organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 11| November 2014| Pages o1207-o1208

Crystal structure of 2-{[2-(3-phenyl­allyl­­idene)hydrazin-1-yl]thio­carbonyl­sulfanylmeth­yl}pyridinium chloride

aDepartment of Chemistry, Universiti Putra Malaysia, 43400 Serdang, Malaysia, bDepartment of Chemistry, Cape Breton University, Sydney, Nova Scotia, B1P 6L2, Canada, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: kacrouse@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 8 October 2014; accepted 21 October 2014; online 29 October 2014)

In the title salt of an S-substituted di­thio­carbazate, C16H16N3S2+·Cl, the dihedral angles between the almost planar (r.m.s deviation = 0.005 Å) central CN2S2 residue and the terminal pyridinium and phenyl rings are 80.09 (11) and 3.82 (11)°, respectively, indicating the cation has an L-shape; the amine H and thione S atoms are syn. The conformation about each of the imine [1.376 (3) Å] and ethene [1.333 (4) Å] bonds is E. The shortened C—C bond [1.444 (4) Å] linking the double bonds is consistent with conjugation in this part of the mol­ecule. In the crystal, supra­molecular layers with a jagged topology are formed by charged-assisted amine-H⋯Cl and pyridinium-N+—H⋯Cl hydrogen bonds. The layers stack along the a axis with no specific directional inter­actions between them.

1. Related literature

For general background to related Schiff bases formed between S-substituted di­thio­carbaza­tes and cinnamaldehyde, see: Low et al. (2013[Low, M. L., Ravoof, T. B. S. A., Tahir, M. I. M., Crouse, K. A. & Tiekink, E. R. T. (2013). Acta Cryst. E69, o167-o168.]). For the biological activity of similar sulfur/nitro­gen-containing Schiff base derivatives, see: Khoo et al. (2014[Khoo, T.-J., Break, M. K. B., Crouse, K. A., Tahir, M. I. M., Ali, A. M., Cowley, A. R., Watkin, D. J. & Tarafder, M. T. H. (2014). Inorg. Chim. Acta, 413, 68-76.]). For the synthetic procedure, see: Crouse et al. (2004[Crouse, K. A., Chew, K.-B., Tarafder, M. T. H., Kasbollah, A., Ali, A. M., Yamin, B. M. & Fun, H. K. (2004). Polyhedron, 23, 161-168.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C16H16N3S2+·Cl

  • Mr = 349.89

  • Orthorhombic, P n a 21

  • a = 24.2206 (8) Å

  • b = 8.2838 (2) Å

  • c = 8.3206 (4) Å

  • V = 1669.43 (11) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 4.35 mm−1

  • T = 150 K

  • 0.12 × 0.05 × 0.01 mm

2.2. Data collection

  • Agilent Xcaliber Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.80, Tmax = 0.96

  • 5463 measured reflections

  • 2460 independent reflections

  • 2327 reflections with I > 2σ(I)

  • Rint = 0.022

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.078

  • S = 1.04

  • 2460 reflections

  • 205 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.23 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 971 Friedel pairs

  • Absolute structure parameter: −0.009 (16)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯Cl1i 0.88 (2) 2.29 (2) 3.104 (3) 153 (3)
N3—H3N⋯Cl1 0.88 (2) 2.13 (2) 2.9833 (19) 163 (3)
Symmetry code: (i) x, y, z-1.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Synthesis and crystallization top

An equimolar amount of trans-cinnamaldehyde (1.26 ml) was added to a solution of S-2-picolyldi­thio­carbazate hydro­chloride (2.36 g, 0.01 mol), prepared by literature methods (Crouse et al., 2004), dissolved in hot absolute ethanol (100 ml). The mixture was heated while being stirred to reduce it to half the original volume and then cooled. The yellow compound was filtered, washed with absolute ethanol then dried over silica gel. Single crystals of diffraction quality were obtained after recrystallisation from its methano­lic solution. % yield = 90%. M.pt = 465-466 K. HR—MS: m/z = [M—Cl+H]+ Calcd. 314.07802, Found 314.07826. RP-HPLC retention time, RT = 15 min. FT—IR: ν (cm–1) = 3048 (w), 1621 (m), 1033 (m), 978 (s) and 951 (m). UV-Vis in DMSO: λmax nm (log ε) = 360 (4.65), 377 (4.52, sh), 344 (4.53, sh). 1H NMR (300 MHz, DMSO-d6) δ = 13.53 (s, 1H), 8.78 (d, J = 5.2, 1H), 8.37 (t, J = 7.8, 1H), 8.14 (d, J = 9.4, 1H), 7.98 (d, J = 8.0, 1H), 7.86 - 7.78 (m, 1H), 7.66 (d, J = 6.7, 2H), 7.38 (q, J = 6.3, 3H), 7.21 (d, J = 16.0, 1H), 6.97 (dd, J = 16.0, 9.4, 1H), 4.87 (s, 2H); the N-bound H was not observed. 13C NMR (75 MHz, DMSO-d6) δ = 193.66, 153.87, 150.12, 144.22, 142.97, 142.77, 135.54, 129.49, 128.90, 127.53, 126.39, 124.86, 124.04, 34.92. GC—MS (fragmentation pattern) m/z = 313, 187,130, 125, 103, 92, 77, 65, 51.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H = 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation with Uiso(H) = 1.2Ueq(C). The N—H H atoms were refined with N—H = 0.88±0.01 Å, and with Uiso(H) = 1.2Ueq(N).

Related literature top

For general background to related Schiff bases formed between S-substituted dithiocarbazates and cinnamaldehyde, see: Low et al. (2013). For the biological activity of similar sulfur/nitrogen-containing Schiff base derivatives, see: Khoo et al. (2014). For the synthetic procedure, see: Crouse et al. (2004).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
The molecular structure of the title compound showing displacement ellipsoids at the 50% probability level.

A view of the supramolecular layer in the bc plane mediated by charge-assisted N—H···Cl hydrogen bonds (orange dashed lines).
2-{[2-(3-Phenylallylidene)hydrazin-1-yl]thiocarbonylsulfanylmethyl}pyridinium chloride top
Crystal data top
C16H16N3S2+·ClF(000) = 728
Mr = 349.89Dx = 1.392 Mg m3
Orthorhombic, Pna21Cu Kα radiation, λ = 1.54180 Å
Hall symbol: P 2c -2nCell parameters from 3280 reflections
a = 24.2206 (8) Åθ = 4–71°
b = 8.2838 (2) ŵ = 4.35 mm1
c = 8.3206 (4) ÅT = 150 K
V = 1669.43 (11) Å3Plate, yellow
Z = 40.12 × 0.05 × 0.01 mm
Data collection top
Agilent Xcaliber Eos Gemini
diffractometer
2460 independent reflections
Radiation source: fine-focus sealed tube2327 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 16.1952 pixels mm-1θmax = 67.7°, θmin = 3.7°
ω scansh = 2928
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 79
Tmin = 0.80, Tmax = 0.96l = 88
5463 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.078 w = 1/[σ2(Fo2) + (0.0531P)2 + 0.1085P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2460 reflectionsΔρmax = 0.37 e Å3
205 parametersΔρmin = 0.23 e Å3
3 restraintsAbsolute structure: Flack (1983), 971 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.009 (16)
Crystal data top
C16H16N3S2+·ClV = 1669.43 (11) Å3
Mr = 349.89Z = 4
Orthorhombic, Pna21Cu Kα radiation
a = 24.2206 (8) ŵ = 4.35 mm1
b = 8.2838 (2) ÅT = 150 K
c = 8.3206 (4) Å0.12 × 0.05 × 0.01 mm
Data collection top
Agilent Xcaliber Eos Gemini
diffractometer
2460 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2327 reflections with I > 2σ(I)
Tmin = 0.80, Tmax = 0.96Rint = 0.022
5463 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.078Δρmax = 0.37 e Å3
S = 1.04Δρmin = 0.23 e Å3
2460 reflectionsAbsolute structure: Flack (1983), 971 Friedel pairs
205 parametersAbsolute structure parameter: 0.009 (16)
3 restraints
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.63222 (3)0.05537 (7)0.96332 (11)0.03476 (18)
S10.69437 (3)0.37225 (7)0.32589 (10)0.02657 (17)
S20.71117 (3)0.11756 (6)0.58644 (10)0.02635 (17)
N10.65178 (9)0.0817 (2)0.3311 (4)0.0252 (5)
H1N0.6375 (13)0.098 (4)0.235 (2)0.030*
N20.64340 (9)0.0675 (2)0.3995 (3)0.0259 (5)
N30.67390 (9)0.3736 (2)0.8473 (3)0.0268 (5)
H3N0.6674 (12)0.2714 (16)0.869 (4)0.032*
C10.68354 (9)0.1909 (3)0.4053 (4)0.0238 (6)
C20.74713 (11)0.2944 (3)0.6613 (4)0.0297 (7)
H2A0.76790.34420.57170.036*
H2B0.77420.25980.74340.036*
C30.70984 (10)0.4195 (3)0.7339 (4)0.0264 (6)
C40.64075 (12)0.4762 (3)0.9260 (4)0.0306 (7)
H40.61640.43751.00680.037*
C50.64217 (12)0.6385 (3)0.8889 (4)0.0339 (7)
H50.61890.71300.94320.041*
C60.67820 (12)0.6902 (3)0.7709 (4)0.0327 (7)
H60.67980.80140.74350.039*
C70.71189 (12)0.5813 (3)0.6926 (4)0.0301 (7)
H70.73640.61710.61080.036*
C80.60714 (9)0.1556 (3)0.3289 (4)0.0241 (6)
H80.58840.11640.23650.029*
C90.59502 (10)0.3146 (3)0.3905 (4)0.0257 (6)
H90.61410.35020.48370.031*
C100.55839 (10)0.4140 (3)0.3235 (4)0.0272 (6)
H100.54030.37570.22970.033*
C110.54303 (10)0.5752 (3)0.3785 (4)0.0276 (7)
C120.56395 (11)0.6430 (3)0.5201 (4)0.0287 (7)
H120.58930.58310.58340.034*
C130.54828 (11)0.7955 (3)0.5692 (5)0.0346 (7)
H130.56320.84040.66480.042*
C140.51043 (12)0.8835 (3)0.4779 (5)0.0381 (8)
H140.49900.98770.51230.046*
C150.48967 (11)0.8192 (3)0.3381 (5)0.0376 (8)
H150.46410.87930.27550.045*
C160.50597 (11)0.6662 (4)0.2882 (5)0.0365 (8)
H160.49160.62310.19100.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0546 (4)0.0238 (3)0.0258 (4)0.0111 (3)0.0018 (4)0.0001 (3)
S10.0320 (3)0.0197 (3)0.0279 (4)0.0013 (2)0.0003 (3)0.0026 (3)
S20.0362 (3)0.0192 (3)0.0237 (4)0.0015 (2)0.0028 (3)0.0013 (3)
N10.0312 (10)0.0209 (10)0.0235 (15)0.0022 (8)0.0006 (12)0.0007 (10)
N20.0335 (11)0.0199 (10)0.0244 (15)0.0009 (8)0.0008 (11)0.0005 (9)
N30.0347 (10)0.0189 (9)0.0268 (16)0.0051 (8)0.0042 (12)0.0023 (10)
C10.0244 (11)0.0221 (11)0.0250 (18)0.0015 (9)0.0025 (12)0.0017 (11)
C20.0318 (13)0.0256 (13)0.0316 (19)0.0058 (10)0.0097 (14)0.0018 (13)
C30.0304 (13)0.0244 (12)0.0244 (19)0.0081 (10)0.0126 (13)0.0018 (11)
C40.0357 (13)0.0283 (12)0.028 (2)0.0021 (10)0.0020 (14)0.0028 (12)
C50.0392 (14)0.0296 (13)0.033 (2)0.0011 (11)0.0098 (15)0.0069 (13)
C60.0476 (15)0.0196 (12)0.031 (2)0.0055 (11)0.0154 (16)0.0036 (11)
C70.0373 (14)0.0263 (13)0.027 (2)0.0100 (10)0.0094 (14)0.0034 (12)
C80.0251 (10)0.0237 (11)0.0236 (16)0.0030 (9)0.0008 (14)0.0022 (12)
C90.0282 (11)0.0241 (12)0.0247 (17)0.0007 (10)0.0026 (13)0.0017 (11)
C100.0261 (11)0.0264 (12)0.0291 (18)0.0005 (9)0.0006 (14)0.0011 (13)
C110.0240 (11)0.0227 (12)0.036 (2)0.0019 (9)0.0002 (13)0.0032 (11)
C120.0269 (12)0.0258 (12)0.033 (2)0.0008 (10)0.0037 (13)0.0015 (12)
C130.0347 (13)0.0286 (13)0.041 (2)0.0020 (10)0.0072 (16)0.0055 (14)
C140.0352 (14)0.0214 (12)0.058 (3)0.0018 (10)0.0138 (17)0.0036 (14)
C150.0345 (13)0.0272 (13)0.051 (2)0.0053 (10)0.0036 (16)0.0082 (15)
C160.0339 (13)0.0346 (15)0.041 (2)0.0037 (11)0.0025 (15)0.0019 (13)
Geometric parameters (Å, º) top
S1—C11.662 (3)C6—H60.9500
S2—C11.757 (3)C7—H70.9500
S2—C21.815 (3)C8—C91.444 (4)
N1—C11.339 (3)C8—H80.9500
N1—N21.376 (3)C9—C101.333 (4)
N1—H1N0.880 (10)C9—H90.9500
N2—C81.284 (4)C10—C111.460 (3)
N3—C31.339 (4)C10—H100.9500
N3—C41.340 (4)C11—C161.392 (4)
N3—H3N0.880 (10)C11—C121.400 (4)
C2—C31.502 (4)C12—C131.381 (4)
C2—H2A0.9900C12—H120.9500
C2—H2B0.9900C13—C141.396 (5)
C3—C71.384 (4)C13—H130.9500
C4—C51.380 (4)C14—C151.375 (5)
C4—H40.9500C14—H140.9500
C5—C61.381 (4)C15—C161.391 (4)
C5—H50.9500C15—H150.9500
C6—C71.380 (4)C16—H160.9500
C1—S2—C2101.42 (13)C6—C7—H7120.2
C1—N1—N2120.1 (3)C3—C7—H7120.2
C1—N1—H1N123 (2)N2—C8—C9119.7 (3)
N2—N1—H1N117 (2)N2—C8—H8120.2
C8—N2—N1114.9 (3)C9—C8—H8120.2
C3—N3—C4123.6 (2)C10—C9—C8123.4 (3)
C3—N3—H3N122 (2)C10—C9—H9118.3
C4—N3—H3N114 (2)C8—C9—H9118.3
N1—C1—S1121.2 (2)C9—C10—C11127.1 (3)
N1—C1—S2112.4 (2)C9—C10—H10116.4
S1—C1—S2126.41 (16)C11—C10—H10116.4
C3—C2—S2113.99 (18)C16—C11—C12118.1 (3)
C3—C2—H2A108.8C16—C11—C10119.4 (3)
S2—C2—H2A108.8C12—C11—C10122.6 (3)
C3—C2—H2B108.8C13—C12—C11121.1 (3)
S2—C2—H2B108.8C13—C12—H12119.5
H2A—C2—H2B107.6C11—C12—H12119.5
N3—C3—C7118.3 (3)C12—C13—C14119.8 (3)
N3—C3—C2118.5 (2)C12—C13—H13120.1
C7—C3—C2123.2 (3)C14—C13—H13120.1
N3—C4—C5119.6 (3)C15—C14—C13119.9 (2)
N3—C4—H4120.2C15—C14—H14120.1
C5—C4—H4120.2C13—C14—H14120.1
C4—C5—C6118.5 (3)C14—C15—C16120.1 (3)
C4—C5—H5120.8C14—C15—H15119.9
C6—C5—H5120.8C16—C15—H15119.9
C7—C6—C5120.4 (3)C15—C16—C11121.0 (3)
C7—C6—H6119.8C15—C16—H16119.5
C5—C6—H6119.8C11—C16—H16119.5
C6—C7—C3119.6 (3)
C1—N1—N2—C8171.9 (2)C2—C3—C7—C6176.6 (3)
N2—N1—C1—S1179.90 (19)N1—N2—C8—C9180.0 (2)
N2—N1—C1—S21.0 (3)N2—C8—C9—C10179.4 (3)
C2—S2—C1—N1176.37 (19)C8—C9—C10—C11179.2 (3)
C2—S2—C1—S14.5 (2)C9—C10—C11—C16176.5 (3)
C1—S2—C2—C376.9 (2)C9—C10—C11—C123.8 (5)
C4—N3—C3—C71.7 (4)C16—C11—C12—C130.1 (4)
C4—N3—C3—C2176.4 (3)C10—C11—C12—C13179.6 (3)
S2—C2—C3—N352.0 (3)C11—C12—C13—C140.8 (4)
S2—C2—C3—C7129.9 (3)C12—C13—C14—C151.1 (5)
C3—N3—C4—C51.1 (4)C13—C14—C15—C160.5 (5)
N3—C4—C5—C60.1 (4)C14—C15—C16—C110.5 (5)
C4—C5—C6—C70.1 (4)C12—C11—C16—C150.8 (4)
C5—C6—C7—C30.6 (4)C10—C11—C16—C15178.9 (3)
N3—C3—C7—C61.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···Cl1i0.88 (2)2.29 (2)3.104 (3)153 (3)
N3—H3N···Cl10.88 (2)2.13 (2)2.9833 (19)163 (3)
Symmetry code: (i) x, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···Cl1i0.88 (2)2.292 (17)3.104 (3)153 (3)
N3—H3N···Cl10.880 (16)2.13 (2)2.9833 (19)163 (3)
Symmetry code: (i) x, y, z1.
 

Acknowledgements

Support for this project came from Universiti Putra Malaysia (UPM) under their Research University Grant Scheme (RUGS 9174000), the Malaysian Ministry of Science Technology and Innovation (MOSTI 09–02-04–9752EA001) and the Malaysian Fundamental Research Grant Scheme (FRGS 01–13-11–986FR). MLL is grateful for financial support from Erasmus Mundus Maheva and a UPM Graduate Research Fellowship.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCrouse, K. A., Chew, K.-B., Tarafder, M. T. H., Kasbollah, A., Ali, A. M., Yamin, B. M. & Fun, H. K. (2004). Polyhedron, 23, 161–168.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKhoo, T.-J., Break, M. K. B., Crouse, K. A., Tahir, M. I. M., Ali, A. M., Cowley, A. R., Watkin, D. J. & Tarafder, M. T. H. (2014). Inorg. Chim. Acta, 413, 68–76.  Web of Science CSD CrossRef CAS Google Scholar
First citationLow, M. L., Ravoof, T. B. S. A., Tahir, M. I. M., Crouse, K. A. & Tiekink, E. R. T. (2013). Acta Cryst. E69, o167–o168.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 11| November 2014| Pages o1207-o1208
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds