metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of di­chlorido­bis­­(1,3-diiso­propyl-4,5-di­methyl-2H-imidazole-2-thione-κS)zinc(II)

aDepartment Chemie, Fakultät für Naturwissenschaften, Universität Paderborn, Warburgerstrasse 100, D-33098 Paderborn, Germany
*Correspondence e-mail: ulrich.floerke@upb.de

Edited by E. F. C. Herdtweck, Technischen Universität München, Germany (Received 13 October 2014; accepted 27 October 2014; online 31 October 2014)

The mol­ecular structure of the title compound, [ZnCl2(C11H20N2S)2], shows tetra­hedral Zn coordination from two Cl ligands and two thione groups. The Zn—Cl bond lengths differ sligthly at 2.2310 (10) and 2.2396 (11) Å while the Zn—S bond lengths are equal at 2.3663 (9) and 2.3701 (10) Å. The Cl—Zn—Cl angle is 116.04 (4) and S—Zn—S is 101.98 (3)°. All other angles at the central Zn atom range from 108.108 (3) to 110.21 (4)°. The C—S—Zn angles are 100.75 (10) and 103.68 (11)°, the difference most probably resulting from packing effects, as both the C—S and both the S—Zn bonds are equal in each case. The two imidazole ring planes make a dihedral angle of 67.9 (1)°. The CH3 groups of one isopropyl moiety are disordered over two sets of sites with occupation factors of 0.567 (15) and 0.433 (15). It may be noteworthy that the isomolecular Cu complex shows a different crystal packing (group–subgroup relation) with the Cu atom lying on a twofold rotation axis. In the crystal, the shortest non-bonding contact is a C—H⋯Cl inter­action. This leads to the formation of centrosymmetric dimers that are stacked along the c-axis.

1. Related literature

For the coordination chemistry of imidazoline­thio­nes, see: Raper & Crackett (1981[Raper, E. S. & Crackett, P. H. (1981). Inorg. Chim. Acta, 50, 159-165.]). For related structures, see: Williams et al. (1997[Williams, D. J., Ly, T. A., Mudge, J. W., Pennington, W. T. & Schimek, G. L. (1997). Acta Cryst. C53, 415-416.]). For the structure of the related Cu complex, see: Flörke et al. (2013[Flörke, U., Ahmida, A., Schröder, J., Egold, H. & Henkel, G. (2013). Acta Cryst. E69, m211.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [ZnCl2(C11H20N2S)2]

  • Mr = 560.97

  • Monoclinic, P 21 /c

  • a = 11.997 (3) Å

  • b = 12.885 (3) Å

  • c = 18.217 (4) Å

  • β = 96.856 (4)°

  • V = 2796.0 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.24 mm−1

  • T = 120 K

  • 0.42 × 0.28 × 0.21 mm

2.2. Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.625, Tmax = 0.781

  • 24445 measured reflections

  • 6662 independent reflections

  • 4453 reflections with I > 2σ(I)

  • Rint = 0.145

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.123

  • S = 0.92

  • 6662 reflections

  • 293 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.79 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17A⋯Cl1i 0.98 2.78 3.745 (4) 169
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Related literature top

For the coordination chemistry of imidazolinethiones, see: Raper & Crackett, (1981). For related structures, see: Williams et al. (1997). For the structure of the related Cu complex, see: Flörke et al. (2013).

Experimental top

To a solution of 1,3-diisopropyl-4,5-dimethylimidazoline-2-thione (0.584 mg, 2.75 mmol) in acetonitrile (40 ml) ZnCl2 (0.171 mg, 1.25 mmol) was added and the mixture was stirred at room temperature for 24 h. Afterwards the solvent was removed under vacuum. Colourless crystals were obtained from an acetonitrile solution by diethyl ether diffusion.

Refinement top

Hydrogen atoms were clearly identified in difference syntheses, refined at idealized positions riding on the carbon atoms with C–H 0.98–1.00 Å and with isotropic displacement parameters Uiso(H) = 1.2Ueq(C) or 1.5Ueq(–CH3). All CH3 hydrogen atoms were allowed to rotate but not to tip. The disordered positions (C141/142 and C151/152) of isopropyl moiety at C13 were refined with site occupation factors 0.57 (1) and 0.43 (1), respectively and DFIX 1.50 0.01 restraints. Anistropic refinement of these disordered parts resulted in poor convergence, so eventually isotropic refinement was used.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
Figure 1. Molecular structure of the title compound with anisotropic displacement parameters drawn at the 50% probability level. Both orientations of disordered isopropyl group at C13 shown.
Dichloridobis(1,3-diisopropyl-4,5-dimethyl-2H-imidazole-2-thione-κS)zinc(II) top
Crystal data top
[ZnCl2(C11H20N2S)2]F(000) = 1184
Mr = 560.97Dx = 1.333 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.997 (3) ÅCell parameters from 4648 reflections
b = 12.885 (3) Åθ = 2.3–27.8°
c = 18.217 (4) ŵ = 1.24 mm1
β = 96.856 (4)°T = 120 K
V = 2796.0 (10) Å3Prism, colourless
Z = 40.42 × 0.28 × 0.21 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
6662 independent reflections
Radiation source: sealed tube4453 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.145
ϕ and ω scansθmax = 27.9°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1515
Tmin = 0.625, Tmax = 0.781k = 1516
24445 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: difference Fourier map
wR(F2) = 0.123H-atom parameters constrained
S = 0.92 w = 1/[σ2(Fo2) + (0.045P)2]
where P = (Fo2 + 2Fc2)/3
6662 reflections(Δ/σ)max = 0.001
293 parametersΔρmax = 0.70 e Å3
4 restraintsΔρmin = 0.79 e Å3
Crystal data top
[ZnCl2(C11H20N2S)2]V = 2796.0 (10) Å3
Mr = 560.97Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.997 (3) ŵ = 1.24 mm1
b = 12.885 (3) ÅT = 120 K
c = 18.217 (4) Å0.42 × 0.28 × 0.21 mm
β = 96.856 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
6662 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
4453 reflections with I > 2σ(I)
Tmin = 0.625, Tmax = 0.781Rint = 0.145
24445 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0564 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 0.92Δρmax = 0.70 e Å3
6662 reflectionsΔρmin = 0.79 e Å3
293 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.29403 (3)0.79662 (4)0.317723 (19)0.02952 (12)
Cl10.26708 (7)0.64598 (7)0.37435 (5)0.0406 (2)
Cl20.23632 (7)0.80239 (9)0.19670 (5)0.0456 (2)
S10.21273 (6)0.93464 (7)0.37853 (4)0.0310 (2)
S20.48780 (6)0.83757 (8)0.33891 (5)0.0366 (2)
N10.0161 (2)0.8553 (2)0.41595 (14)0.0289 (6)
N20.00427 (19)0.9400 (2)0.31213 (14)0.0315 (6)
N30.5885 (2)0.6531 (2)0.38121 (14)0.0325 (6)
N40.5360 (2)0.7405 (2)0.47290 (14)0.0270 (6)
C10.0716 (2)0.9057 (3)0.36739 (17)0.0285 (7)
C20.0744 (3)0.8058 (3)0.48328 (17)0.0326 (7)
H2A0.15580.80340.47640.039*
C30.0380 (3)0.6944 (4)0.4921 (2)0.0551 (11)
H3A0.03870.65760.44510.083*
H3B0.03800.69320.50670.083*
H3C0.08990.66040.53040.083*
C40.0658 (4)0.8715 (4)0.5502 (2)0.0599 (12)
H4A0.09760.94030.54280.090*
H4B0.10760.83860.59360.090*
H4C0.01320.87870.55810.090*
C50.0980 (3)0.8623 (3)0.39265 (18)0.0355 (8)
C60.1870 (3)0.8242 (4)0.4368 (2)0.0526 (11)
H6A0.26060.84780.41390.079*
H6B0.17290.85150.48730.079*
H6C0.18570.74810.43830.079*
C70.1115 (2)0.9152 (3)0.32884 (18)0.0359 (8)
C80.2172 (3)0.9469 (4)0.2828 (2)0.0594 (13)
H8A0.28140.93270.30990.089*
H8B0.22530.90760.23650.089*
H8C0.21431.02130.27200.089*
C90.0265 (3)0.9976 (3)0.24718 (17)0.0384 (8)
H9A0.10940.98910.24770.046*
C100.0265 (3)0.9506 (4)0.17534 (19)0.0501 (10)
H10A0.01980.87480.17800.075*
H10B0.01190.97650.13450.075*
H10C0.10600.96990.16700.075*
C110.0057 (3)1.1130 (3)0.2544 (2)0.0453 (9)
H11A0.05281.13990.29790.068*
H11B0.07351.12480.26000.068*
H11C0.02451.14880.21000.068*
C120.5355 (2)0.7400 (3)0.39916 (17)0.0294 (7)
C130.6001 (3)0.6225 (4)0.3046 (2)0.0556 (11)
H13B0.56850.68390.27570.067*0.567 (15)
H13A0.63630.55410.31810.067*0.433 (15)
C1410.6930 (8)0.6679 (10)0.2705 (5)0.046 (3)*0.433 (15)
H14A0.76140.66600.30580.069*0.433 (15)
H14B0.67500.74000.25670.069*0.433 (15)
H14C0.70480.62810.22630.069*0.433 (15)
C1510.4967 (7)0.5821 (10)0.2609 (5)0.042 (3)*0.433 (15)
H15A0.51680.54590.21700.062*0.433 (15)
H15B0.44630.64000.24560.062*0.433 (15)
H15C0.45890.53370.29120.062*0.433 (15)
C1420.7155 (5)0.6212 (8)0.2885 (5)0.048 (2)*0.567 (15)
H14D0.71720.60750.23570.072*0.567 (15)
H14E0.75690.56660.31760.072*0.567 (15)
H14F0.75040.68860.30120.072*0.567 (15)
C1520.5241 (7)0.5399 (7)0.2770 (5)0.050 (2)*0.567 (15)
H15D0.51940.53710.22300.075*0.567 (15)
H15E0.44940.55340.29160.075*0.567 (15)
H15F0.55220.47350.29790.075*0.567 (15)
C160.6241 (3)0.5981 (3)0.44529 (18)0.0350 (8)
C170.6908 (3)0.5006 (3)0.4470 (2)0.0544 (11)
H17A0.69780.47110.49690.082*
H17B0.76570.51580.43330.082*
H17C0.65290.45070.41180.082*
C180.5917 (3)0.6525 (3)0.50254 (17)0.0332 (7)
C190.6127 (3)0.6276 (3)0.58272 (19)0.0514 (10)
H19A0.64710.55870.58920.077*
H19B0.54140.62810.60400.077*
H19C0.66340.67950.60780.077*
C200.4861 (3)0.8245 (3)0.51226 (18)0.0331 (8)
H20A0.44700.87070.47320.040*
C210.3971 (3)0.7878 (3)0.5579 (2)0.0493 (10)
H21A0.34770.73820.52920.074*
H21B0.35290.84730.57140.074*
H21C0.43280.75410.60290.074*
C220.5759 (3)0.8906 (3)0.5550 (2)0.0528 (10)
H22A0.62460.92010.52090.079*
H22B0.62080.84760.59180.079*
H22C0.54040.94680.58000.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02328 (18)0.0371 (2)0.0277 (2)0.00150 (16)0.00112 (13)0.00080 (16)
Cl10.0410 (5)0.0368 (5)0.0433 (5)0.0021 (4)0.0020 (4)0.0043 (4)
Cl20.0409 (5)0.0676 (7)0.0273 (4)0.0026 (5)0.0007 (3)0.0028 (4)
S10.0214 (3)0.0376 (5)0.0335 (4)0.0007 (3)0.0004 (3)0.0028 (4)
S20.0231 (4)0.0480 (6)0.0378 (5)0.0003 (4)0.0005 (3)0.0150 (4)
N10.0253 (13)0.0339 (16)0.0271 (14)0.0022 (11)0.0011 (10)0.0013 (12)
N20.0238 (12)0.0441 (18)0.0259 (14)0.0012 (12)0.0001 (10)0.0036 (12)
N30.0281 (13)0.0398 (17)0.0295 (14)0.0035 (13)0.0032 (11)0.0042 (13)
N40.0253 (12)0.0271 (15)0.0282 (14)0.0002 (11)0.0014 (10)0.0008 (11)
C10.0226 (14)0.0326 (19)0.0300 (16)0.0007 (13)0.0015 (12)0.0043 (14)
C20.0346 (17)0.034 (2)0.0284 (17)0.0034 (15)0.0008 (13)0.0031 (14)
C30.057 (2)0.055 (3)0.056 (3)0.000 (2)0.0156 (19)0.011 (2)
C40.072 (3)0.074 (3)0.030 (2)0.023 (3)0.0079 (18)0.007 (2)
C50.0244 (15)0.048 (2)0.0338 (18)0.0043 (15)0.0020 (13)0.0031 (16)
C60.0323 (18)0.081 (3)0.044 (2)0.013 (2)0.0056 (16)0.008 (2)
C70.0209 (14)0.052 (2)0.0347 (18)0.0015 (15)0.0023 (12)0.0012 (16)
C80.0251 (17)0.101 (4)0.050 (2)0.002 (2)0.0043 (15)0.019 (2)
C90.0299 (16)0.055 (2)0.0307 (18)0.0066 (16)0.0053 (13)0.0067 (16)
C100.050 (2)0.068 (3)0.0319 (19)0.015 (2)0.0039 (16)0.0012 (19)
C110.0398 (19)0.051 (3)0.046 (2)0.0043 (18)0.0077 (16)0.0076 (18)
C120.0173 (13)0.040 (2)0.0304 (17)0.0025 (13)0.0013 (12)0.0023 (14)
C130.051 (2)0.082 (3)0.035 (2)0.010 (2)0.0099 (17)0.012 (2)
C160.0383 (17)0.032 (2)0.0343 (18)0.0013 (15)0.0028 (14)0.0002 (15)
C170.072 (3)0.046 (3)0.046 (2)0.015 (2)0.010 (2)0.0025 (19)
C180.0329 (16)0.036 (2)0.0299 (17)0.0015 (15)0.0011 (13)0.0017 (15)
C190.068 (3)0.052 (3)0.033 (2)0.014 (2)0.0027 (18)0.0075 (18)
C200.0338 (17)0.031 (2)0.0345 (18)0.0015 (14)0.0045 (13)0.0019 (14)
C210.042 (2)0.052 (3)0.057 (2)0.0034 (19)0.0199 (18)0.008 (2)
C220.046 (2)0.047 (3)0.066 (3)0.0073 (19)0.0091 (19)0.017 (2)
Geometric parameters (Å, º) top
Zn1—Cl22.2319 (10)C10—H10C0.9800
Zn1—Cl12.2396 (10)C11—H11A0.9800
Zn1—S12.3663 (9)C11—H11B0.9800
Zn1—S22.3701 (10)C11—H11C0.9800
S1—C11.722 (3)C13—C1521.451 (7)
S2—C121.722 (3)C13—C1411.461 (7)
N1—C11.337 (4)C13—C1421.449 (6)
N1—C51.388 (4)C13—C1511.486 (7)
N1—C21.482 (4)C13—H13B1.0000
N2—C11.349 (4)C13—H13A0.9999
N2—C71.394 (4)C141—H14A0.9800
N2—C91.480 (4)C141—H14B0.9800
N3—C121.347 (4)C141—H14C0.9800
N3—C161.388 (4)C151—H15A0.9800
N3—C131.473 (4)C151—H15B0.9800
N4—C121.343 (4)C151—H15C0.9800
N4—C181.392 (4)C142—H14D0.9800
N4—C201.466 (4)C142—H14E0.9800
C2—C41.498 (5)C142—H14F0.9800
C2—C31.514 (6)C152—H15D0.9800
C2—H2A1.0000C152—H15E0.9800
C3—H3A0.9800C152—H15F0.9800
C3—H3B0.9800C16—C181.351 (5)
C3—H3C0.9800C16—C171.488 (5)
C4—H4A0.9800C17—H17A0.9800
C4—H4B0.9800C17—H17B0.9800
C4—H4C0.9800C17—H17C0.9800
C5—C71.341 (5)C18—C191.488 (5)
C5—C61.494 (5)C19—H19A0.9800
C6—H6A0.9800C19—H19B0.9800
C6—H6B0.9800C19—H19C0.9800
C6—H6C0.9800C20—C211.506 (5)
C7—C81.491 (4)C20—C221.513 (5)
C8—H8A0.9800C20—H20A1.0000
C8—H8B0.9800C21—H21A0.9800
C8—H8C0.9800C21—H21B0.9800
C9—C101.512 (5)C21—H21C0.9800
C9—C111.516 (6)C22—H22A0.9800
C9—H9A1.0000C22—H22B0.9800
C10—H10A0.9800C22—H22C0.9800
C10—H10B0.9800
Cl2—Zn1—Cl1116.04 (4)N3—C12—S2125.7 (2)
Cl2—Zn1—S1109.93 (4)C152—C13—C141128.8 (5)
Cl1—Zn1—S1110.21 (4)C152—C13—C142119.8 (6)
Cl2—Zn1—S2109.64 (3)C141—C13—C14228.7 (4)
Cl1—Zn1—S2108.10 (3)C152—C13—N3113.4 (4)
S1—Zn1—S2101.98 (3)C141—C13—N3117.3 (5)
C1—S1—Zn1103.68 (11)C142—C13—N3113.3 (4)
C12—S2—Zn1100.75 (10)C152—C13—C15126.9 (4)
C1—N1—C5108.5 (3)C141—C13—C151122.9 (7)
C1—N1—C2122.3 (2)C142—C13—C151130.1 (5)
C5—N1—C2129.2 (3)N3—C13—C151115.8 (4)
C1—N2—C7108.7 (3)C152—C13—H13B102.4
C1—N2—C9123.4 (2)C141—C13—H13B73.8
C7—N2—C9127.9 (3)C142—C13—H13B102.4
C12—N3—C16109.0 (3)N3—C13—H13B102.4
C12—N3—C13123.6 (3)C151—C13—H13B75.8
C16—N3—C13127.3 (3)C152—C13—H13A71.1
C12—N4—C18109.2 (3)C141—C13—H13A97.3
C12—N4—C20122.7 (3)C142—C13—H13A69.1
C18—N4—C20128.1 (3)N3—C13—H13A95.2
N1—C1—N2108.0 (2)C151—C13—H13A97.7
N1—C1—S1126.0 (2)H13B—C13—H13A162.4
N2—C1—S1125.7 (2)C13—C141—H14A109.5
N1—C2—C4111.0 (3)C13—C141—H14B109.5
N1—C2—C3112.5 (3)C13—C141—H14C109.5
C4—C2—C3113.6 (3)C13—C151—H15A109.5
N1—C2—H2A106.4C13—C151—H15B109.5
C4—C2—H2A106.4C13—C151—H15C109.5
C3—C2—H2A106.4C13—C142—H13A40.5
C2—C3—H3A109.5C13—C142—H14D109.5
C2—C3—H3B109.5C13—C142—H14E109.5
H3A—C3—H3B109.5H14D—C142—H14E109.5
C2—C3—H3C109.5C13—C142—H14F109.5
H3A—C3—H3C109.5H14D—C142—H14F109.5
H3B—C3—H3C109.5H14E—C142—H14F109.5
C2—C4—H4A109.5C13—C152—H13A40.0
C2—C4—H4B109.5C13—C152—H15D109.5
H4A—C4—H4B109.5C13—C152—H15E109.5
C2—C4—H4C109.5H15D—C152—H15E109.5
H4A—C4—H4C109.5C13—C152—H15F109.5
H4B—C4—H4C109.5H15D—C152—H15F109.5
C7—C5—N1108.1 (3)H15E—C152—H15F109.5
C7—C5—C6127.9 (3)C18—C16—N3107.3 (3)
N1—C5—C6123.8 (3)C18—C16—C17128.7 (3)
C5—C6—H6A109.5N3—C16—C17123.9 (3)
C5—C6—H6B109.5C16—C17—H17A109.5
H6A—C6—H6B109.5C16—C17—H17B109.5
C5—C6—H6C109.5H17A—C17—H17B109.5
H6A—C6—H6C109.5C16—C17—H17C109.5
H6B—C6—H6C109.5H17A—C17—H17C109.5
C5—C7—N2106.7 (3)H17B—C17—H17C109.5
C5—C7—C8129.3 (3)C16—C18—N4107.0 (3)
N2—C7—C8124.0 (3)C16—C18—C19128.0 (3)
C7—C8—H8A109.5N4—C18—C19125.0 (3)
C7—C8—H8B109.5C18—C19—H19A109.5
H8A—C8—H8B109.5C18—C19—H19B109.5
C7—C8—H8C109.5H19A—C19—H19B109.5
H8A—C8—H8C109.5C18—C19—H19C109.5
H8B—C8—H8C109.5H19A—C19—H19C109.5
N2—C9—C10111.8 (3)H19B—C19—H19C109.5
N2—C9—C11111.3 (3)N4—C20—C21113.3 (3)
C10—C9—C11114.3 (3)N4—C20—C22111.1 (3)
N2—C9—H9A106.3C21—C20—C22113.6 (3)
C10—C9—H9A106.3N4—C20—H20A106.0
C11—C9—H9A106.3C21—C20—H20A106.0
C9—C10—H10A109.5C22—C20—H20A106.0
C9—C10—H10B109.5C20—C21—H21A109.5
H10A—C10—H10B109.5C20—C21—H21B109.5
C9—C10—H10C109.5H21A—C21—H21B109.5
H10A—C10—H10C109.5C20—C21—H21C109.5
H10B—C10—H10C109.5H21A—C21—H21C109.5
C9—C11—H11A109.5H21B—C21—H21C109.5
C9—C11—H11B109.5C20—C22—H22A109.5
H11A—C11—H11B109.5C20—C22—H22B109.5
C9—C11—H11C109.5H22A—C22—H22B109.5
H11A—C11—H11C109.5C20—C22—H22C109.5
H11B—C11—H11C109.5H22A—C22—H22C109.5
N4—C12—N3107.5 (3)H22B—C22—H22C109.5
N4—C12—S2126.6 (3)
Cl2—Zn1—S1—C165.79 (12)C7—N2—C9—C1175.6 (4)
Cl1—Zn1—S1—C163.33 (12)C18—N4—C12—N30.7 (3)
S2—Zn1—S1—C1177.95 (11)C20—N4—C12—N3179.5 (3)
Cl2—Zn1—S2—C12133.06 (12)C18—N4—C12—S2173.9 (2)
Cl1—Zn1—S2—C125.69 (12)C20—N4—C12—S24.9 (4)
S1—Zn1—S2—C12110.47 (12)C16—N3—C12—N40.6 (3)
C5—N1—C1—N22.9 (4)C13—N3—C12—N4176.9 (3)
C2—N1—C1—N2179.0 (3)C16—N3—C12—S2174.1 (2)
C5—N1—C1—S1170.2 (3)C13—N3—C12—S28.4 (4)
C2—N1—C1—S17.9 (5)Zn1—S2—C12—N485.6 (3)
C7—N2—C1—N13.4 (4)Zn1—S2—C12—N3100.7 (3)
C9—N2—C1—N1178.7 (3)C12—N3—C13—C152103.5 (6)
C7—N2—C1—S1169.8 (3)C16—N3—C13—C15273.6 (7)
C9—N2—C1—S18.1 (5)C12—N3—C13—C14184.0 (8)
Zn1—S1—C1—N195.2 (3)C16—N3—C13—C14199.0 (8)
Zn1—S1—C1—N292.8 (3)C12—N3—C13—C142115.5 (6)
C1—N1—C2—C4101.7 (4)C16—N3—C13—C14267.4 (7)
C5—N1—C2—C476.0 (5)C12—N3—C13—C15174.0 (8)
C1—N1—C2—C3129.7 (3)C16—N3—C13—C151103.1 (7)
C5—N1—C2—C352.6 (5)C12—N3—C16—C180.2 (4)
C1—N1—C5—C71.3 (4)C13—N3—C16—C18177.2 (3)
C2—N1—C5—C7179.3 (3)C12—N3—C16—C17176.8 (3)
C1—N1—C5—C6173.8 (4)C13—N3—C16—C175.9 (5)
C2—N1—C5—C64.2 (6)N3—C16—C18—N40.2 (4)
N1—C5—C7—N20.8 (4)C17—C16—C18—N4177.0 (3)
C6—C5—C7—N2175.6 (4)N3—C16—C18—C19178.1 (3)
N1—C5—C7—C8177.6 (4)C17—C16—C18—C191.4 (6)
C6—C5—C7—C82.8 (7)C12—N4—C18—C160.6 (4)
C1—N2—C7—C52.6 (4)C20—N4—C18—C16179.2 (3)
C9—N2—C7—C5179.6 (3)C12—N4—C18—C19177.8 (3)
C1—N2—C7—C8175.9 (4)C20—N4—C18—C190.8 (5)
C9—N2—C7—C81.9 (6)C12—N4—C20—C21122.8 (3)
C1—N2—C9—C10128.9 (3)C18—N4—C20—C2158.7 (4)
C7—N2—C9—C1053.6 (5)C12—N4—C20—C22107.9 (3)
C1—N2—C9—C11101.9 (4)C18—N4—C20—C2270.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17A···Cl1i0.982.783.745 (4)169
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17A···Cl1i0.982.783.745 (4)169
Symmetry code: (i) x+1, y+1, z+1.
 

References

First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlörke, U., Ahmida, A., Schröder, J., Egold, H. & Henkel, G. (2013). Acta Cryst. E69, m211.  CSD CrossRef IUCr Journals Google Scholar
First citationRaper, E. S. & Crackett, P. H. (1981). Inorg. Chim. Acta, 50, 159–165.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilliams, D. J., Ly, T. A., Mudge, J. W., Pennington, W. T. & Schimek, G. L. (1997). Acta Cryst. C53, 415–416.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds