organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (Z)-2-hy­dr­oxy-N′-(4-oxo-1,3-thia­zolidin-2-yl­­idene)benzohydrazide

aCollege of Chemistry and Material Science, South-Central University for Nationalities, Wuhan 430074, People's Republic of China
*Correspondence e-mail: longfei.jin@yahoo.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 7 October 2014; accepted 10 October 2014; online 18 October 2014)

In the title compound, C10H9N3O3S, the five-membered ring adopts a slightly twisted conformation about the Cm—S (m = methyl­ene) bond. The dihedral angle between this ring and the benzene ring is 7.99 (9)°. A bifurcated intra­molecular N—H⋯(O,S) hydrogen bond helps to establish the near planar conformation of the mol­ecule. In the crystal, mol­ecules are linked by N—H⋯O and O—H⋯O hydrogen bonds to generate (001) sheets.

1. Related literature

For background to the biological activities of 4-thia­zolidinone derivatives, see: Singh et al. (1981[Singh, S. P., Parmar, S. S., Raman, K. & Stenberg, V. I. (1981). Chem. Rev. 81, 175-203.]); Verma & Shailendra (2008[Verma, A. & Shailendra, K. (2008). Eur. J. Med. Chem. 43, 897-905.]); Jain et al., (2012[Jain, A. K., Vaidya, A., Ravichandran, V., Kashaw, S. K. & Agrawal, R. K. (2012). Bioorg. Med. Chem. 20, 3378-3395.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C10H9N3O3S

  • Mr = 251.26

  • Monoclinic, C 2/c

  • a = 18.788 (2) Å

  • b = 8.9334 (10) Å

  • c = 12.7969 (14) Å

  • β = 92.667 (2)°

  • V = 2145.6 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 298 K

  • 0.22 × 0.21 × 0.20 mm

2.2. Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.937, Tmax = 0.942

  • 10873 measured reflections

  • 2102 independent reflections

  • 1784 reflections with I > 2σ(I)

  • Rint = 0.032

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.103

  • S = 0.99

  • 2102 reflections

  • 181 parameters

  • 9 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1 0.91 (1) 1.86 (1) 2.6166 (17) 139 (2)
N1—H1A⋯S1 0.91 (1) 2.42 (2) 2.8879 (15) 112 (1)
N3—H3A⋯O3i 0.91 (1) 1.88 (1) 2.7767 (18) 168 (2)
O1—H1⋯O2ii 0.82 (1) 1.83 (1) 2.6538 (16) 177 (2)
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y-{\script{1\over 2}}, -z+1]; (ii) [x, -y+1, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Derivatives of 4-thiazolidinone exhibit prominent biological activites such as antibacterial activity, antifungal activity, antitubercular activity, anticancer activity, antiinflammtory activity, analgesic activity, anticonvulsant activity, antidepressant activity, antiviral/anti-HIV activity, antidiabetic activity, muscarinic receptor 1 agonist, FSH receptor agonist, trypanocidal (anti-epimastigote) activity and antiarrhythmic activity (Jain, et al., 2012; Verma & Shailendra, 2008; Singh et al., 1981). Besides, enough coordinational sites exist in these compounds, lead to a potential to form a supermolecular structure. As part of our ongoing studies, the preparation and X-ray structure determination of the title compound, (I), was undertaken.

In the title molecule (Fig. 1), bond lengths and angles in (I) show normal values. The non-hydrogen atoms of the molecule lie in a plane with an r.m.s deviation of 0.002 Å. An intramolecular tricentered hydrogen bond is observed between the N—H of imino group, O atom of phenolic hydroxyl group and S atom of 4-thiazolidinone group (Fig. 1 and Table 1). The molecules translated one unit cell along the b direction are stacked with N3···O3i, O1···O2ii and and O3···S1iii [symmetry code: (i) 1/2 - x,3/2 - y,1 - z; (ii) x,-y,-1/2 + z; (iii) 1/2 - x,1/2 + y,1/2 - z] distances of 2.7766 (18) Å, 2.6538 (17) Å and 3.1028 (13) Å, respectively, indicating weak C—H···π interactions.

Related literature top

For background to the biological activities of 4-thiazolidinone derivatives, see: Singh et al. (1981); Verma & Shailendra (2008); Jain et al., (2012).

Experimental top

4-Salicyloyl thiosemicarbazide (2.11 g, 0.01 mol), ethyl bromoacetate (1.67 g, 0.01 mol), sodium acetate (3.28 g, 0.04 mol) and 40 ml of ethyl alcohol were added to a round-bottom flask. Stirred for 10 minutes, then the reaction mixture was slowly warmed to boiling and stirred for 10 h. After cooling to room temperature, 40 ml of water were added and staying for 12 h. The resulting precipitate was filtered and recrystallized with ethyl alcohol to give 1.30 g of the title compound. Colourless blocks were grown by slow evaporation from a mixed solution of methanol+N,N-dimethyl formamide (6:1) at room temperature.

Refinement top

All H atoms were placed in calculated positions, with N—H distances of 0.91 Å, O—H distances of 0.82 Å, and C—H distances of 0.97 Å (CH2) and 0.93 Å (benzyl CH). They were included in the refinement in the riding-model approximation, with isotropic displacement parameters set to 1.2Ueq of the carrier atom (1.5Ueq for hydroxyl H atoms).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
Figure 1 The molecular structure of (I), showing 30% probability displacement ellipsoids. Dashed lines indicate hydrogen bonds.

Figure 2 Packing diagram for (I). The hydrogen bonds are indicated by dashed lines.
(Z)-2-Hydroxy-N'-(4-oxo-1,3-thiazolidin-2-ylidene)benzohydrazide top
Crystal data top
C10H9N3O3SF(000) = 1040
Mr = 251.26Dx = 1.556 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4520 reflections
a = 18.788 (2) Åθ = 2.5–28.0°
b = 8.9334 (10) ŵ = 0.30 mm1
c = 12.7969 (14) ÅT = 298 K
β = 92.667 (2)°Block, colorless
V = 2145.6 (4) Å30.22 × 0.21 × 0.20 mm
Z = 8
Data collection top
Bruker SMART CCD
diffractometer
2102 independent reflections
Radiation source: fine-focus sealed tube1784 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
phi and ω scansθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 2223
Tmin = 0.937, Tmax = 0.942k = 1111
10873 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0666P)2 + 0.9019P]
where P = (Fo2 + 2Fc2)/3
2102 reflections(Δ/σ)max = 0.001
181 parametersΔρmax = 0.36 e Å3
9 restraintsΔρmin = 0.30 e Å3
Crystal data top
C10H9N3O3SV = 2145.6 (4) Å3
Mr = 251.26Z = 8
Monoclinic, C2/cMo Kα radiation
a = 18.788 (2) ŵ = 0.30 mm1
b = 8.9334 (10) ÅT = 298 K
c = 12.7969 (14) Å0.22 × 0.21 × 0.20 mm
β = 92.667 (2)°
Data collection top
Bruker SMART CCD
diffractometer
2102 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1784 reflections with I > 2σ(I)
Tmin = 0.937, Tmax = 0.942Rint = 0.032
10873 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0379 restraints
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.36 e Å3
2102 reflectionsΔρmin = 0.30 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.40566 (8)0.54405 (17)0.47258 (12)0.0304 (4)
C20.40845 (9)0.58782 (17)0.57775 (12)0.0318 (4)
C30.43987 (10)0.7222 (2)0.60795 (14)0.0422 (4)
C40.46818 (12)0.8145 (2)0.53512 (17)0.0523 (5)
C50.46518 (12)0.7748 (2)0.43080 (16)0.0538 (5)
C60.43446 (11)0.6417 (2)0.40054 (14)0.0421 (4)
C70.37628 (8)0.39894 (17)0.43052 (12)0.0307 (4)
C80.31830 (9)0.07860 (17)0.55293 (12)0.0302 (4)
C90.27480 (9)0.13806 (17)0.63012 (12)0.0329 (4)
C100.29374 (11)0.0495 (2)0.72704 (13)0.0398 (4)
H10.3791 (12)0.539 (2)0.7078 (9)0.060*
H30.4396 (10)0.749 (2)0.6782 (5)0.048*
H40.4891 (9)0.9032 (12)0.5589 (15)0.048*
H50.4837 (10)0.8367 (17)0.3803 (11)0.048*
H60.4346 (10)0.612 (2)0.3310 (5)0.048*
H1A0.3575 (10)0.329 (2)0.5703 (5)0.048*
H3A0.2773 (10)0.1079 (19)0.4796 (7)0.048*
H10A0.3270 (8)0.1054 (19)0.7719 (12)0.048*
H10B0.2520 (6)0.022 (2)0.7644 (14)0.048*
N10.35652 (8)0.30049 (15)0.50199 (10)0.0338 (3)
N20.32887 (8)0.16107 (15)0.47420 (10)0.0345 (3)
N30.28759 (8)0.06155 (15)0.54179 (10)0.0346 (3)
O10.38054 (7)0.49708 (13)0.65105 (9)0.0441 (3)
O20.37177 (7)0.37081 (13)0.33575 (9)0.0438 (3)
O30.25005 (7)0.26414 (14)0.63173 (9)0.0451 (3)
S10.33730 (3)0.11903 (5)0.68522 (3)0.0514 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0361 (8)0.0267 (8)0.0285 (8)0.0000 (6)0.0016 (6)0.0019 (6)
C20.0403 (9)0.0265 (8)0.0287 (8)0.0018 (6)0.0034 (6)0.0015 (6)
C30.0562 (11)0.0344 (9)0.0359 (9)0.0042 (8)0.0016 (8)0.0053 (7)
C40.0696 (13)0.0344 (10)0.0531 (12)0.0202 (9)0.0038 (10)0.0048 (9)
C50.0753 (14)0.0414 (11)0.0455 (12)0.0211 (10)0.0100 (10)0.0071 (9)
C60.0580 (11)0.0381 (10)0.0305 (9)0.0094 (8)0.0044 (8)0.0037 (7)
C70.0389 (9)0.0290 (8)0.0243 (8)0.0002 (6)0.0026 (6)0.0024 (6)
C80.0409 (9)0.0263 (8)0.0237 (8)0.0013 (6)0.0029 (6)0.0009 (6)
C90.0439 (9)0.0282 (8)0.0269 (8)0.0005 (7)0.0039 (7)0.0023 (6)
C100.0618 (11)0.0324 (9)0.0255 (8)0.0068 (8)0.0053 (7)0.0032 (7)
N10.0555 (9)0.0249 (7)0.0211 (7)0.0082 (6)0.0038 (6)0.0015 (5)
N20.0534 (8)0.0261 (7)0.0239 (7)0.0070 (6)0.0012 (6)0.0002 (5)
N30.0540 (9)0.0267 (7)0.0230 (7)0.0076 (6)0.0014 (6)0.0008 (5)
O10.0770 (9)0.0316 (6)0.0247 (6)0.0106 (6)0.0122 (6)0.0041 (5)
O20.0752 (9)0.0354 (7)0.0207 (6)0.0124 (6)0.0025 (5)0.0010 (5)
O30.0724 (9)0.0313 (7)0.0320 (7)0.0149 (6)0.0060 (6)0.0027 (5)
S10.0938 (4)0.0391 (3)0.0215 (2)0.0258 (2)0.0027 (2)0.00162 (17)
Geometric parameters (Å, º) top
C1—C61.396 (2)C8—N21.271 (2)
C1—C21.400 (2)C8—N31.383 (2)
C1—C71.499 (2)C8—S11.7514 (16)
C2—O11.3630 (19)C9—O31.219 (2)
C2—C31.385 (2)C9—N31.352 (2)
C3—C41.371 (3)C9—C101.500 (2)
C3—H30.930 (2)C10—S11.8064 (18)
C4—C51.380 (3)C10—H10A0.968 (4)
C4—H40.930 (2)C10—H10B0.969 (4)
C5—C61.370 (3)N1—N21.3893 (18)
C5—H50.930 (2)N1—H1A0.909 (2)
C6—H60.930 (2)N3—H3A0.909 (2)
C7—O21.2376 (19)O1—H10.820 (2)
C7—N11.334 (2)O1—H10.820 (2)
C6—C1—C2117.51 (15)N2—C8—S1127.90 (13)
C6—C1—C7116.79 (14)N3—C8—S1110.58 (11)
C2—C1—C7125.68 (14)O3—C9—N3124.33 (15)
O1—C2—C3119.75 (15)O3—C9—C10123.33 (15)
O1—C2—C1119.81 (14)N3—C9—C10112.33 (14)
C3—C2—C1120.45 (15)C9—C10—S1106.74 (11)
C4—C3—C2120.40 (17)C9—C10—H10A109.9 (12)
C4—C3—H3121.5 (13)S1—C10—H10A108.5 (12)
C2—C3—H3118.1 (13)C9—C10—H10B112.0 (12)
C3—C4—C5120.22 (17)S1—C10—H10B109.0 (12)
C3—C4—H4117.6 (13)H10A—C10—H10B110.6 (17)
C5—C4—H4122.2 (13)C7—N1—N2121.89 (13)
C6—C5—C4119.64 (17)C7—N1—H1A118.8 (13)
C6—C5—H5119.1 (13)N2—N1—H1A119.1 (13)
C4—C5—H5121.3 (13)C8—N2—N1112.77 (13)
C5—C6—C1121.79 (17)C9—N3—C8117.45 (13)
C5—C6—H6120.1 (12)C9—N3—H3A117.5 (12)
C1—C6—H6118.0 (12)C8—N3—H3A125.0 (12)
O2—C7—N1121.96 (15)H1—O1—C2111.5 (16)
O2—C7—C1122.33 (14)C2—O1—H1111.5 (16)
N1—C7—C1115.70 (13)C8—S1—C1092.28 (8)
N2—C8—N3121.51 (14)
C6—C1—C2—O1179.46 (16)N3—C9—C10—S17.08 (19)
C7—C1—C2—O12.4 (3)O2—C7—N1—N20.8 (3)
C6—C1—C2—C31.1 (3)C1—C7—N1—N2179.53 (14)
C7—C1—C2—C3177.05 (16)N3—C8—N2—N1176.65 (14)
O1—C2—C3—C4179.98 (18)S1—C8—N2—N12.5 (2)
C1—C2—C3—C40.5 (3)C7—N1—N2—C8174.89 (15)
C2—C3—C4—C50.4 (3)O3—C9—N3—C8177.67 (16)
C3—C4—C5—C60.7 (4)C10—C9—N3—C83.0 (2)
C4—C5—C6—C10.1 (3)N2—C8—N3—C9176.46 (16)
C2—C1—C6—C50.8 (3)S1—C8—N3—C92.81 (19)
C7—C1—C6—C5177.51 (18)C3—C2—O1—H19.9 (17)
C6—C1—C7—O26.1 (2)C1—C2—O1—H1170.6 (17)
C2—C1—C7—O2175.83 (16)N2—C8—S1—C10173.24 (17)
C6—C1—C7—N1172.68 (15)N3—C8—S1—C105.97 (13)
C2—C1—C7—N15.4 (2)C9—C10—S1—C87.23 (14)
O3—C9—C10—S1173.59 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.91 (1)1.86 (1)2.6166 (17)139 (2)
N1—H1A···S10.91 (1)2.42 (2)2.8879 (15)112 (1)
N3—H3A···O3i0.91 (1)1.88 (1)2.7767 (18)168 (2)
O1—H1···O2ii0.82 (1)1.83 (1)2.6538 (16)177 (2)
Symmetry codes: (i) x+1/2, y1/2, z+1; (ii) x, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.909 (2)1.864 (13)2.6166 (17)138.7 (17)
N1—H1A···S10.909 (2)2.424 (15)2.8879 (15)111.7 (13)
N3—H3A···O3i0.909 (2)1.880 (5)2.7767 (18)168.3 (18)
O1—H1···O2ii0.820 (2)1.834 (3)2.6538 (16)177 (2)
Symmetry codes: (i) x+1/2, y1/2, z+1; (ii) x, y+1, z+1/2.
 

Acknowledgements

This work was supported by the Key Project of Natural Science Foundation of Hubei Province, China (grant No. 2008CDA067) and the Students Science and Technology Innovation Funds of South-Central University for Nationalities.

References

First citationBruker (2001). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJain, A. K., Vaidya, A., Ravichandran, V., Kashaw, S. K. & Agrawal, R. K. (2012). Bioorg. Med. Chem. 20, 3378–3395.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, S. P., Parmar, S. S., Raman, K. & Stenberg, V. I. (1981). Chem. Rev. 81, 175–203.  CrossRef CAS Web of Science Google Scholar
First citationVerma, A. & Shailendra, K. (2008). Eur. J. Med. Chem. 43, 897–905.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds