organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 11| November 2014| Pages o1195-o1196

Crystal structure of N-[(E)-(1,3-benzodioxol-5-yl)­methyl­­idene]-4-chloro­aniline

aInstituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, CP 58000, México, and bDepartamento de Química, CINVESTAV-IPN, Apdo. Postal 14-740, 07000 México, D.F., México
*Correspondence e-mail: ylopez@umich.mx

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 15 October 2014; accepted 18 October 2014; online 24 October 2014)

In the title compound, C14H10ClNO2, obtained by the condensation of 4-chloro­aniline and piperonal, the five-membered ring is almost planar (r.m.s. deviation = 0.023 Å) and the dihedral angle between the aromatic rings is 43.22 (14)°. In the crystal, a short O⋯Cl contact of 3.173 (2) Å is observed. The mol­ecules are arranged into corrugated (010) layers.

1. Related literature

Schiff bases have applications in fields, such as organic synthesis (Meyer et al., 2007[Meyer, C. D., Joiner, C. S. & Stoddart, J. F. (2007). Chem. Soc. Rev. 36, 1705-1723.]), catalysis (Itsuno et al., 1990[Itsuno, S., Sakurai, Y., Ito, K., Maruyama, T., Nakahama, S. & Frechet, J. M. J. (1990). J. Org. Chem. 55, 304-310.]), materials science (Sliwa et al., 2008[Sliwa, M., Spangenberg, A., Malfant, I., Lacroix, P. G., Métivier, R., Pansu, R. B. & Nakatani, K. (2008). Chem. Mater. 20, 4062-4068.]), supra­molecular (Sreenivasulu et al., 2012[Sreenivasulu, B. (2012). Supramolecular Chemistry: From Molecules to Nanomaterials, Vol. 8, edited by J. W. Steed and P. A. Gale, pp. 827-862. New York: John Wiley and Sons, Inc.]) and coordination chemistry (Drozdzak et al., 2005[Drozdzak, R., Allaert, B., Ledoux, N., Dragutan, I., Dragutan, V. & Verpoort, F. (2005). Coord. Chem. Rev. 249, 3055-3074.]; MacLachlan et al., 1996[MacLachlan, M. J., Park, M. K. & Thompson, L. K. (1996). Inorg. Chem. 35, 5492-5499.]). They display a broad spectrum of biological (Garavelli et al., 1997[Garavelli, M., Celani, P., Bernardi, F., Robb, M. A. & Olivucci, M. (1997). J. Am. Chem. Soc. 119, 6891-6901.]; Ren et al., 2002[Ren, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem. 45, 410-419.]) and pharmacological properties, such as anti­bacterial, analgesic, anti­pyretic, anti-inflammatory and anti­cancer activities and can act as plant-growth regulators (Prakash et al., 2011[Prakash, A. & Adhikari, D. (2011). Int. J. ChemTech Res. 3, 1891-1896.] and Gaur 2003[Gaur, S. (2003). Asian J. Chem. 15, 250-254.]). For related structures, see: Tahir et al. (2010a[Tahir, M. N., Shad, H. A., Khan, M. N. & Tariq, M. I. (2010a). Acta Cryst. E66, o2672.],b[Tahir, M. N., Shad, H. A., Khan, M. N. & Tariq, R. H. (2010b). Acta Cryst. E66, o3293.]). For further synthetic details, see: Rodríguez et al. (2007[Rodríguez, M., Santillan, R., López, Y., Farfán, N., Barba, V., Nakatani, K., García Baéz, E. V. & Padilla-Martínez, I. I. (2007). Supramol. Chem. 19, 641-653.]); Domínguez et al. (2011[Domínguez, O., Rodríguez-Molina, B., Rodríguez, M., Ariza, A., Farfán, N. & Santillan, R. (2011). New J. Chem. 35, 156-164.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C14H10ClNO2

  • Mr = 259.69

  • Orthorhombic, P c a b

  • a = 6.0014 (4) Å

  • b = 13.9015 (16) Å

  • c = 28.867 (3) Å

  • V = 2408.3 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 293 K

  • 0.19 × 0.10 × 0.08 mm

2.2. Data collection

  • Nonius KappaCCD diffractometer

  • 5318 measured reflections

  • 2377 independent reflections

  • 882 reflections with I > 2σ(I)

  • Rint = 0.079

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.121

  • S = 0.88

  • 2377 reflections

  • 203 parameters

  • All H-atom parameters refined

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: COLLECT (Nonius, 1999[Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: HKL SCALEPACK (Otwinowski & Minor 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: HKL DENZO (Otwinowski & Minor 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Schiff bases are some of the most widely used organic compounds. They are important due to successful applications in several fields, such as organic synthesis (Meyer et al., 2007), catalysis (Itsuno et al., 1990) and materials science (Sliwa, et al., 2008), supramolecular chemistry (Sreenivasulu et al., 2012), coordination chemistry (Drozdzak et al., 2005 and MacLachlan et al., 1996), as well as for the broad spectrum of biological (Garavelli et al., 1997 and Ren et al., 2002) and pharmacological properties, such as antibacterial, analgesic, antipyretic, anti-inflammatory, anticancer, and as plant growth regulators (Prakash et al., 2011 and Gaur 2003).

In previous studies, we have described an X-ray diffraction and spectroscopic study of the ketoenol tautomeric forms of six enaminones prepared from salicylaldehyde and substituted anilines (Rodríguez et al., 2007). In addition we have reported a spectroscopic study of several ortho-hydroxy Schiff bases; the corresponding crystal structures were analyzed to identify their characteristic hydrogen bonding patterns, which was necessary in order to have evidence about the influence (electronic and/or structural) of the substituents on the tautomeric structure from a crystallographic perspective (Domínguez et al., 2011). To continue our studies on Schiff base ligands, we synthesized the title compound (I) obtained by condensation of 4-chloroaniline and piperonal.

The dihedral angle between the two aromatic rings is 43.22 (14)° and the C1—N1—C7—C8 torsion angle is -179.0 (3)° (Table 1). The C4—Cl1 and C7=N1 bond distances are 1.716 (4) Å and 1.260 (4) Å, respectively (Table 1). These values are slightly shorter than the average values reported for Car—Cl C8=N1, 1.283 (5) Å (Tahir et al., 2010a) and for C8=N1, 1.271 (2) Å in related Schiff bases containing the piperonal fragment (Tahir et al., 2010b).

Related literature top

Schiff bases have applications in fields, such as organic synthesis (Meyer et al., 2007), catalysis (Itsuno et al., 1990), materials science (Sliwa et al., 2008), supramolecular (Sreenivasulu et al., 2012) and coordination chemistry (Drozdzak et al., 2005; MacLachlan et al., 1996). They display a broad spectrum of biological (Garavelli et al., 1997; Ren et al., 2002) and pharmacological properties, such as antibacterial, analgesic, antipyretic, anti-inflammatory and anticancer activities and can act as plant-growth regulators (Prakash et al., 2011 and Gaur 2003). For related structures, see: Tahir et al. (2010a,b). For further synthetic details, see: Rodríguez et al. (2007); Domínguez et al. (2011).

Experimental top

A solution of 4-chloroaniline (0.500 g, 3.9 mmol) and piperonal (0.260 g, 3.01 mmol) in methanol (55 mL) was heated under reflux for 3h, with a Dean-Stark apparatus used for the azeotropic removal of water and allowed to cool to room temperature. Removal of solvent affords compound I as a pale yellow solid which was washed with hexane to obtain the product in 36% yield (m.p. 347-349 K). Colourless blocks were grown by slow evaporation from a solvent mixture of methanol:ethyl acetate (1:1). Spectroscopic data for the title compound are given in the archived CIF.

Refinement top

All H atoms were found in difference Fourier maps and refined freely.

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: HKL SCALEPACK (Otwinowski & Minor 1997); data reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor 1997); program(s) used to solve structure: SHELXS97 (Sheldrick 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012).

Figures top
View of (I), with displacement ellipsoids drawn at 30% probability level.
N-[(E)-(1,3-Benzodioxol-5-yl)methylidene]-4-chloroaniline top
Crystal data top
C14H10ClNO2Dx = 1.432 Mg m3
Mr = 259.69Melting point: 347(2) K
Orthorhombic, PcabMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2bc 2acCell parameters from 600 reflections
a = 6.0014 (4) Åθ = 2.9–27.7°
b = 13.9015 (16) ŵ = 0.31 mm1
c = 28.867 (3) ÅT = 293 K
V = 2408.3 (4) Å3Block, colourless
Z = 80.19 × 0.10 × 0.08 mm
F(000) = 1072
Data collection top
Nonius KappaCCD
diffractometer
882 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.079
Graphite monochromatorθmax = 27.7°, θmin = 2.9°
ϕ and ω scansh = 75
5318 measured reflectionsk = 188
2377 independent reflectionsl = 3337
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121All H-atom parameters refined
S = 0.88 w = 1/[σ2(Fo2) + (0.0356P)2]
where P = (Fo2 + 2Fc2)/3
2377 reflections(Δ/σ)max < 0.001
203 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C14H10ClNO2V = 2408.3 (4) Å3
Mr = 259.69Z = 8
Orthorhombic, PcabMo Kα radiation
a = 6.0014 (4) ŵ = 0.31 mm1
b = 13.9015 (16) ÅT = 293 K
c = 28.867 (3) Å0.19 × 0.10 × 0.08 mm
Data collection top
Nonius KappaCCD
diffractometer
882 reflections with I > 2σ(I)
5318 measured reflectionsRint = 0.079
2377 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.121All H-atom parameters refined
S = 0.88Δρmax = 0.14 e Å3
2377 reflectionsΔρmin = 0.14 e Å3
203 parameters
Special details top

Experimental. Spectroscopic data for the title compound: IR(ATR) νmax cm-1: 2894 (CH2), 1600 (C=N), 1270 (C-O-C), 1490 (C=C), 827 (aromatic C-H), 789 (C-Cl) ; MS, (DIP 70 eV) for C14H10ClNO2 m/z: (%): 259([M+],100), 261 ([M+2], 32), 138 (19), 121 (21), 75 (86). 1H NMR (400 MHz, CDCl3) δ: 8.30 (s, 1H, H-7), 7.51 (d, J= 1.6 Hz, 1H, H-9), 7.34 (d, J= 8.8 Hz, 2H,H-5,3), 7.26 (dd, J= 8.0, 1.6 Hz, 1H, H-13), 7.12 (d, J= 8.8 Hz, 2H, H-6,2), 6.88 (d, J= 8.0 Hz, 1H, H-12), 6.04 (s, 2H, H-14).13C NMR (100 MHz, CDCl3)δ: 159.70 (C-7), 150.69 (C-10), 150.44 (C-11), 148.45 (C-8), 131.12 (C-4), 130.87 (C-1), 129.16 (C-5,3), 125.93 (C-13), 122.17 (C-6,2), 108.22 (C-12), 106.77 (C-9), 101.65 (C-14).

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.12362 (17)0.14475 (7)0.07300 (4)0.0934 (5)
O10.5831 (4)0.12741 (17)0.47355 (10)0.0907 (12)
O20.9308 (4)0.07606 (17)0.45147 (10)0.0896 (11)
N10.9505 (4)0.10652 (15)0.27165 (11)0.0565 (10)
C10.9840 (5)0.11197 (19)0.22375 (14)0.0501 (14)
C20.8314 (6)0.0822 (2)0.19112 (17)0.0583 (14)
C30.8719 (6)0.0919 (2)0.14533 (17)0.0630 (14)
C41.0729 (6)0.13107 (19)0.13112 (13)0.0593 (14)
C51.2271 (6)0.1580 (2)0.16245 (17)0.0643 (16)
C61.1841 (5)0.1488 (2)0.20827 (18)0.0593 (14)
C70.7604 (6)0.1239 (2)0.28814 (15)0.0550 (14)
C80.7055 (5)0.12225 (18)0.33637 (13)0.0477 (14)
C90.8629 (6)0.0938 (2)0.36895 (15)0.0570 (14)
C100.8071 (6)0.0976 (2)0.41295 (16)0.0623 (14)
C110.5986 (6)0.1287 (2)0.42683 (15)0.0617 (14)
C120.4405 (6)0.1554 (2)0.39631 (15)0.0613 (14)
C130.4983 (5)0.1521 (2)0.35034 (15)0.0560 (14)
C140.7954 (9)0.0974 (6)0.4903 (2)0.110 (3)
H20.697 (5)0.0546 (18)0.1998 (10)0.066 (10)*
H30.772 (5)0.073 (2)0.1208 (12)0.082 (11)*
H51.351 (4)0.1855 (16)0.1520 (10)0.046 (8)*
H61.279 (5)0.1725 (16)0.2307 (11)0.059 (10)*
H70.649 (4)0.1402 (15)0.2697 (10)0.037 (8)*
H90.994 (4)0.0776 (16)0.3586 (10)0.042 (8)*
H120.296 (5)0.180 (2)0.4049 (11)0.079 (10)*
H130.389 (5)0.1706 (17)0.3261 (11)0.065 (9)*
H140.851 (10)0.150 (3)0.507 (2)0.20 (3)*
H14A0.770 (6)0.042 (2)0.5050 (16)0.115 (19)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1101 (8)0.1037 (8)0.0663 (8)0.0003 (6)0.0110 (7)0.0115 (6)
O10.075 (2)0.132 (2)0.065 (2)0.0176 (14)0.0076 (17)0.0032 (16)
O20.0707 (17)0.147 (2)0.051 (2)0.0218 (14)0.0070 (17)0.0085 (16)
N10.0407 (17)0.0619 (16)0.067 (2)0.0055 (11)0.0016 (15)0.0008 (14)
C10.046 (2)0.0462 (19)0.058 (3)0.0047 (14)0.004 (2)0.0004 (16)
C20.051 (2)0.056 (2)0.068 (3)0.0105 (16)0.004 (2)0.003 (2)
C30.063 (2)0.066 (2)0.060 (3)0.0056 (18)0.010 (2)0.007 (2)
C40.068 (2)0.053 (2)0.057 (3)0.0078 (17)0.001 (2)0.0004 (17)
C50.050 (2)0.065 (2)0.078 (4)0.0065 (17)0.007 (2)0.006 (2)
C60.043 (2)0.068 (2)0.067 (3)0.0002 (17)0.007 (2)0.006 (2)
C70.046 (2)0.052 (2)0.067 (3)0.0027 (15)0.016 (2)0.0053 (18)
C80.043 (2)0.0461 (19)0.054 (3)0.0013 (14)0.0044 (18)0.0058 (16)
C90.040 (2)0.064 (2)0.067 (3)0.0043 (16)0.009 (2)0.0027 (19)
C100.055 (2)0.069 (2)0.063 (3)0.0027 (16)0.001 (2)0.005 (2)
C110.059 (2)0.071 (2)0.055 (3)0.0004 (17)0.007 (2)0.001 (2)
C120.046 (2)0.066 (2)0.072 (3)0.0088 (18)0.003 (2)0.004 (2)
C130.044 (2)0.060 (2)0.064 (3)0.0032 (15)0.005 (2)0.0007 (19)
C140.098 (4)0.169 (7)0.062 (4)0.034 (4)0.003 (3)0.012 (4)
Geometric parameters (Å, º) top
Cl1—C41.716 (4)C8—C131.372 (4)
O1—C111.352 (5)C9—C101.315 (6)
O1—C141.425 (6)C10—C111.383 (5)
O2—C101.370 (5)C11—C121.347 (5)
O2—C141.416 (6)C12—C131.372 (6)
N1—C11.399 (5)C2—H20.93 (3)
N1—C71.260 (4)C3—H30.96 (3)
C1—C21.377 (5)C5—H50.89 (2)
C1—C61.380 (4)C6—H60.92 (3)
C2—C31.351 (7)C7—H70.88 (3)
C3—C41.386 (5)C9—H90.87 (2)
C4—C51.347 (6)C12—H120.97 (3)
C5—C61.354 (7)C13—H130.99 (3)
C7—C81.431 (6)C14—H140.94 (5)
C8—C91.390 (5)C14—H14A0.89 (3)
C11—O1—C14106.3 (3)C11—C12—C13116.4 (3)
C10—O2—C14106.6 (3)C8—C13—C12121.6 (3)
C1—N1—C7119.6 (3)O1—C14—O2107.8 (4)
N1—C1—C2124.3 (3)C1—C2—H2121.2 (18)
N1—C1—C6117.7 (3)C3—C2—H2117.5 (18)
C2—C1—C6118.0 (4)C2—C3—H3125 (2)
C1—C2—C3121.3 (3)C4—C3—H3116 (2)
C2—C3—C4119.1 (4)C4—C5—H5117.8 (19)
Cl1—C4—C3119.2 (3)C6—C5—H5122.1 (19)
Cl1—C4—C5120.3 (3)C1—C6—H6116.3 (19)
C3—C4—C5120.6 (4)C5—C6—H6122.3 (19)
C4—C5—C6119.9 (3)N1—C7—H7120.4 (18)
C1—C6—C5121.2 (4)C8—C7—H7114.6 (18)
N1—C7—C8125.0 (3)C8—C9—H9117.1 (19)
C7—C8—C9120.4 (3)C10—C9—H9124.9 (19)
C7—C8—C13119.3 (3)C11—C12—H12124.3 (19)
C9—C8—C13120.2 (4)C13—C12—H12119.2 (19)
C8—C9—C10118.0 (3)C8—C13—H13118.0 (18)
O2—C10—C9129.6 (3)C12—C13—H13120.4 (18)
O2—C10—C11108.9 (4)O1—C14—H14105 (3)
C9—C10—C11121.5 (4)O1—C14—H14A105 (2)
O1—C11—C10110.3 (3)O2—C14—H14112 (4)
O1—C11—C12127.4 (3)O2—C14—H14A107 (3)
C10—C11—C12122.3 (4)H14—C14—H14A119 (4)
C14—O1—C11—C12177.8 (4)C3—C4—C5—C61.5 (4)
C11—O1—C14—O23.3 (6)C4—C5—C6—C10.1 (4)
C14—O1—C11—C102.2 (5)N1—C7—C8—C94.5 (4)
C14—O2—C10—C111.7 (4)N1—C7—C8—C13173.3 (3)
C14—O2—C10—C9176.9 (4)C13—C8—C9—C100.7 (4)
C10—O2—C14—O13.1 (6)C9—C8—C13—C120.4 (4)
C7—N1—C1—C6142.4 (3)C7—C8—C9—C10177.1 (3)
C7—N1—C1—C238.2 (4)C7—C8—C13—C12177.5 (3)
C1—N1—C7—C8179.0 (3)C8—C9—C10—O2178.4 (3)
C2—C1—C6—C51.8 (4)C8—C9—C10—C110.1 (4)
N1—C1—C6—C5178.8 (3)O2—C10—C11—O10.4 (3)
N1—C1—C2—C3178.2 (3)O2—C10—C11—C12179.7 (3)
C6—C1—C2—C32.5 (4)C9—C10—C11—O1179.1 (3)
C1—C2—C3—C41.2 (4)C9—C10—C11—C121.0 (5)
C2—C3—C4—Cl1179.3 (2)O1—C11—C12—C13178.8 (3)
C2—C3—C4—C50.8 (4)C10—C11—C12—C131.3 (4)
Cl1—C4—C5—C6178.7 (2)C11—C12—C13—C80.6 (4)

Experimental details

Crystal data
Chemical formulaC14H10ClNO2
Mr259.69
Crystal system, space groupOrthorhombic, Pcab
Temperature (K)293
a, b, c (Å)6.0014 (4), 13.9015 (16), 28.867 (3)
V3)2408.3 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.19 × 0.10 × 0.08
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5318, 2377, 882
Rint0.079
(sin θ/λ)max1)0.654
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.121, 0.88
No. of reflections2377
No. of parameters203
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.14, 0.14

Computer programs: COLLECT (Nonius, 1999), HKL SCALEPACK (Otwinowski & Minor 1997), HKL DENZO and SCALEPACK (Otwinowski & Minor 1997), SHELXS97 (Sheldrick 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX publication routines (Farrugia, 2012).

 

Acknowledgements

Financial support from CONACYT (project No. 183980) and CIC–UMSNH is gratefully acknowledged. Furthermore the authors thank CONACYT (project No. 183980) for providing a license to use the Cambridge Structural Database. Special thanks go to Marco A. Leyva-Ramírez (CINVESTAV–IPN) for the data collection.

References

First citationDomínguez, O., Rodríguez-Molina, B., Rodríguez, M., Ariza, A., Farfán, N. & Santillan, R. (2011). New J. Chem. 35, 156–164.  Google Scholar
First citationDrozdzak, R., Allaert, B., Ledoux, N., Dragutan, I., Dragutan, V. & Verpoort, F. (2005). Coord. Chem. Rev. 249, 3055–3074.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGaravelli, M., Celani, P., Bernardi, F., Robb, M. A. & Olivucci, M. (1997). J. Am. Chem. Soc. 119, 6891–6901.  CrossRef CAS Web of Science Google Scholar
First citationGaur, S. (2003). Asian J. Chem. 15, 250–254.  CAS Google Scholar
First citationItsuno, S., Sakurai, Y., Ito, K., Maruyama, T., Nakahama, S. & Frechet, J. M. J. (1990). J. Org. Chem. 55, 304–310.  CrossRef CAS Web of Science Google Scholar
First citationMacLachlan, M. J., Park, M. K. & Thompson, L. K. (1996). Inorg. Chem. 35, 5492–5499.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationMeyer, C. D., Joiner, C. S. & Stoddart, J. F. (2007). Chem. Soc. Rev. 36, 1705–1723.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPrakash, A. & Adhikari, D. (2011). Int. J. ChemTech Res. 3, 1891-1896.  Google Scholar
First citationRen, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem. 45, 410–419.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRodríguez, M., Santillan, R., López, Y., Farfán, N., Barba, V., Nakatani, K., García Baéz, E. V. & Padilla-Martínez, I. I. (2007). Supramol. Chem. 19, 641–653.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSliwa, M., Spangenberg, A., Malfant, I., Lacroix, P. G., Métivier, R., Pansu, R. B. & Nakatani, K. (2008). Chem. Mater. 20, 4062–4068.  Web of Science CSD CrossRef CAS Google Scholar
First citationSreenivasulu, B. (2012). Supramolecular Chemistry: From Molecules to Nanomaterials, Vol. 8, edited by J. W. Steed and P. A. Gale, pp. 827–862. New York: John Wiley and Sons, Inc.  Google Scholar
First citationTahir, M. N., Shad, H. A., Khan, M. N. & Tariq, M. I. (2010a). Acta Cryst. E66, o2672.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTahir, M. N., Shad, H. A., Khan, M. N. & Tariq, R. H. (2010b). Acta Cryst. E66, o3293.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 11| November 2014| Pages o1195-o1196
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds