organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 11| November 2014| Pages o1158-o1159

Crystal structure of (2E)-1-(4-hy­dr­oxy-3-meth­­oxy­phen­yl)-3-(4-hy­dr­oxy­phen­yl)prop-2-en-1-one

aPG and Research Department of Physics, Queen Mary's College, Chennai-4, Tamilnadu, India, and bDepartment of Chemistry, Madras Christian College, Chennai-59, India
*Correspondence e-mail: guqmc@yahoo.com

Edited by A. J. Lough, University of Toronto, Canada (Received 11 July 2014; accepted 6 October 2014; online 15 October 2014)

In the title moleclue, C16H14O4, the dihedral angle between the benzene rings is 16.1 (3)°. The meth­oxy group is essentially coplanar with the benzene ring to which it is attached, with a C—O—C C torsion angle of 5.5 (9)°. In the crystal, mol­ecules are linked by O—H⋯O and bifurcated O—H⋯(O,O) hydrogen bonds, forming a three-dimensional network. The structure was refined as a two-component inversion twin.

1. Related literature

For the biological activity of chalcones, see: Prasad et al. (2008[Prasad, Y. R., Rao, A. L. & Rambabu, R. (2008). Eur. J. Chem. 5, 461-466.]); Won et al. (2005[Won, S. J., Liu, C. T., Tsao, L. T., Weng, J. R., Ko, H. H., Wang, J. P. & Lin, C. N. (2005). Eur. J. Med. Chem. 40, 103-112.]); Yu et al. (1982[Yu, D. C., Panfilova, L. V. & Boreko, E. I. (1982). Pharm. Chem. 16, 103-105.]); Ram et al. (2000[Ram, V. J., Saxena, A., Srivastava, S. & Chandra, S. (2000). Bioinorg. Chem. Appl. 10, 2159-2161.]); Khatib et al. (2005[Khatib, S., Nerya, O., Musa, R., Shmuel, M., Tamir, S. & Vaya, J. (2005). Bioorg. Med. Chem. 13, 433-441.]); Papo & Shai (2003[Papo, N. & Shai, Y. (2003). Peptides, 24, 1693-1703.]). For related structures, see: Jasinski et al. (2011[Jasinski, J. P., Butcher, R. J., Musthafa Khaleel, V., Sarojini, B. K. & Yathirajan, H. S. (2011). Acta Cryst. E67, o845.]); Sathya et al. (2014[Sathya, S., Reuben Jonathan, D., Prathebha, K., Usha, G. & Jovita, J. (2014). Acta Cryst. E70, o593-o594.]). For the synthesis, see: Sidharthan et al. (2012[Sidharthan, J., Reuben Jonathan, D. & Amaladhas, P. T. (2012). Int. J. Chem. 4, 241-250.]); Chitra et al. (2013[Chitra, M., Reuben Jonathan, D., Rajan, Y. C. & Duraipandian, V. (2013). J. Chem. Pharm. Res. 5, 73-81.]); Jasmine Francis et al. (2014[Jasmine Francis, S.., Roopsingh, D. & Reuben Jonathan, D. (2014). J. Chem. Pharm. Res. 6, 1155-1160.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C16H14O4

  • Mr = 270.27

  • Orthorhombic, P n a 21

  • a = 7.686 (16) Å

  • b = 28.346 (7) Å

  • c = 6.297 (12) Å

  • V = 1371.9 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.35 × 0.30 × 0.25 mm

2.2. Data collection

  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.968, Tmax = 0.977

  • 6436 measured reflections

  • 2996 independent reflections

  • 1928 reflections with I > 2σ(I)

  • Rint = 0.055

  • Standard reflections: ?

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.077

  • wR(F2) = 0.244

  • S = 1.07

  • 2996 reflections

  • 186 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.30 e Å−3

  • Absolute structure: refined as an inversion twin (1113 Friedel pairs)

  • Absolute structure parameter: −2 (4)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O3i 0.82 2.59 3.060 (6) 118
O2—H2A⋯O4i 0.82 2.02 2.833 (7) 172
O3—H3A⋯O1ii 0.82 1.87 2.618 (7) 151
Symmetry codes: (i) [-x-{\script{1\over 2}}, y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+1].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Chalcones constitute an important group of natural products due to their unforeseen pharmacological potential. Chemically, they consist of open chain flavanoids in which the two aromatic rings are joined by a three carbon alpha, beta unsaturated carbonyl system. The presence of a reactive alpha, beta unsaturated keto group in chalcones is mainly responsible for their antimicrobial activity (Prasad et al., 2008). In recent years a variety of chalcones have been reviewed for their cytotoxic, anticancer chemopreventive and mutagenic as well as antiviral, insecticidal and enzyme inhibitory properties (Won et al., 2005; Yu et al., 1982). A number of chalcones having hydroxy, alkoxy groups in different position have been reported to possess vasodilatory (Ram et al., 2000), antimitotic (Khatib et al., 2005), antimalarial activities (Papo et al., 2003). The enormous research potentials of these group of compounds motivated us to synthesize the title compound.

The molecular structure of the title compound is shown in Fig. 1. The bond lengths are comparable to literature values (Sathya et al., 2014; Jasinski et al., 2011). The C10—C9—C8 and C8—C7—C4 angles are slightly distorted compared to the values expected in terms of hybridization principles and this may be due to intra- and intermolecular steric interactions. In the crystal, molecules are linked by O—H···O and bifurcated O—H···(O,O) hydrogen bonds forming a three-dimensional network (Fig. 2 and Table 1).

Related literature top

For the biological activity of chalcones, see: Prasad et al. (2008); Won et al. (2005); Yu et al. (1982); Ram et al. (2000); Khatib et al. (2005); Papo & Shai (2003). For related structures, see: Jasinski et al. (2011); Sathya et al. (2014). For the synthesis, see: Sidharthan et al. (2012); Chitra et al. (2013); Jasmin Francis et al. (2014).

Experimental top

This acid catalyzed Claisen–Schmidt reaction and the procedure (Sidharthan et al., 2012, Chitra et al., 2013, Jasmine Francis et al.,2014) adopted in the synthesis of the typical chalcone diol namely (2E)-1-(4-hydroxy-3- methoxyphenyl)-3-(4-hydroxyphenyl)prop-2-en-1-one is represented herein. Dry HCl gas was passed through a well cooled and stirred solution of 4-hydroxy-methoxyacetophenone (0.03 mol) and 4-hydroxybenzaldehyde (0.03 mol) in 125 mL of dry ethanol taken in a 250 mL round-bottomed flask for about one hour. Wine red coloured solution was formed to which ice cold water was added. The yellow coloured crystals of (2E)-1-(4-hydroxy-3-methoxyphenyl)-3- (4-hydroxyphenyl)prop-2-en-1-one which got separated was washed with double distilled water and re-crystallized from hot ethanol.

Refinement top

H atoms were positioned geometrically and treated as riding on their parent atoms, with C—H distances of 0.93–0.96 Å, O—H distances of 0.82 Å with Uiso(H) = 1.5 Ueq(Cmethyl) and Uiso(H) = 1.2Ueq(C) for other H atoms. The standard uncertainties on the a and c axes are larger than normal and are indicative of those determined from a poor quality crystal.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008).

Figures top
Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.

Fig. 2. Part of the crystal structure with dashed lines indicating hydrogen bonds.
(2E)-1-(4-Hydroxy-3-methoxyphenyl)-3-(4-hydroxyphenyl)prop-2-en-1-one top
Crystal data top
C16H14O4Dx = 1.309 Mg m3
Mr = 270.27Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 2996 reflections
a = 7.686 (16) Åθ = 1.4–28.6°
b = 28.346 (7) ŵ = 0.09 mm1
c = 6.297 (12) ÅT = 293 K
V = 1371.9 (5) Å3Block, yellow
Z = 40.35 × 0.30 × 0.25 mm
F(000) = 568
Data collection top
Bruker Kappa APEXII
diffractometer
1928 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.055
ω and ϕ scansθmax = 28.6°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 107
Tmin = 0.968, Tmax = 0.977k = 3819
6436 measured reflectionsl = 88
2996 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.077 w = 1/[σ2(Fo2) + (0.1225P)2 + 0.7988P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.244(Δ/σ)max = 0.001
S = 1.07Δρmax = 0.33 e Å3
2996 reflectionsΔρmin = 0.30 e Å3
186 parametersAbsolute structure: Refined as an inversion twin.
1 restraintAbsolute structure parameter: 2 (4)
Crystal data top
C16H14O4V = 1371.9 (5) Å3
Mr = 270.27Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 7.686 (16) ŵ = 0.09 mm1
b = 28.346 (7) ÅT = 293 K
c = 6.297 (12) Å0.35 × 0.30 × 0.25 mm
Data collection top
Bruker Kappa APEXII
diffractometer
2996 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
1928 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.977Rint = 0.055
6436 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.077H-atom parameters constrained
wR(F2) = 0.244Δρmax = 0.33 e Å3
S = 1.07Δρmin = 0.30 e Å3
2996 reflectionsAbsolute structure: Refined as an inversion twin.
186 parametersAbsolute structure parameter: 2 (4)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refined as a two-component inversion twin (1113 Friedel pairs).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3786 (6)0.30979 (16)0.5710 (8)0.0619 (14)
O20.1472 (7)0.59683 (14)0.4180 (10)0.0668 (14)
H2A0.19360.61200.51320.100*
O30.0576 (6)0.16926 (13)0.0881 (8)0.0509 (11)
H3A0.03690.17640.21180.076*
O40.2259 (7)0.15243 (14)0.2582 (7)0.0554 (12)
C10.1999 (8)0.5514 (2)0.4288 (11)0.0489 (14)
C20.1264 (9)0.5197 (2)0.2908 (11)0.0532 (16)
H20.04740.53030.18970.064*
C30.1667 (9)0.4730 (2)0.2989 (11)0.0543 (17)
H30.11540.45220.20310.065*
C40.2855 (8)0.4557 (2)0.4510 (11)0.0477 (15)
C50.3587 (9)0.4886 (2)0.5881 (12)0.0547 (17)
H50.43680.47820.69080.066*
C60.3199 (9)0.5359 (2)0.5777 (11)0.0552 (17)
H60.37340.55720.66920.066*
C70.3207 (8)0.4055 (2)0.4780 (12)0.0526 (17)
H70.38850.39720.59460.063*
C80.2672 (8)0.3700 (2)0.3556 (11)0.0497 (16)
H80.20550.37720.23280.060*
C90.3000 (8)0.3208 (2)0.4035 (11)0.0478 (14)
C100.2331 (7)0.2830 (2)0.2685 (11)0.0400 (13)
C110.1520 (8)0.2909 (2)0.0730 (10)0.0458 (15)
H110.13730.32160.02430.055*
C120.0934 (8)0.2536 (2)0.0485 (11)0.0470 (15)
H120.03760.25950.17680.056*
C130.1165 (8)0.2079 (2)0.0180 (10)0.0430 (14)
C140.2036 (8)0.1996 (2)0.2123 (9)0.0406 (13)
C150.2577 (8)0.2362 (2)0.3315 (9)0.0424 (14)
H150.31320.23020.45990.051*
C160.3006 (10)0.1410 (2)0.4595 (11)0.0587 (18)
H16A0.30470.10730.47570.088*
H16B0.23100.15430.57080.088*
H16C0.41650.15350.46730.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.064 (3)0.060 (3)0.062 (3)0.001 (2)0.022 (3)0.010 (2)
O20.082 (4)0.045 (3)0.072 (3)0.005 (2)0.019 (3)0.001 (3)
O30.061 (3)0.046 (2)0.045 (2)0.0050 (19)0.012 (2)0.007 (2)
O40.077 (3)0.040 (2)0.049 (3)0.007 (2)0.010 (2)0.001 (2)
C10.049 (3)0.049 (3)0.049 (3)0.009 (3)0.001 (3)0.000 (3)
C20.053 (4)0.055 (4)0.051 (4)0.007 (3)0.013 (3)0.002 (3)
C30.056 (4)0.055 (4)0.051 (4)0.011 (3)0.014 (4)0.006 (3)
C40.038 (3)0.049 (3)0.057 (4)0.004 (2)0.002 (3)0.009 (3)
C50.051 (4)0.056 (4)0.057 (4)0.001 (3)0.019 (3)0.008 (3)
C60.053 (4)0.052 (4)0.060 (4)0.007 (3)0.009 (4)0.015 (3)
C70.042 (4)0.054 (4)0.061 (4)0.001 (3)0.006 (3)0.008 (3)
C80.046 (3)0.049 (4)0.054 (4)0.002 (3)0.005 (3)0.007 (3)
C90.041 (3)0.048 (4)0.054 (4)0.001 (2)0.002 (3)0.006 (3)
C100.025 (3)0.049 (3)0.046 (3)0.003 (2)0.001 (2)0.001 (3)
C110.042 (3)0.042 (3)0.053 (4)0.001 (2)0.004 (3)0.003 (3)
C120.043 (3)0.052 (4)0.046 (4)0.006 (2)0.002 (3)0.000 (3)
C130.038 (3)0.050 (3)0.041 (3)0.003 (2)0.001 (3)0.004 (3)
C140.038 (3)0.043 (3)0.041 (3)0.005 (2)0.002 (3)0.003 (2)
C150.033 (3)0.053 (4)0.042 (3)0.002 (2)0.001 (2)0.002 (2)
C160.064 (4)0.059 (4)0.053 (4)0.012 (3)0.008 (4)0.004 (3)
Geometric parameters (Å, º) top
O1—C91.256 (8)C7—C81.331 (9)
O2—C11.351 (7)C7—H70.9300
O2—H2A0.8200C8—C91.449 (9)
O3—C131.361 (7)C8—H80.9300
O3—H3A0.8200C9—C101.462 (8)
O4—C141.378 (7)C10—C151.396 (8)
O4—C161.429 (8)C10—C111.398 (9)
C1—C21.372 (9)C11—C121.381 (9)
C1—C61.387 (9)C11—H110.9300
C2—C31.360 (9)C12—C131.371 (8)
C2—H20.9300C12—H120.9300
C3—C41.412 (9)C13—C141.414 (8)
C3—H30.9300C14—C151.348 (8)
C4—C51.390 (9)C15—H150.9300
C4—C71.459 (8)C16—H16A0.9600
C5—C61.375 (9)C16—H16B0.9600
C5—H50.9300C16—H16C0.9600
C6—H60.9300
C1—O2—H2A109.5O1—C9—C8119.9 (6)
C13—O3—H3A109.5O1—C9—C10118.4 (5)
C14—O4—C16117.2 (5)C8—C9—C10121.6 (6)
O2—C1—C2118.0 (6)C15—C10—C11117.5 (5)
O2—C1—C6122.4 (6)C15—C10—C9118.9 (6)
C2—C1—C6119.6 (6)C11—C10—C9123.5 (5)
C3—C2—C1121.3 (6)C12—C11—C10120.8 (5)
C3—C2—H2119.3C12—C11—H11119.6
C1—C2—H2119.3C10—C11—H11119.6
C2—C3—C4120.7 (6)C13—C12—C11120.7 (6)
C2—C3—H3119.6C13—C12—H12119.6
C4—C3—H3119.6C11—C12—H12119.6
C5—C4—C3116.7 (6)O3—C13—C12124.5 (6)
C5—C4—C7120.5 (6)O3—C13—C14116.6 (5)
C3—C4—C7122.6 (5)C12—C13—C14118.9 (5)
C6—C5—C4122.5 (6)C15—C14—O4126.3 (6)
C6—C5—H5118.7C15—C14—C13119.9 (5)
C4—C5—H5118.7O4—C14—C13113.8 (5)
C5—C6—C1119.0 (6)C14—C15—C10122.1 (6)
C5—C6—H6120.5C14—C15—H15118.9
C1—C6—H6120.5C10—C15—H15118.9
C8—C7—C4127.7 (7)O4—C16—H16A109.5
C8—C7—H7116.1O4—C16—H16B109.5
C4—C7—H7116.1H16A—C16—H16B109.5
C7—C8—C9123.5 (7)O4—C16—H16C109.5
C7—C8—H8118.2H16A—C16—H16C109.5
C9—C8—H8118.2H16B—C16—H16C109.5
O2—C1—C2—C3176.8 (6)O1—C9—C10—C11176.4 (6)
C6—C1—C2—C31.0 (10)C8—C9—C10—C117.9 (9)
C1—C2—C3—C40.3 (10)C15—C10—C11—C122.2 (8)
C2—C3—C4—C50.6 (10)C9—C10—C11—C12179.2 (6)
C2—C3—C4—C7174.4 (7)C10—C11—C12—C131.3 (9)
C3—C4—C5—C60.4 (10)C11—C12—C13—O3177.6 (6)
C7—C4—C5—C6175.5 (7)C11—C12—C13—C140.8 (8)
C4—C5—C6—C11.7 (10)C16—O4—C14—C155.5 (9)
O2—C1—C6—C5175.8 (7)C16—O4—C14—C13175.3 (5)
C2—C1—C6—C52.0 (10)O3—C13—C14—C15176.6 (5)
C5—C4—C7—C8176.8 (6)C12—C13—C14—C151.9 (8)
C3—C4—C7—C88.5 (11)O3—C13—C14—O44.1 (7)
C4—C7—C8—C9175.9 (6)C12—C13—C14—O4177.3 (5)
C7—C8—C9—O12.0 (10)O4—C14—C15—C10178.2 (5)
C7—C8—C9—C10177.6 (6)C13—C14—C15—C101.0 (9)
O1—C9—C10—C150.5 (9)C11—C10—C15—C141.1 (8)
C8—C9—C10—C15175.2 (5)C9—C10—C15—C14178.2 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O3i0.822.593.060 (6)118
O2—H2A···O4i0.822.022.833 (7)172
O3—H3A···O1ii0.821.872.618 (7)151
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O3i0.822.593.060 (6)118.0
O2—H2A···O4i0.822.022.833 (7)172.0
O3—H3A···O1ii0.821.872.618 (7)150.6
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1/2, y+1/2, z+1.
 

Acknowledgements

The authors thank Professor D. Velmurugan, Centre for Advanced Study in Crystallography and Biophysics, University of Madras, for providing data collection and computer facilities.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChitra, M., Reuben Jonathan, D., Rajan, Y. C. & Duraipandian, V. (2013). J. Chem. Pharm. Res. 5, 73–81.  Google Scholar
First citationJasinski, J. P., Butcher, R. J., Musthafa Khaleel, V., Sarojini, B. K. & Yathirajan, H. S. (2011). Acta Cryst. E67, o845.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJasmine Francis, S.., Roopsingh, D. & Reuben Jonathan, D. (2014). J. Chem. Pharm. Res. 6, 1155–1160.  CAS Google Scholar
First citationKhatib, S., Nerya, O., Musa, R., Shmuel, M., Tamir, S. & Vaya, J. (2005). Bioorg. Med. Chem. 13, 433–441.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPapo, N. & Shai, Y. (2003). Peptides, 24, 1693–1703.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPrasad, Y. R., Rao, A. L. & Rambabu, R. (2008). Eur. J. Chem. 5, 461–466.  CAS Google Scholar
First citationRam, V. J., Saxena, A., Srivastava, S. & Chandra, S. (2000). Bioinorg. Chem. Appl. 10, 2159–2161.  CAS Google Scholar
First citationSathya, S., Reuben Jonathan, D., Prathebha, K., Usha, G. & Jovita, J. (2014). Acta Cryst. E70, o593–o594.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSidharthan, J., Reuben Jonathan, D. & Amaladhas, P. T. (2012). Int. J. Chem. 4, 241–250.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWon, S. J., Liu, C. T., Tsao, L. T., Weng, J. R., Ko, H. H., Wang, J. P. & Lin, C. N. (2005). Eur. J. Med. Chem. 40, 103–112.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYu, D. C., Panfilova, L. V. & Boreko, E. I. (1982). Pharm. Chem. 16, 103–105.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 11| November 2014| Pages o1158-o1159
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds