

OPEN 🗟 ACCESS

## Crystallographic study of PET radiotracers in clinical evaluation for early diagnosis of Alzheimers<sup>1</sup>

## Angela Altomare,<sup>a</sup> Elena Capparelli,<sup>b</sup> Antonio Carrieri,<sup>b</sup> Nicola A. Colabufo,<sup>c</sup> Anna Moliterni,<sup>a</sup> Rosanna Rizzi<sup>a\*</sup> and Dritan Siliqi<sup>a</sup>

<sup>a</sup>Istituto di Cristallografia, Via G. Amendola, 122/o, 7016, Bari, Italy, <sup>b</sup>Dip. di Farmacia-Scienze del Farmaco, Universita' degli studi di Bari, Via Orabona, 4, 70125, Bari, Italy, and <sup>c</sup>Dip. di Farmacia-Scienze del Farmaco, Biofordrug, srl, Universita' degli studi di Bari, Via Orabona, 4, 70125, Bari, Italy. \*Correspondence e-mail: rosanna.rizzi@ic.cnr.it

Received 3 August 2014; accepted 26 September 2014

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

The title compound,  $C_{24}H_{25}NO_3 \cdot 2CH_3OH$ , which crystallized as a methanol disolvate, has applications as a PET radiotracer in the early diagnosis of Alzheimer's disease. The dihedral angle between the biphenyl rings is 8.2 (2)° and the heterocyclic ring adopts a half-chair conformation with the N atom adopting a pyramidal geometry (bond-angle sum =  $327.6^\circ$ ). The C atoms of both methoxy groups lie close to the plane of their attached ring [deviations = 0.107 (6) and 0.031 (6) Å]. In the crystal, the components are linked by O–  $H \cdots O$  and O– $H \cdots N$  hydrogen bonds, generating [010] chains. C– $H \cdots O$  interactions are also observed.

**Keywords:** crystal structure; ligands; P-glycoprotein inhibitor; PET radiotracer; hydrogen bonds.

#### CCDC reference: 915609

#### **1. Related literature**

For pharmacological and biological studies of the title compound, see Colabufo *et al.* (2008, 2009).



 $^1$  Crystal structure of 4'-[(6,7-dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-methyl]biphenyl-4-ol methanol disolvate.

## 2. Experimental

## **2.1. Crystal data** C<sub>24</sub>H<sub>25</sub>NO<sub>3</sub>·2CH<sub>4</sub>O

 $M_r = 439.53$ Monoclinic,  $P_{2_1}$  a = 8.894 (2) Å b = 13.7187 (16) Å c = 10.680 (2) Å  $\beta = 111.575$  (17)°

#### 2.2. Data collection

Bruker–Nonius KappaCCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2008a) T<sub>min</sub> = 0.921, T<sub>max</sub> = 0.988

**2.3. Refinement**  $R[F^2 > 2\sigma(F^2)] = 0.061$  $wR(F^2) = 0.115$ 

S = 0.965436 reflections 305 parameters 1 restraint Z = 2 Mo K $\alpha$  radiation  $\mu = 0.08 \text{ mm}^{-1}$ T = 293 K 0.30 × 0.30 × 0.15 mm

V = 1211.8 (4) Å<sup>3</sup>

14813 measured reflections 5436 independent reflections 2610 reflections with  $I > 2\sigma(I)$  $R_{\text{int}} = 0.116$ 

H atoms treated by a mixture of independent and constrained refinement 
$$\begin{split} &\Delta\rho_{max}=0.17 \text{ e } \text{\AA}^{-3} \\ &\Delta\rho_{min}=-0.15 \text{ e } \text{\AA}^{-3} \end{split}$$

## Table 1Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$                | D-H      | $H \cdots A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|---------------------------------|----------|--------------|--------------|---------------------------|
| O2−H2 <i>O</i> ···N1            | 0.94 (5) | 1.87 (5)     | 2.812 (5)    | 178 (4)                   |
| O4−H4 <i>O</i> …O5 <sup>i</sup> | 0.95 (6) | 1.71 (6)     | 2.636 (6)    | 165 (5)                   |
| O5−H5O···O2                     | 0.71 (8) | 2.00 (8)     | 2.684 (6)    | 162 (9)                   |
| $C15 - H15A \cdots O1^{ii}$     | 0.97     | 2.50         | 3.445 (6)    | 164                       |
| $C23 - H23A \cdots O2^{iii}$    | 0.96     | 2.56         | 3.437 (6)    | 152                       |
|                                 |          |              |              |                           |

Symmetry codes: (i) x, y + 1, z; (ii)  $-x + 1, y + \frac{1}{2}, -z$ ; (iii)  $-x, y - \frac{1}{2}, -z$ .

Data collection: *COLLECT* (Nonius, 2002); cell determination and refinement: *DIRAX* (Duisenberg,1992; Duisenberg *et al.*, 2000); data reduction: *EVAL* (Nonius, 2002; Duisenberg *et al.*, 2003); program(s) used to solve structure: *SIR2011* (Burla *et al.*, 2012); program(s) used to refine structure: *SIR2011* (Burla *et al.*, 2012); program(s) used to refine structure: *SIR2013* (Sheldrick, 2008b); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and *EXPO2013* (Altomare *et al.*, 2013); software used to prepare material for publication: *WinGX* (Farrugia, 2012) and *publCIF* (Westrip, 2010).

#### Acknowledgements

This work was supported by the Fondazione Cassa di Risparmio di Puglia (FCRP) of Bari (research project: Studio cristallografico di radiotraccianti PET in valutazione clinica per la diagnosi precoce dell' Alzheimer). The authors thank Mr Giuseppe Chita (Institute of Crystallography CNR, Bari, Italy) for his contribution to the X-ray powder diffraction data collection and Dr Caterina Chiarella (Institute of Crystallography CNR, Bari, Italy) for the technical support to project management. Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7266).

#### References

- Altomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N. & Falcicchio, A. (2013). J. Appl. Cryst. 46, 1231–1235.
- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357–361.
- Colabuto, N. A., Berardi, F., Cantore, M., Perrone, M. G., Contino, M., Inglese, C., Niso, M., Perrone, R., Azzariti, A., Simone, G. M. & Paradiso, A. (2008). *Bioorg. Med. Chem.* 16, 3732–3743.

- Colabufo, N. A., Berardi, F., Perrone, M. G., Cantore, M., Contino, M., Inglese, C., Niso, M. & Perrone, R. (2009). *ChemMedChem*, **4**, 188–195.
- Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.
- Duisenberg, A. J. M., Hooff, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893–898.
- Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Nonius (2002). COLLECT and EVAL. Nonius BV, Delft, The Netherlands.
- Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

## supporting information

Acta Cryst. (2014). E70, o1149–o1150 [doi:10.1107/S1600536814021400]

# Crystallographic study of PET radiotracers in clinical evaluation for early diagnosis of Alzheimers

## Angela Altomare, Elena Capparelli, Antonio Carrieri, Nicola A. Colabufo, Anna Moliterni, Rosanna Rizzi and Dritan Siliqi

## S1. Comment

The single-crystal X-ray structure solution of 4'-(6,7-dimethoxy-3,4-dihydro-1*H*-isoquinolin-2-yl-methyl)-biphenyl-4-ol (named MC70) radiotracer, previously pharmacologically characterized and biologically evaluated (compound 4e in Colabufo *et al.*, 2008, 2009), has been reported. At nanomolar concentrations MC70 is a potent inhibitor of P-glycoprotein (P-gp), a membrane protein playing a protective role of the central nervous system and whose numerical and functional alteration is responsible for the onset of the Alzheimer disease. The crystallographic characterization of MC70 represents the first necessary step for a further evaluation of its pharmacological properties and to obtain, f. e. through docking techniques and homology modelling, a tridimensional interpretation of the main molecular determinants responsible for most of MC70 features such as to be an inhibitor of the P-gp. The study of this behaviour will allow the design of new ligands, more effective and selective in the monitoring the role of P-glycoprotein for the recognition and early treatment of the Alzheimer disease. In addition, up to now none of the studies on interactions of this pump with known inhibitors, report crystallographic data of P-gp inhibitors complexes. Therefore speculating the binding conformation and pose for MC70 might be an added value to a better understanding of the mechanism of action of efflux pumps involved in the Alzheimer's disease.

A view of the refined crystal structure is shown in Figure 1. The packing of the obtained crystal structure is represented in Figure 2; it is interesting observing that the network of the structure features three hydrogen bonds (Table 1): the first between the 2 molecules of methanol, the second between one methanol molecule and the phenolic residue of the molecule and the last between the other methanol molecule and the isoquinoline nucleus. In the crystal weak C—H···O hydrogen bonds also occur. In addition, the pendant biphenyl has an equatorial configuration as proved by a dihedral angle among atoms C8—N1—C7—C18 of -175°.

## S2. Experimental

MC70, [4'-(6,7-dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl-methyl)-biphenyl-4-ol] (C<sub>24</sub>H<sub>25</sub>NO<sub>3</sub>) has been obtained after crystallization as yellow needles. The solvent/non-solvent diffusion has been used as crystallization technique: after solubilizing MC70 (5 mg) in methanol (solvent, 1 ml), an equal volume of CH<sub>2</sub>Cl<sub>2</sub> (non-solvent, 1 ml) has been deposited. The vial has been covered with a perforated cap and left at room temperature. After a couple of days, yellow needles of MC70 2CH<sub>3</sub>OH have grown on the interphase solvent/non-solvent.

## **S3. Refinement**

The hydrogen atoms of the hydroxyl groups were located by difference Fourier synthesis and freely isotropically refined. The C-bonded H atoms were positioned geometrically with C—H = 0.96, 0.97 and 0.93 Å for methyl, methylene and aromatic H atoms, respectively, and constrained to ride on their parent atoms. The constraint  $U_{iso}(H) = kU_{eq}(C)$ , where k = 1.5 for methyl and k = 1.2 for aromatic and methylene H atoms, was applied. The highest residual electron density was found 1.59 Å from C16 and the deepest hole 1.04 Å from H12A.



## Figure 1

The molecular structure of the MC70 compound with displacement ellipsoids drawn at the 50% probability level.





Crystal packing of the MC70 compound. The light blue dashed lines show the hydrogen bonds (see Table 1 for details).

## 4'-(6,7-Dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl-methyl)-biphenyl-4-ol methanol disolvate

| Crystal data                     |
|----------------------------------|
| $C_{24}H_{25}NO_3 \cdot 2CH_4O$  |
| $M_r = 439.53$                   |
| Monoclinic, $P2_1$               |
| <i>a</i> = 8.894 (2) Å           |
| <i>b</i> = 13.7187 (16) Å        |
| c = 10.680 (2)  Å                |
| $\beta = 111.575 \ (17)^{\circ}$ |
| $V = 1211.8 (4) \text{ Å}^3$     |
| Z = 2                            |

## Data collection

Bruker–Nonius KappaCCD diffractometer Radiation source: fine-focus sealed tube Detector resolution: 9.091 pixels mm<sup>-1</sup>  $\varphi$  scans and  $\omega$  scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 2008a)  $T_{\min} = 0.921, T_{\max} = 0.988$ 

## Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.061$  $wR(F^2) = 0.115$ S = 0.965436 reflections 305 parameters 1 restraint F(000) = 472  $D_x = 1.205 \text{ Mg m}^{-3}$ Mo K\alpha radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 130 reflections  $\theta = 2.9-26.6^{\circ}$   $\mu = 0.08 \text{ mm}^{-1}$  T = 293 KNeedle, yellow  $0.30 \times 0.30 \times 0.15 \text{ mm}$ 

14813 measured reflections 5436 independent reflections 2610 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.116$  $\theta_{max} = 27.5^{\circ}, \theta_{min} = 5.1^{\circ}$  $h = -11 \rightarrow 11$  $k = -16 \rightarrow 17$  $l = -13 \rightarrow 13$ 

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement

| $w = 1/[\sigma^2(F_o^2) + (0.0345P)^2]$ | $\Delta  ho_{ m max} = 0.17 \  m e \  m \AA^{-3}$          |
|-----------------------------------------|------------------------------------------------------------|
| where $P = (F_0^2 + 2F_c^2)/3$          | $\Delta \rho_{\rm min} = -0.15 \text{ e } \text{\AA}^{-3}$ |
| $(\Delta/\sigma)_{\rm max} < 0.001$     |                                                            |

## Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2\sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*<sup>2</sup> are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|      | x           | у          | Ζ           | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|------|-------------|------------|-------------|-----------------------------|--|
| 01   | 0.4571 (4)  | 0.0371 (2) | 0.1278 (3)  | 0.0510 (9)                  |  |
| 02   | 0.2161 (4)  | 0.4009 (3) | 0.3492 (4)  | 0.0591 (10)                 |  |
| H2O  | 0.284 (6)   | 0.426 (4)  | 0.307 (5)   | 0.061 (15)*                 |  |
| 03   | 0.1944 (4)  | 0.0677 (2) | -0.0770 (4) | 0.0660 (10)                 |  |
| 04   | -0.0551 (4) | 1.1537 (3) | 0.4038 (4)  | 0.0686 (11)                 |  |
| H4O  | -0.058 (7)  | 1.200 (4)  | 0.337 (6)   | 0.09 (2)*                   |  |
| N1   | 0.4249 (4)  | 0.4745 (3) | 0.2281 (4)  | 0.0448 (10)                 |  |
| C1   | 0.2616 (5)  | 0.8125 (3) | 0.3304 (4)  | 0.0390 (10)                 |  |
| C2   | 0.1761 (5)  | 0.9019 (3) | 0.3470 (4)  | 0.0409 (11)                 |  |
| C3   | 0.4907 (6)  | 0.2102 (4) | 0.1807 (5)  | 0.0464 (12)                 |  |
| H3   | 0.5871      | 0.1998     | 0.2530      | 0.056*                      |  |
| C4   | 0.4297 (5)  | 0.3056 (4) | 0.1500 (5)  | 0.0450 (12)                 |  |
| C5   | 0.4095 (6)  | 0.1326 (3) | 0.1054 (5)  | 0.0450 (12)                 |  |
| C6   | 0.3543 (6)  | 0.6482 (3) | 0.3954 (5)  | 0.0540 (13)                 |  |
| H6   | 0.3556      | 0.5936     | 0.4475      | 0.065*                      |  |
| C7   | 0.5309 (5)  | 0.5553 (3) | 0.3000 (5)  | 0.0532 (14)                 |  |
| H7A  | 0.6029      | 0.5719     | 0.2535      | 0.064*                      |  |
| H7B  | 0.5969      | 0.5339     | 0.3900      | 0.064*                      |  |
| 05   | -0.0663 (6) | 0.3050 (3) | 0.2485 (5)  | 0.0724 (12)                 |  |
| H5O  | 0.007 (9)   | 0.331 (6)  | 0.259 (8)   | 0.12 (4)*                   |  |
| C8   | 0.5275 (5)  | 0.3884 (3) | 0.2354 (5)  | 0.0519 (13)                 |  |
| H8A  | 0.5766      | 0.3671     | 0.3283      | 0.062*                      |  |
| H8B  | 0.6136      | 0.4061     | 0.2045      | 0.062*                      |  |
| C9   | 0.2058 (6)  | 0.2421 (3) | -0.0333 (5) | 0.0510 (13)                 |  |
| H9   | 0.1102      | 0.2529     | -0.1063     | 0.061*                      |  |
| C10  | 0.0835 (6)  | 0.9047 (4) | 0.4265 (5)  | 0.0532 (13)                 |  |
| H10  | 0.0709      | 0.8477     | 0.4688      | 0.064*                      |  |
| C11  | 0.2866 (5)  | 0.3213 (3) | 0.0452 (5)  | 0.0456 (12)                 |  |
| C12  | 0.2151 (6)  | 0.4222 (3) | 0.0158 (5)  | 0.0514 (13)                 |  |
| H12A | 0.1242      | 0.4268     | 0.0452      | 0.062*                      |  |
| H12B | 0.1750      | 0.4335     | -0.0806     | 0.062*                      |  |
| C13  | 0.3421 (6)  | 0.8087 (3) | 0.2410 (4)  | 0.0491 (12)                 |  |

| H13  | 0.3378      | 0.8621     | 0.1862      | 0.059*      |
|------|-------------|------------|-------------|-------------|
| C14  | 0.1866 (6)  | 0.9887 (3) | 0.2849 (6)  | 0.0602 (15) |
| H14  | 0.2464      | 0.9906     | 0.2295      | 0.072*      |
| C15  | 0.3377 (6)  | 0.5000 (3) | 0.0859 (5)  | 0.0527 (14) |
| H15A | 0.4142      | 0.5069     | 0.0411      | 0.063*      |
| H15B | 0.2831      | 0.5619     | 0.0803      | 0.063*      |
| C16  | 0.2641 (6)  | 0.1490 (4) | -0.0050 (5) | 0.0469 (11) |
| C17  | 0.2690 (6)  | 0.7294 (3) | 0.4065 (5)  | 0.0542 (14) |
| H17  | 0.2151      | 0.7285     | 0.4664      | 0.065*      |
| C18  | 0.4376 (5)  | 0.6453 (3) | 0.3097 (5)  | 0.0459 (12) |
| C19  | 0.0090 (6)  | 0.9887 (4) | 0.4456 (5)  | 0.0578 (14) |
| H19  | -0.0502     | 0.9877     | 0.5015      | 0.069*      |
| C20  | 0.0220 (6)  | 1.0731 (4) | 0.3825 (5)  | 0.0522 (13) |
| C21  | 0.4286 (6)  | 0.7268 (3) | 0.2323 (5)  | 0.0538 (13) |
| H21  | 0.4823      | 0.7270     | 0.1723      | 0.065*      |
| C22  | 0.1113 (7)  | 1.0729 (4) | 0.3026 (6)  | 0.0646 (15) |
| H22  | 0.1216      | 1.1300     | 0.2594      | 0.078*      |
| C23  | 0.0516 (7)  | 0.0832 (5) | -0.1916 (6) | 0.0864 (19) |
| H23A | 0.0125      | 0.0219     | -0.2346     | 0.130*      |
| H23B | 0.0750      | 0.1257     | -0.2535     | 0.130*      |
| H23C | -0.0293     | 0.1126     | -0.1641     | 0.130*      |
| C24  | 0.3132 (7)  | 0.3394 (4) | 0.4543 (6)  | 0.0847 (19) |
| H24A | 0.2517      | 0.3176     | 0.5063      | 0.127*      |
| H24B | 0.4062      | 0.3749     | 0.5112      | 0.127*      |
| H24C | 0.3475      | 0.2841     | 0.4165      | 0.127*      |
| C25  | 0.6072 (7)  | 0.0187 (4) | 0.2328 (6)  | 0.0707 (17) |
| H25A | 0.6324      | -0.0494    | 0.2345      | 0.106*      |
| H25B | 0.6006      | 0.0371     | 0.3174      | 0.106*      |
| H25C | 0.6903      | 0.0561     | 0.2179      | 0.106*      |
| C26  | -0.1413 (7) | 0.2993 (5) | 0.1057 (6)  | 0.0846 (19) |
| H26A | -0.1724     | 0.3634     | 0.0694      | 0.127*      |
| H26B | -0.2353     | 0.2585     | 0.0821      | 0.127*      |
| H26C | -0.0665     | 0.2721     | 0.0694      | 0.127*      |
|      |             |            |             |             |

## Atomic displacement parameters $(Å^2)$

|    | $U^{11}$  | $U^{22}$  | $U^{33}$  | $U^{12}$     | $U^{13}$    | $U^{23}$     |
|----|-----------|-----------|-----------|--------------|-------------|--------------|
| 01 | 0.052 (2) | 0.045 (2) | 0.058 (2) | 0.0013 (16)  | 0.0214 (19) | -0.0015 (16) |
| O2 | 0.045 (2) | 0.069 (2) | 0.061 (2) | 0.0081 (19)  | 0.0175 (19) | 0.016 (2)    |
| O3 | 0.060 (2) | 0.054 (2) | 0.067 (3) | -0.0115 (19) | 0.004 (2)   | -0.016 (2)   |
| O4 | 0.079 (3) | 0.058 (2) | 0.085 (3) | 0.008 (2)    | 0.049 (2)   | -0.005 (3)   |
| N1 | 0.039 (2) | 0.045 (2) | 0.045 (3) | -0.0019 (19) | 0.0086 (18) | -0.0088 (19) |
| C1 | 0.037 (3) | 0.045 (3) | 0.034 (3) | -0.009 (2)   | 0.012 (2)   | -0.009 (2)   |
| C2 | 0.039 (3) | 0.047 (3) | 0.035 (3) | -0.006 (2)   | 0.012 (2)   | -0.004 (2)   |
| C3 | 0.042 (3) | 0.058 (3) | 0.039 (3) | 0.004 (3)    | 0.014 (2)   | -0.008 (3)   |
| C4 | 0.039 (3) | 0.051 (3) | 0.047 (3) | -0.002 (3)   | 0.019 (2)   | -0.013 (3)   |
| C5 | 0.047 (3) | 0.044 (3) | 0.049 (3) | -0.001 (2)   | 0.023 (3)   | -0.005 (2)   |
| C6 | 0.067 (3) | 0.040 (3) | 0.055 (3) | -0.004 (3)   | 0.023 (3)   | 0.003 (3)    |
|    |           |           |           |              |             |              |

| C7  | 0.049 (3) | 0.048 (3) | 0.062 (3) | -0.004 (3) | 0.020 (3)  | -0.015 (3) |
|-----|-----------|-----------|-----------|------------|------------|------------|
| 05  | 0.071 (3) | 0.067 (3) | 0.075 (3) | -0.010 (3) | 0.022 (2)  | 0.001 (2)  |
| C8  | 0.042 (3) | 0.047 (3) | 0.065 (4) | 0.003 (2)  | 0.017 (3)  | -0.013 (3) |
| C9  | 0.044 (3) | 0.054 (3) | 0.047 (3) | -0.002 (3) | 0.007 (2)  | -0.007 (3) |
| C10 | 0.061 (3) | 0.056 (3) | 0.051 (3) | 0.002 (3)  | 0.030 (3)  | 0.011 (3)  |
| C11 | 0.043 (3) | 0.045 (3) | 0.047 (3) | 0.002 (2)  | 0.014 (3)  | -0.009(2)  |
| C12 | 0.047 (3) | 0.050 (3) | 0.049 (3) | 0.004 (3)  | 0.009 (2)  | -0.003 (3) |
| C13 | 0.058 (3) | 0.044 (3) | 0.048 (3) | -0.003 (3) | 0.021 (3)  | -0.001 (2) |
| C14 | 0.070 (4) | 0.049 (3) | 0.081 (4) | 0.005 (3)  | 0.052 (3)  | 0.004 (3)  |
| C15 | 0.054 (3) | 0.052 (3) | 0.053 (4) | -0.004 (3) | 0.020 (3)  | -0.004 (3) |
| C16 | 0.047 (3) | 0.048 (3) | 0.047 (3) | -0.007 (3) | 0.018 (3)  | -0.010 (3) |
| C17 | 0.070 (3) | 0.047 (3) | 0.057 (4) | -0.007 (3) | 0.036 (3)  | -0.004 (3) |
| C18 | 0.043 (3) | 0.045 (3) | 0.046 (3) | -0.004 (2) | 0.012 (2)  | -0.009 (3) |
| C19 | 0.062 (3) | 0.062 (4) | 0.063 (4) | 0.005 (3)  | 0.039 (3)  | 0.001 (3)  |
| C20 | 0.049 (3) | 0.049 (3) | 0.063 (3) | -0.003 (3) | 0.026 (3)  | -0.007 (3) |
| C21 | 0.065 (3) | 0.047 (3) | 0.057 (4) | -0.008 (3) | 0.032 (3)  | -0.008 (3) |
| C22 | 0.074 (4) | 0.052 (3) | 0.089 (4) | -0.002(3)  | 0.055 (4)  | 0.007 (3)  |
| C23 | 0.074 (4) | 0.078 (4) | 0.079 (4) | -0.017 (3) | -0.005 (4) | -0.024 (4) |
| C24 | 0.074 (4) | 0.100 (5) | 0.067 (4) | 0.020 (4)  | 0.010 (3)  | 0.028 (4)  |
| C25 | 0.069 (4) | 0.063 (4) | 0.068 (4) | 0.015 (3)  | 0.012 (3)  | 0.002 (3)  |
| C26 | 0.078 (4) | 0.106 (5) | 0.073 (5) | -0.022 (4) | 0.031 (4)  | -0.018 (4) |
|     |           |           |           |            |            |            |

## Geometric parameters (Å, °)

| 01—C5  | 1.371 (5) | C9—C11   | 1.399 (6) |
|--------|-----------|----------|-----------|
| O1—C25 | 1.415 (6) | С9—Н9    | 0.9300    |
| O2—C24 | 1.415 (6) | C10—C19  | 1.380 (7) |
| O2—H2O | 0.94 (5)  | C10—H10  | 0.9300    |
| O3—C16 | 1.367 (6) | C11—C12  | 1.508 (6) |
| O3—C23 | 1.419 (6) | C12—C15  | 1.513 (6) |
| O4—C20 | 1.364 (5) | C12—H12A | 0.9700    |
| O4—H4O | 0.95 (6)  | C12—H12B | 0.9700    |
| N1-C15 | 1.471 (6) | C13—C21  | 1.383 (6) |
| N1C7   | 1.475 (5) | C13—H13  | 0.9300    |
| N1-C8  | 1.477 (5) | C14—C22  | 1.382 (7) |
| C1—C17 | 1.388 (6) | C14—H14  | 0.9300    |
| C1—C13 | 1.389 (6) | C15—H15A | 0.9700    |
| C1—C2  | 1.488 (6) | C15—H15B | 0.9700    |
| C2-C14 | 1.383 (6) | C17—H17  | 0.9300    |
| C2-C10 | 1.384 (6) | C18—C21  | 1.376 (6) |
| C3—C5  | 1.369 (6) | C19—C20  | 1.366 (6) |
| C3—C4  | 1.409 (6) | C19—H19  | 0.9300    |
| С3—Н3  | 0.9300    | C20—C22  | 1.364 (6) |
| C4—C11 | 1.367 (6) | C21—H21  | 0.9300    |
| C4—C8  | 1.516 (6) | C22—H22  | 0.9300    |
| C5—C16 | 1.411 (6) | C23—H23A | 0.9600    |
| C6—C18 | 1.373 (6) | C23—H23B | 0.9600    |
| C6—C17 | 1.378 (6) | C23—H23C | 0.9600    |
|        |           |          |           |

| С6—Н6                     | 0.9300    | C24—H24A                   | 0.9600    |
|---------------------------|-----------|----------------------------|-----------|
| C7—C18                    | 1 511 (6) | C24—H24B                   | 0 9600    |
| C7—H7A                    | 0.9700    | $C_24$ —H24C               | 0.9600    |
| C7—H7B                    | 0 9700    | C25—H25A                   | 0.9600    |
| 05—C26                    | 1 424 (7) | C25—H25B                   | 0.9600    |
| 05—H50                    | 0.71(8)   | $C_{25}$ H25C              | 0.9600    |
| C8—H8A                    | 0.9700    | C26—H26A                   | 0.9600    |
| C8—H8B                    | 0.9700    | C26—H26B                   | 0.9600    |
| $C_{0}$ $C_{16}$          | 1 370 (7) | C26_H26C                   | 0.9600    |
|                           | 1.570(7)  |                            | 0.9000    |
| C5—O1—C25                 | 116.7 (4) | C1—C13—H13                 | 119.4     |
| C24—O2—H2O                | 107 (3)   | C22—C14—C2                 | 122.1 (5) |
| C16—O3—C23                | 116.1 (4) | C22—C14—H14                | 118.9     |
| C20—O4—H4O                | 107 (3)   | C2—C14—H14                 | 118.9     |
| C15—N1—C7                 | 110.6 (4) | N1—C15—C12                 | 110.7 (4) |
| C15—N1—C8                 | 109.0 (4) | N1—C15—H15A                | 109.5     |
| C7—N1—C8                  | 108.0 (3) | C12—C15—H15A               | 109.5     |
| C17—C1—C13                | 116.5 (4) | N1-C15-H15B                | 109.5     |
| C17 - C1 - C2             | 121.6 (4) | C12—C15—H15B               | 109.5     |
| $C_{13} - C_{1} - C_{2}$  | 121.9 (4) | H15A—C15—H15B              | 108.1     |
| $C_{14}$ $C_{2}$ $C_{10}$ | 115.5 (4) | 03-C16-C9                  | 125.5 (4) |
| C14-C2-C1                 | 121.6 (4) | 03-C16-C5                  | 115.2 (5) |
| C10-C2-C1                 | 122.8 (4) | C9-C16-C5                  | 119.2(c)  |
| $C_{5}-C_{3}-C_{4}$       | 120.7(4)  | C6-C17-C1                  | 121.5(5)  |
| С5—С3—Н3                  | 119.6     | C6-C17-H17                 | 119.2     |
| C4—C3—H3                  | 119.6     | C1-C17-H17                 | 119.2     |
| $C_{11} - C_{4} - C_{3}$  | 120.0 (4) | C6-C18-C21                 | 116.7(5)  |
| $C_{11} - C_{4} - C_{8}$  | 122.0(4)  | C6-C18-C7                  | 120.9(5)  |
| C3-C4-C8                  | 118.0 (4) | $C_{21} - C_{18} - C_{7}$  | 120.3(5)  |
| C3-C5-01                  | 125.4 (5) | $C_{20}$ $C_{19}$ $C_{10}$ | 120.2(5)  |
| $C_3 - C_5 - C_{16}$      | 119 3 (5) | $C_{20}$ $C_{19}$ $H_{19}$ | 119.9     |
| 01 - C5 - C16             | 115.3 (4) | C10—C19—H19                | 119.9     |
| C18 - C6 - C17            | 122.0 (5) | $C_{22} = C_{20} = 04$     | 123.4 (5) |
| C18—C6—H6                 | 119.0     | $C_{22} = C_{20} = C_{19}$ | 118.8 (5) |
| C17 - C6 - H6             | 119.0     | 04-C20-C19                 | 117.8(5)  |
| N1-C7-C18                 | 112.8 (4) | C18 - C21 - C13            | 122.1(5)  |
| N1-C7-H7A                 | 109.0     | C18 - C21 - H21            | 119.0     |
| C18 - C7 - H7A            | 109.0     | C13 - C21 - H21            | 119.0     |
| N1-C7-H7B                 | 109.0     | $C_{20}$ $C_{22}$ $C_{14}$ | 120.7 (5) |
| C18—C7—H7B                | 109.0     | C20—C22—H22                | 119.6     |
| H7A—C7—H7B                | 107.8     | C14-C22-H22                | 119.6     |
| $C_{26} - 05 - H_{50}$    | 104 (7)   | 03—C23—H23A                | 109.5     |
| N1-C8-C4                  | 111.2 (4) | 03-C23-H23B                | 109.5     |
| N1—C8—H8A                 | 109.4     | H23A—C23—H23B              | 109.5     |
| C4—C8—H8A                 | 109.4     | O3—C23—H23C                | 109.5     |
| N1—C8—H8B                 | 109.4     | H23A—C23—H23C              | 109.5     |
| C4—C8—H8B                 | 109.4     | H23B—C23—H23C              | 109.5     |
| H8A—C8—H8B                | 108.0     | O2—C24—H24A                | 109.5     |

| C16—C9—C11     | 121.5 (5)  | O2—C24—H24B     | 109.5      |
|----------------|------------|-----------------|------------|
| С16—С9—Н9      | 119.3      | H24A—C24—H24B   | 109.5      |
| С11—С9—Н9      | 119.3      | O2—C24—H24C     | 109.5      |
| C19—C10—C2     | 122.7 (5)  | H24A—C24—H24C   | 109.5      |
| C19—C10—H10    | 118.7      | H24B—C24—H24C   | 109.5      |
| C2—C10—H10     | 118.7      | O1—C25—H25A     | 109.5      |
| C4—C11—C9      | 119.1 (4)  | O1—C25—H25B     | 109.5      |
| C4—C11—C12     | 120.6 (4)  | H25A—C25—H25B   | 109.5      |
| C9—C11—C12     | 120.2 (4)  | O1—C25—H25C     | 109.5      |
| C11—C12—C15    | 111.8 (4)  | H25A—C25—H25C   | 109.5      |
| C11—C12—H12A   | 109.2      | H25B—C25—H25C   | 109.5      |
| C15—C12—H12A   | 109.2      | O5—C26—H26A     | 109.5      |
| C11—C12—H12B   | 109.2      | O5—C26—H26B     | 109.5      |
| C15—C12—H12B   | 109.2      | H26A—C26—H26B   | 109.5      |
| H12A—C12—H12B  | 107.9      | O5—C26—H26C     | 109.5      |
| C21—C13—C1     | 121.1 (4)  | H26A—C26—H26C   | 109.5      |
| C21—C13—H13    | 119.4      | H26B—C26—H26C   | 109.5      |
|                |            |                 |            |
| C17—C1—C2—C14  | 171.2 (5)  | C1—C2—C14—C22   | -178.2 (5) |
| C13—C1—C2—C14  | -6.9 (6)   | C7—N1—C15—C12   | -173.6 (4) |
| C17—C1—C2—C10  | -7.7 (7)   | C8—N1—C15—C12   | 67.8 (5)   |
| C13—C1—C2—C10  | 174.2 (5)  | C11—C12—C15—N1  | -47.5 (5)  |
| C5—C3—C4—C11   | 1.1 (6)    | C23—O3—C16—C9   | 1.4 (7)    |
| C5—C3—C4—C8    | -178.6 (4) | C23—O3—C16—C5   | -177.6 (4) |
| C4—C3—C5—O1    | -179.1 (4) | C11—C9—C16—O3   | -179.2 (4) |
| C4—C3—C5—C16   | 0.7 (6)    | C11—C9—C16—C5   | -0.3 (7)   |
| C25—O1—C5—C3   | -3.8 (6)   | C3—C5—C16—O3    | 177.9 (4)  |
| C25—O1—C5—C16  | 176.4 (4)  | O1—C5—C16—O3    | -2.3(5)    |
| C15—N1—C7—C18  | 65.8 (5)   | C3—C5—C16—C9    | -1.1 (6)   |
| C8—N1—C7—C18   | -175.0 (4) | O1-C5-C16-C9    | 178.7 (4)  |
| C15—N1—C8—C4   | -53.1 (5)  | C18—C6—C17—C1   | 0.6 (7)    |
| C7—N1—C8—C4    | -173.4 (4) | C13—C1—C17—C6   | 1.1 (7)    |
| C11—C4—C8—N1   | 22.3 (6)   | C2-C1-C17-C6    | -177.0 (4) |
| C3—C4—C8—N1    | -158.0 (4) | C17—C6—C18—C21  | -1.6 (7)   |
| C14—C2—C10—C19 | -1.4 (7)   | C17—C6—C18—C7   | 179.7 (4)  |
| C1—C2—C10—C19  | 177.6 (5)  | N1—C7—C18—C6    | 73.2 (6)   |
| C3—C4—C11—C9   | -2.4 (6)   | N1-C7-C18-C21   | -105.4 (5) |
| C8—C4—C11—C9   | 177.3 (4)  | C2-C10-C19-C20  | 1.5 (8)    |
| C3—C4—C11—C12  | 176.6 (4)  | C10-C19-C20-C22 | -0.9 (8)   |
| C8—C4—C11—C12  | -3.8 (6)   | C10-C19-C20-O4  | 179.4 (5)  |
| C16—C9—C11—C4  | 2.0 (7)    | C6-C18-C21-C13  | 0.9 (7)    |
| C16—C9—C11—C12 | -176.9 (4) | C7—C18—C21—C13  | 179.6 (4)  |
| C4—C11—C12—C15 | 15.9 (6)   | C1-C13-C21-C18  | 0.8 (8)    |
| C9—C11—C12—C15 | -165.2 (4) | O4—C20—C22—C14  | 180.0 (5)  |
| C17—C1—C13—C21 | -1.8 (7)   | C19—C20—C22—C14 | 0.4 (8)    |
| C2-C1-C13-C21  | 176.3 (4)  | C2-C14-C22-C20  | -0.3 (9)   |
| C10-C2-C14-C22 | 0.8 (8)    |                 |            |

| D—H···A                               | <i>D</i> —Н | H···A    | $D \cdots A$ | D—H··· $A$ |
|---------------------------------------|-------------|----------|--------------|------------|
| O2—H2 <i>O</i> …N1                    | 0.94 (5)    | 1.87 (5) | 2.812 (5)    | 178 (4)    |
| O4—H4 <i>O</i> …O5 <sup>i</sup>       | 0.95 (6)    | 1.71 (6) | 2.636 (6)    | 165 (5)    |
| О5—H5 <i>O</i> …О2                    | 0.71 (8)    | 2.00 (8) | 2.684 (6)    | 162 (9)    |
| C15—H15A…O1 <sup>ii</sup>             | 0.97        | 2.50     | 3.445 (6)    | 164        |
| C23—H23 <i>A</i> ···O2 <sup>iii</sup> | 0.96        | 2.56     | 3.437 (6)    | 152        |

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) *x*, *y*+1, *z*; (ii) -*x*+1, *y*+1/2, -*z*; (iii) -*x*, *y*-1/2, -*z*.