (12)0.0018 (9)0.0023 (9)0.0016 (9)
C370.0580 (16)0.102 (2)0.0320 (13)0.0178 (17)0.0087 (12)0.0233 (14)
C380.0784 (19)0.0633 (17)0.0244 (12)0.0088 (15)0.0119 (12)0.0029 (11)
C390.0466 (14)0.0661 (17)0.0294 (12)0.0040 (12)0.0137 (10)0.0038 (11)
C400.0513 (14)0.0582 (16)0.0318 (12)0.0129 (12)0.0117 (10)0.0097 (11)
C410.0657 (17)0.0597 (17)0.0453 (15)0.0064 (14)0.0110 (13)0.0264 (13)
C420.107 (4)0.071 (3)0.103 (4)00.038 (3)0
N10.0325 (10)0.0552 (12)0.0459 (11)0.0045 (9)0.0029 (9)0.0100 (10)
N20.0315 (10)0.0549 (13)0.0459 (12)0.0017 (9)0.0014 (9)0.0036 (10)
N30.0596 (16)0.122 (2)0.095 (2)0.0356 (17)0.0020 (15)0.0483 (19)
P10.0268 (3)0.0274 (3)0.0300 (3)0.0018 (2)0.0031 (2)0.0001 (2)
P20.0296 (3)0.0323 (3)0.0282 (3)0.0013 (2)0.0011 (2)0.0018 (2)
Ru10.02908 (10)0.03461 (10)0.02536 (10)0.00068 (7)0.00197 (6)0.00396 (7)
Cl10.0622 (18)0.091 (2)0.137 (3)0.0075 (10)0.0361 (19)0.0484 (14)
Cl1A0.130 (6)0.165 (6)0.331 (15)0.006 (4)0.148 (9)0.068 (5)
Geometric parameters (Å, º) top
C1—C61.389 (3)C25—P21.848 (2)
C1—C21.397 (3)C26—C271.384 (3)
C1—P11.833 (2)C26—H260.93
C2—C31.379 (3)C27—C281.368 (4)
C2—H20.93C27—H270.93
C3—C41.374 (4)C28—C291.359 (4)
C3—H30.93C28—H280.93
C4—C51.377 (3)C29—C301.395 (4)
C4—H40.93C29—H290.93
C5—C61.387 (3)C30—H300.93
C5—H50.93C31—C361.384 (3)
C6—H60.93C31—C321.391 (3)
C7—C81.382 (3)C31—P21.829 (2)
C7—C121.386 (3)C32—C331.384 (3)
C7—P11.849 (2)C32—H320.93
C8—C91.380 (3)C33—C341.368 (3)
C8—H80.93C33—H330.93
C9—C101.362 (4)C34—C351.373 (3)
C9—H90.93C34—H340.93
C10—C111.376 (4)C35—C361.378 (3)
C10—H100.93C35—H350.93
C11—C121.382 (4)C36—H360.93
C11—H110.93C37—C381.403 (4)
C12—H120.93C37—C411.426 (4)
C13—C181.388 (3)C37—Ru12.207 (2)
C13—C141.389 (3)C37—H370.98
C13—P11.846 (2)C38—C391.404 (4)
C14—C151.381 (3)C38—Ru12.193 (2)
C14—H140.93C38—H380.98
C15—C161.375 (4)C39—C401.402 (4)
C15—H150.93C39—Ru12.177 (2)
C16—C171.371 (4)C39—H390.98
C16—H160.93C40—C411.395 (4)
C17—C181.389 (3)C40—Ru12.202 (2)
C17—H170.93C40—H400.98
C18—H180.93C41—Ru12.211 (2)
C19—C201.383 (3)C41—H410.98
C19—C241.395 (3)C42—Cl1Ai1.508 (16)
C19—P21.840 (2)C42—Cl1A1.508 (16)
C20—C211.384 (3)C42—Cl1i1.807 (7)
C20—H200.93C42—Cl11.807 (7)
C21—C221.371 (4)C42—H42A0.97
C21—H210.93C42—H42B0.97
C22—C231.374 (4)N1—N21.173 (3)
C22—H220.93N1—Ru12.1553 (18)
C23—C241.382 (3)N2—N31.156 (3)
C23—H230.93P1—Ru12.3314 (6)
C24—H240.93P2—Ru12.3274 (6)
C25—C301.373 (3)Cl1A—Cl1Ai2.47 (3)
C25—C261.389 (3)
C6—C1—C2117.70 (19)C33—C32—H32119.9
C6—C1—P1121.59 (15)C31—C32—H32119.9
C2—C1—P1120.33 (16)C34—C33—C32120.5 (2)
C3—C2—C1121.3 (2)C34—C33—H33119.8
C3—C2—H2119.4C32—C33—H33119.8
C1—C2—H2119.4C33—C34—C35119.9 (2)
C4—C3—C2120.3 (2)C33—C34—H34120.1
C4—C3—H3119.9C35—C34—H34120.1
C2—C3—H3119.9C34—C35—C36120.1 (2)
C3—C4—C5119.5 (2)C34—C35—H35120
C3—C4—H4120.2C36—C35—H35120
C5—C4—H4120.2C35—C36—C31120.9 (2)
C4—C5—C6120.6 (2)C35—C36—H36119.5
C4—C5—H5119.7C31—C36—H36119.5
C6—C5—H5119.7C38—C37—C41107.6 (2)
C5—C6—C1120.7 (2)C38—C37—Ru170.89 (14)
C5—C6—H6119.7C41—C37—Ru171.33 (14)
C1—C6—H6119.7C38—C37—H37126.1
C8—C7—C12118.4 (2)C41—C37—H37126.1
C8—C7—P1124.26 (17)Ru1—C37—H37126.1
C12—C7—P1117.37 (17)C37—C38—C39108.4 (3)
C9—C8—C7120.8 (2)C37—C38—Ru171.92 (15)
C9—C8—H8119.6C39—C38—Ru170.62 (13)
C7—C8—H8119.6C37—C38—H38125.7
C10—C9—C8120.3 (3)C39—C38—H38125.7
C10—C9—H9119.8Ru1—C38—H38125.7
C8—C9—H9119.8C40—C39—C38107.6 (2)
C9—C10—C11119.8 (3)C40—C39—Ru172.30 (13)
C9—C10—H10120.1C38—C39—Ru171.88 (13)
C11—C10—H10120.1C40—C39—H39126.1
C10—C11—C12120.2 (3)C38—C39—H39126.1
C10—C11—H11119.9Ru1—C39—H39126.1
C12—C11—H11119.9C41—C40—C39109.1 (2)
C11—C12—C7120.4 (3)C41—C40—Ru171.92 (13)
C11—C12—H12119.8C39—C40—Ru170.34 (13)
C7—C12—H12119.8C41—C40—H40125.4
C18—C13—C14118.4 (2)C39—C40—H40125.4
C18—C13—P1119.45 (17)Ru1—C40—H40125.4
C14—C13—P1121.98 (16)C40—C41—C37107.3 (3)
C15—C14—C13120.7 (2)C40—C41—Ru171.24 (13)
C15—C14—H14119.7C37—C41—Ru171.00 (14)
C13—C14—H14119.7C40—C41—H41126.3
C16—C15—C14120.4 (2)C37—C41—H41126.3
C16—C15—H15119.8Ru1—C41—H41126.3
C14—C15—H15119.8Cl1Ai—C42—Cl1A109.8 (9)
C17—C16—C15119.6 (2)Cl1i—C42—Cl1114.9 (4)
C17—C16—H16120.2Cl1i—C42—H42A108.5
C15—C16—H16120.2Cl1—C42—H42A108.5
C16—C17—C18120.5 (2)Cl1i—C42—H42B108.5
C16—C17—H17119.7Cl1—C42—H42B108.5
C18—C17—H17119.7H42A—C42—H42B107.5
C13—C18—C17120.3 (2)N2—N1—Ru1119.20 (15)
C13—C18—H18119.8N3—N2—N1176.3 (3)
C17—C18—H18119.8C1—P1—C13103.84 (9)
C20—C19—C24118.3 (2)C1—P1—C7104.47 (9)
C20—C19—P2123.07 (17)C13—P1—C797.68 (9)
C24—C19—P2118.47 (16)C1—P1—Ru1110.94 (6)
C19—C20—C21120.3 (2)C13—P1—Ru1126.90 (7)
C19—C20—H20119.8C7—P1—Ru1110.42 (7)
C21—C20—H20119.8C31—P2—C19102.66 (10)
C22—C21—C20120.6 (2)C31—P2—C2599.05 (9)
C22—C21—H21119.7C19—P2—C25101.98 (10)
C20—C21—H21119.7C31—P2—Ru1123.20 (7)
C21—C22—C23120.0 (2)C19—P2—Ru1111.41 (7)
C21—C22—H22120C25—P2—Ru1115.71 (7)
C23—C22—H22120N1—Ru1—C39156.83 (9)
C22—C23—C24119.7 (2)N1—Ru1—C38124.58 (10)
C22—C23—H23120.2C39—Ru1—C3837.49 (10)
C24—C23—H23120.2N1—Ru1—C40130.04 (9)
C23—C24—C19121.0 (2)C39—Ru1—C4037.35 (9)
C23—C24—H24119.5C38—Ru1—C4062.02 (10)
C19—C24—H24119.5N1—Ru1—C3794.57 (10)
C30—C25—C26118.4 (2)C39—Ru1—C3762.60 (10)
C30—C25—P2120.58 (18)C38—Ru1—C3737.19 (11)
C26—C25—P2121.05 (17)C40—Ru1—C3762.03 (10)
C27—C26—C25120.8 (2)N1—Ru1—C4197.36 (9)
C27—C26—H26119.6C39—Ru1—C4162.57 (10)
C25—C26—H26119.6C38—Ru1—C4162.45 (11)
C28—C27—C26120.1 (3)C40—Ru1—C4136.85 (9)
C28—C27—H27119.9C37—Ru1—C4137.67 (11)
C26—C27—H27119.9N1—Ru1—P291.67 (6)
C29—C28—C27119.6 (3)C39—Ru1—P2100.63 (7)
C29—C28—H28120.2C38—Ru1—P288.63 (8)
C27—C28—H28120.2C40—Ru1—P2137.30 (7)
C28—C29—C30120.9 (3)C37—Ru1—P2112.95 (9)
C28—C29—H29119.6C41—Ru1—P2149.66 (8)
C30—C29—H29119.6N1—Ru1—P193.26 (6)
C25—C30—C29120.2 (3)C39—Ru1—P1103.99 (7)
C25—C30—H30119.9C38—Ru1—P1141.32 (8)
C29—C30—H30119.9C40—Ru1—P188.64 (7)
C36—C31—C32118.4 (2)C37—Ru1—P1146.86 (8)
C36—C31—P2116.65 (16)C41—Ru1—P1109.34 (8)
C32—C31—P2124.88 (16)P2—Ru1—P198.933 (19)
C33—C32—C31120.2 (2)C42—Cl1A—Cl1Ai35.1 (4)
C6—C1—C2—C31.4 (3)C37—C38—C39—C401.6 (3)
P1—C1—C2—C3174.44 (18)Ru1—C38—C39—C4063.96 (15)
C1—C2—C3—C40.8 (4)C37—C38—C39—Ru162.36 (17)
C2—C3—C4—C50.2 (4)C38—C39—C40—C411.9 (3)
C3—C4—C5—C60.5 (4)Ru1—C39—C40—C4161.81 (16)
C4—C5—C6—C10.2 (4)C38—C39—C40—Ru163.68 (15)
C2—C1—C6—C51.1 (3)C39—C40—C41—C371.4 (3)
P1—C1—C6—C5174.04 (17)Ru1—C40—C41—C3762.25 (16)
C12—C7—C8—C93.3 (4)C39—C40—C41—Ru160.82 (16)
P1—C7—C8—C9176.9 (2)C38—C37—C41—C400.4 (3)
C7—C8—C9—C101.3 (4)Ru1—C37—C41—C4062.40 (16)
C8—C9—C10—C111.7 (5)C38—C37—C41—Ru161.98 (17)
C9—C10—C11—C122.7 (5)C6—C1—P1—C1335.67 (19)
C10—C11—C12—C70.7 (5)C2—C1—P1—C13151.58 (17)
C8—C7—C12—C112.3 (4)C6—C1—P1—C7137.55 (17)
P1—C7—C12—C11177.9 (2)C2—C1—P1—C749.71 (19)
C18—C13—C14—C152.0 (3)C6—C1—P1—Ru1103.47 (17)
P1—C13—C14—C15177.42 (18)C2—C1—P1—Ru169.28 (18)
C13—C14—C15—C160.2 (4)C18—C13—P1—C1152.65 (17)
C14—C15—C16—C171.3 (4)C14—C13—P1—C131.9 (2)
C15—C16—C17—C181.1 (4)C18—C13—P1—C7100.32 (18)
C14—C13—C18—C172.1 (3)C14—C13—P1—C775.09 (19)
P1—C13—C18—C17177.72 (18)C18—C13—P1—Ru122.5 (2)
C16—C17—C18—C130.6 (4)C14—C13—P1—Ru1162.12 (15)
C24—C19—C20—C210.3 (4)C8—C7—P1—C111.1 (2)
P2—C19—C20—C21175.5 (2)C12—C7—P1—C1169.00 (18)
C19—C20—C21—C220.0 (4)C8—C7—P1—C1395.4 (2)
C20—C21—C22—C230.4 (4)C12—C7—P1—C1384.49 (19)
C21—C22—C23—C240.7 (4)C8—C7—P1—Ru1130.47 (18)
C22—C23—C24—C190.4 (4)C12—C7—P1—Ru149.67 (19)
C20—C19—C24—C230.1 (3)C36—C31—P2—C19179.14 (16)
P2—C19—C24—C23175.91 (19)C32—C31—P2—C194.2 (2)
C30—C25—C26—C270.4 (4)C36—C31—P2—C2576.31 (17)
P2—C25—C26—C27179.1 (2)C32—C31—P2—C25100.35 (19)
C25—C26—C27—C280.4 (4)C36—C31—P2—Ru152.69 (18)
C26—C27—C28—C290.0 (5)C32—C31—P2—Ru1130.65 (17)
C27—C28—C29—C300.3 (5)C20—C19—P2—C31114.6 (2)
C26—C25—C30—C290.1 (4)C24—C19—P2—C3169.56 (19)
P2—C25—C30—C29179.4 (2)C20—C19—P2—C2512.4 (2)
C28—C29—C30—C250.2 (5)C24—C19—P2—C25171.83 (18)
C36—C31—C32—C330.2 (3)C20—C19—P2—Ru1111.66 (19)
P2—C31—C32—C33176.82 (18)C24—C19—P2—Ru164.14 (19)
C31—C32—C33—C341.7 (4)C30—C25—P2—C31145.2 (2)
C32—C33—C34—C351.6 (4)C26—C25—P2—C3135.4 (2)
C33—C34—C35—C360.5 (4)C30—C25—P2—C19109.7 (2)
C34—C35—C36—C312.4 (4)C26—C25—P2—C1969.8 (2)
C32—C31—C36—C352.2 (3)C30—C25—P2—Ru111.4 (2)
P2—C31—C36—C35179.13 (18)C26—C25—P2—Ru1169.16 (16)
C41—C37—C38—C390.7 (3)Cl1i—C42—Cl1A—Cl1Ai3.8 (7)
Ru1—C37—C38—C3961.54 (16)Cl1—C42—Cl1A—Cl1Ai126 (9)
C41—C37—C38—Ru162.26 (17)
Symmetry code: (i) x+3/2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18···N10.932.353.204 (3)153
C23—H23···N3ii0.932.623.537 (4)167
C42—H42A···N3iii0.972.43.338 (4)162
C42—H42B···N3ii0.972.43.338 (4)162
Symmetry codes: (ii) x+1/2, y+1, z; (iii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18···N10.932.353.204 (3)153
C23—H23···N3i0.932.623.537 (4)167
C42—H42A···N3ii0.972.43.338 (4)162
C42—H42B···N3i0.972.43.338 (4)162
Symmetry codes: (i) x+1/2, y+1, z; (ii) x+1, y+1, z+1.
 

Acknowledgements

We gratefully acknowledge VIEP (ARCS-NAT-14 G) for financial support. AHC thanks CONACYT for a doctoral fellowship.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFehlhammer, W. P. & Beck, W. (2013). Z. Anorg. Allg. Chem. 639, 1053–1082.  Web of Science CrossRef CAS Google Scholar
First citationGovindaswamy, P., Carroll, P. J., Mozharivskyj, Y. A. & Kollipara, M. R. (2005). J. Organomet. Chem. 690, 885–894.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoura, E. M., Dickman, M. H., Siebald, H. G. L. & Gama, G. J. (1999). Polyhedron, 18, 2899–2906.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoura, E. M., Siebald, H. G. L. & de Lima, G. M. (2002). Polyhedron, 21, 2323–2331.  Web of Science CSD CrossRef CAS Google Scholar
First citationSeok, W. K. & Klapötke, T. M. (2010). Bull. Korean Chem. Soc. 31, 781–788.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaqui Khan, M. M., Bhadbhade, M. M., Siddiqui, M. R. H., Venkatasubramanian, K. & Tikhonova, J. A. (1994). Acta Cryst. C50, 502–504.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 10| October 2014| Pages m345-m346
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds