organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (2E)-N-methyl-2-[(4-oxo-4H-chromen-3-yl)methyl­­idene]hydrazine­carbo­thio­amide

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, bDepartment of Physics, Pachaiyappa's College for Men, Kancheepuram 631 501, India, cDepartment of Chemistry, National Institute of Technology, Trichy 620 015, India, and dDeparment of Chemistry, National Institute of Technology, Trichy 620 015, India
*Correspondence e-mail: aspandian59@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 20 September 2014; accepted 1 October 2014; online 8 October 2014)

In the title compound, C12H11N3O2S, the dihedral angle between the 4H-chromen-4-one ring system and the –CH=N—NH—CS—NH– unit is 6.22 (1)°. In the crystal, inversion dimers linked by pairs of N—H⋯O hydrogen bonds generate R22(14) loops. The dimers are reinforced by a pair of C—H⋯O inter­actions, which generate R22(10) loops.

1. Related literature

For the biological properties of related compounds, see: Khan et al. (2009[Khan, K. M., Ambreen, N., Hussain, S., Perveen, S. & Choudhary, M. I. (2009). Bioorg. Med. Chem. 17, 2983-2988.]); Tu et al. (2013[Tu, Q. D., Li, D., Sun, Y., Han, X. Y., Yi, F., Sha, Y., Ren, Y. L., Ding, M. W., Feng, L. L. & Wan, J. (2013). Bioorg. Med. Chem. 21, 2826-2831.]); Kelly et al. (1996[Kelly, P. F., Slawin, A. M. Z. & Soriano-Rama, A. (1996). J. Chem. Soc. Dalton Trans. pp. 53-59.]). For a related structure, see: Ishikawa & Watanabe (2014[Ishikawa, Y. & Watanabe, K. (2014). Acta Cryst. E70, o472.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C12H11N3O2S

  • Mr = 261.30

  • Monoclinic, P 21 /n

  • a = 6.3702 (7) Å

  • b = 20.647 (2) Å

  • c = 9.2717 (10) Å

  • β = 98.365 (3)°

  • V = 1206.5 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

2.2. Data collection

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.924, Tmax = 0.948

  • 17429 measured reflections

  • 3560 independent reflections

  • 2257 reflections with I > 2σ(I)

  • Rint = 0.031

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.131

  • S = 1.06

  • 3560 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O2i 0.86 2.11 2.897 (2) 152
C10—H10⋯O2i 0.93 2.44 3.219 (2) 141
Symmetry code: (i) -x+1, -y, -z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Thiosemicarbazones are of considerable interest because of their versatile chemistry and various biological activites such as antitumor, antibacterial, antiviral, antiamoebic and antimalarial (Kelly et al., 1996). Schiff bases derived from 3-formylchromones have attracted much attention due to their biological functions such as enzyme inhibition (Khan et al., 2009; Tu et al., 2013).

The structure of the title compound (Figure 1) shows that the atoms of both 4H-chromen-4-one and the –CH=N—NH—CS—NH– segments are roughly planar and the largest deviations are -0.144 (2) and -0.114 (2) Å for O2 and C12 respectively. The dihedral angles between 4H-chromen-4-one and –CH=N—NH—CS—NH—C– unit and the benzene ring of 4H-chromen-4-one and –CH=N—NH—CS—NH—C– unit are 6.22 (1) and 7.12 (1)°, respectively.

In the crystal, inversion dimers linked by pairs of N—H···O hydrogen bonds generate R22(14) loops. The dimers are reinforced by a pair of C—H···O interactions, which generate R22(10) loops.

Related literature top

For the biological properties of related compounds, see: Khan et al. (2009); Tu et al. (2013); Kelly et al. (1996). For a related structure, see: Ishikawa & Watanabe (2014).

Experimental top

1.05 g (0.01 mol) of N-methylhydrazinecarbothioamide was dissolved in 20 ml of hot ethanol and to this 1.74 g of 4-oxo-4H-Chromene-3-carbaldehydein 10 ml of ethanol was added and continuously stirred for a period of 10 min with continuous stirring. The reaction mixture was refluxed for 2 h and allowed to cool whereby shining white was filtered and washed thoroughly with ethanol and then dried in vaccum. The compound was recrystallized from hot ethanol to yield colourless blocks in 92% yield.

Refinement top

All H atoms were fixed geometrically and allowed to ride on their parent C atoms, with C—H distances fixed in the range 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for all other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.

The packing of the title compound with hydrogen bonds represented by dashed lines. Hydrogen atoms not involved in these bonds are omitted for clarity.
(2E)-N-Methyl-2-[(4-oxo-4H-chromen-3-yl)methylidene]hydrazinecarbothioamide top
Crystal data top
C12H11N3O2SZ = 4
Mr = 261.30F(000) = 544
Monoclinic, P21/nDx = 1.439 Mg m3
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 6.3702 (7) ŵ = 0.27 mm1
b = 20.647 (2) ÅT = 293 K
c = 9.2717 (10) ÅBlock, colourless
β = 98.365 (3)°0.30 × 0.25 × 0.20 mm
V = 1206.5 (2) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
3560 independent reflections
Radiation source: fine-focus sealed tube2257 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω and ϕ scansθmax = 30.2°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 88
Tmin = 0.924, Tmax = 0.948k = 2828
17429 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.056P)2 + 0.3687P]
where P = (Fo2 + 2Fc2)/3
3560 reflections(Δ/σ)max < 0.001
164 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C12H11N3O2SV = 1206.5 (2) Å3
Mr = 261.30Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.3702 (7) ŵ = 0.27 mm1
b = 20.647 (2) ÅT = 293 K
c = 9.2717 (10) Å0.30 × 0.25 × 0.20 mm
β = 98.365 (3)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3560 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2257 reflections with I > 2σ(I)
Tmin = 0.924, Tmax = 0.948Rint = 0.031
17429 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.131H-atom parameters constrained
S = 1.06Δρmax = 0.22 e Å3
3560 reflectionsΔρmin = 0.24 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.1216 (3)0.01086 (8)0.30947 (18)0.0402 (4)
C21.2628 (3)0.03414 (11)0.3973 (2)0.0536 (5)
H21.37950.00970.41380.064*
C31.2268 (4)0.09395 (12)0.4591 (2)0.0615 (6)
H31.31980.11020.51870.074*
C41.0550 (4)0.13046 (11)0.4344 (2)0.0590 (6)
H41.03210.17080.47840.071*
C50.9167 (3)0.10774 (9)0.3453 (2)0.0485 (5)
H50.80200.13290.32790.058*
C60.9493 (3)0.04658 (8)0.28081 (17)0.0359 (4)
C70.8095 (3)0.02066 (8)0.18335 (17)0.0353 (4)
C80.8552 (3)0.04523 (7)0.13502 (17)0.0336 (3)
C91.0264 (3)0.07560 (8)0.1711 (2)0.0429 (4)
H91.05180.11770.13760.051*
C100.7153 (3)0.07618 (8)0.04415 (18)0.0373 (4)
H100.59180.05520.02740.045*
C110.6662 (3)0.21399 (7)0.16614 (18)0.0367 (4)
C120.9249 (4)0.30201 (10)0.2112 (3)0.0619 (6)
H12A0.84270.33800.16890.093*
H12B1.07030.30750.19760.093*
H12C0.91580.29980.31360.093*
N10.7607 (2)0.13156 (6)0.01244 (15)0.0367 (3)
N20.6206 (2)0.15691 (6)0.09629 (16)0.0400 (3)
H2A0.50480.13680.10460.048*
N30.8432 (3)0.24283 (7)0.14142 (18)0.0456 (4)
H3A0.91410.22520.07970.055*
O11.1633 (2)0.04988 (6)0.25169 (15)0.0482 (3)
O20.6644 (2)0.05230 (6)0.14399 (16)0.0550 (4)
S10.49924 (9)0.24309 (2)0.27366 (6)0.05253 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0460 (10)0.0399 (9)0.0355 (9)0.0073 (7)0.0089 (7)0.0057 (7)
C20.0545 (12)0.0624 (12)0.0470 (11)0.0127 (10)0.0180 (9)0.0078 (9)
C30.0724 (15)0.0678 (14)0.0469 (12)0.0299 (12)0.0167 (10)0.0005 (10)
C40.0805 (16)0.0484 (11)0.0468 (11)0.0189 (11)0.0050 (11)0.0096 (9)
C50.0583 (12)0.0403 (9)0.0451 (10)0.0052 (8)0.0011 (9)0.0057 (8)
C60.0422 (9)0.0336 (8)0.0307 (8)0.0050 (7)0.0018 (7)0.0015 (6)
C70.0365 (9)0.0348 (8)0.0339 (8)0.0016 (6)0.0024 (7)0.0008 (6)
C80.0377 (9)0.0302 (7)0.0328 (8)0.0005 (6)0.0052 (7)0.0005 (6)
C90.0517 (11)0.0329 (8)0.0463 (10)0.0033 (7)0.0147 (8)0.0002 (7)
C100.0397 (9)0.0353 (8)0.0375 (9)0.0028 (7)0.0080 (7)0.0028 (7)
C110.0430 (10)0.0274 (7)0.0401 (9)0.0026 (6)0.0072 (7)0.0012 (6)
C120.0564 (13)0.0406 (10)0.0913 (17)0.0104 (9)0.0190 (12)0.0151 (10)
N10.0445 (8)0.0310 (7)0.0357 (7)0.0011 (6)0.0097 (6)0.0006 (5)
N20.0427 (8)0.0328 (7)0.0469 (8)0.0036 (6)0.0150 (7)0.0058 (6)
N30.0500 (9)0.0330 (7)0.0578 (10)0.0036 (6)0.0213 (8)0.0072 (6)
O10.0510 (8)0.0410 (7)0.0572 (8)0.0043 (5)0.0233 (6)0.0007 (6)
O20.0539 (8)0.0445 (7)0.0712 (10)0.0181 (6)0.0241 (7)0.0158 (6)
S10.0572 (3)0.0399 (3)0.0659 (4)0.0015 (2)0.0269 (3)0.0093 (2)
Geometric parameters (Å, º) top
C1—O11.374 (2)C8—C101.460 (2)
C1—C61.380 (2)C9—O11.338 (2)
C1—C21.384 (3)C9—H90.9300
C2—C31.367 (3)C10—N11.274 (2)
C2—H20.9300C10—H100.9300
C3—C41.375 (3)C11—N31.324 (2)
C3—H30.9300C11—N21.356 (2)
C4—C51.375 (3)C11—S11.6715 (17)
C4—H40.9300C12—N31.444 (2)
C5—C61.400 (2)C12—H12A0.9600
C5—H50.9300C12—H12B0.9600
C6—C71.459 (2)C12—H12C0.9600
C7—O21.230 (2)N1—N21.3695 (18)
C7—C81.449 (2)N2—H2A0.8600
C8—C91.342 (2)N3—H3A0.8600
O1—C1—C6121.78 (15)O1—C9—C8124.97 (16)
O1—C1—C2116.17 (17)O1—C9—H9117.5
C6—C1—C2122.05 (17)C8—C9—H9117.5
C3—C2—C1118.5 (2)N1—C10—C8120.64 (15)
C3—C2—H2120.8N1—C10—H10119.7
C1—C2—H2120.8C8—C10—H10119.7
C2—C3—C4121.0 (2)N3—C11—N2115.89 (15)
C2—C3—H3119.5N3—C11—S1124.97 (13)
C4—C3—H3119.5N2—C11—S1119.14 (13)
C5—C4—C3120.5 (2)N3—C12—H12A109.5
C5—C4—H4119.7N3—C12—H12B109.5
C3—C4—H4119.7H12A—C12—H12B109.5
C4—C5—C6119.8 (2)N3—C12—H12C109.5
C4—C5—H5120.1H12A—C12—H12C109.5
C6—C5—H5120.1H12B—C12—H12C109.5
C1—C6—C5118.20 (16)C10—N1—N2116.71 (14)
C1—C6—C7119.82 (15)C11—N2—N1119.45 (14)
C5—C6—C7121.97 (16)C11—N2—H2A120.3
O2—C7—C8122.21 (15)N1—N2—H2A120.3
O2—C7—C6122.79 (15)C11—N3—C12124.28 (16)
C8—C7—C6115.00 (14)C11—N3—H3A117.9
C9—C8—C7119.72 (15)C12—N3—H3A117.9
C9—C8—C10121.73 (15)C9—O1—C1118.35 (14)
C7—C8—C10118.52 (14)
O1—C1—C2—C3179.09 (17)C6—C7—C8—C95.2 (2)
C6—C1—C2—C31.2 (3)O2—C7—C8—C104.0 (2)
C1—C2—C3—C40.3 (3)C6—C7—C8—C10176.46 (14)
C2—C3—C4—C50.8 (3)C7—C8—C9—O10.6 (3)
C3—C4—C5—C60.9 (3)C10—C8—C9—O1178.80 (16)
O1—C1—C6—C5179.29 (15)C9—C8—C10—N15.1 (3)
C2—C1—C6—C51.0 (3)C7—C8—C10—N1173.16 (15)
O1—C1—C6—C71.8 (2)C8—C10—N1—N2179.90 (14)
C2—C1—C6—C7177.85 (16)N3—C11—N2—N13.0 (2)
C4—C5—C6—C10.1 (3)S1—C11—N2—N1177.53 (12)
C4—C5—C6—C7178.91 (17)C10—N1—N2—C11176.29 (15)
C1—C6—C7—O2173.71 (17)N2—C11—N3—C12176.58 (18)
C5—C6—C7—O25.1 (3)S1—C11—N3—C124.0 (3)
C1—C6—C7—C85.8 (2)C8—C9—O1—C13.8 (3)
C5—C6—C7—C8175.36 (16)C6—C1—O1—C93.1 (2)
O2—C7—C8—C9174.28 (17)C2—C1—O1—C9177.22 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.862.112.897 (2)152
C10—H10···O2i0.932.443.219 (2)141
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.862.112.897 (2)152
C10—H10···O2i0.932.443.219 (2)141
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The authors thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the data collection.

References

First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationIshikawa, Y. & Watanabe, K. (2014). Acta Cryst. E70, o472.  CSD CrossRef IUCr Journals Google Scholar
First citationKelly, P. F., Slawin, A. M. Z. & Soriano-Rama, A. (1996). J. Chem. Soc. Dalton Trans. pp. 53–59.  CSD CrossRef Web of Science Google Scholar
First citationKhan, K. M., Ambreen, N., Hussain, S., Perveen, S. & Choudhary, M. I. (2009). Bioorg. Med. Chem. 17, 2983–2988.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTu, Q. D., Li, D., Sun, Y., Han, X. Y., Yi, F., Sha, Y., Ren, Y. L., Ding, M. W., Feng, L. L. & Wan, J. (2013). Bioorg. Med. Chem. 21, 2826–2831.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds