organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 11| November 2014| Pages o1177-o1178

Crystal structure of 3-[(E)-2-(4-phenyl-1,3-thia­zol-2-yl)hydrazin-1-yl­­idene]indolin-2-one

aDepartment of Chemistry, Karnatak University, Dharwad, India, bDepartment of Chemistry, Shri Sharanabasaveshwar College of Science, Gulbarga 585 102, India, and cDepartment of Physics, M S Ramaiah Institute of Technology, Bangalore 560 054, Karnataka, India
*Correspondence e-mail: anilgn@msrit.edu

Edited by A. J. Lough, University of Toronto, Canada (Received 4 October 2014; accepted 16 October 2014; online 24 October 2014)

In the title mol­ecule, C17H12N4OS, the thia­zole ring forms a dihedral angle of 10.8 (2)° with the phenyl ring and an angle of 3.1 (3)° with the indole ring system [which has a maximum deviation of 0.035 (2) Å]. The dihedral angle between the planes of the phenyl ring and the indole ring system is 11.5 (1)°. An intra­molecular N—H⋯O hydrogen bond is observed. In the crystal, pairs of N—H⋯O hydrogen bonds form inversion dimers with an R22(8) graph-set motif.

1. Related literature

For the biological activities of substituted thia­zoles, see: Ali et al. (2011[Ali, M. A., Mirza, A. H., Bakar, H. J. H. A. & Bernhardt, P. V. (2011). Polyhedron, 30, 556-564.]); Bharti et al. (2010[Bharti, S. K., Nath, G., Tilak, R. & Singh, S. K. (2010). Eur. J. Med. Chem. 45, 651-660.]); Kondratieva et al. (2007[Kondratieva, M. L., Pepeleva, A. V., Belskaia, N. P., Koksharov, A. V., Groundwater, P. V., Robeyns, K., Van Meervelt, L., Dehaen, W., Fan, Z. J. & Bakulev, V. A. (2007). Tetrahedron, 63, 3042-3048.]). For a related structure, see: Sadık et al. (2004[Sadık, G., Necmi, D., Ibrahim, Y., Alaaddin, Ç. & Dinçer, M. (2004). Acta Cryst. E60, o889-o891.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C17H12N4OS

  • Mr = 320.37

  • Monoclinic, P 21 /c

  • a = 17.7108 (8) Å

  • b = 5.1411 (2) Å

  • c = 15.9065 (6) Å

  • β = 94.706 (3)°

  • V = 1443.45 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 296 K

  • 0.35 × 0.31 × 0.25 mm

2.2. Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.887, Tmax = 0.934

  • 11530 measured reflections

  • 3142 independent reflections

  • 2124 reflections with I > 2σ(I)

  • Rint = 0.039

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.109

  • S = 1.09

  • 3142 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1 0.86 2.12 2.771 (2) 133
N4—H4⋯O1i 0.86 2.11 2.922 (2) 158
Symmetry code: (i) -x, -y, -z+1.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and CAMERON (Watkin et al., 1993[Watkin, D. M., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]); software used to prepare material for publication: PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Experimental top

Synthesis and crystallization top

An ethano­lic solution of 1.81g (0.01 M) of 2-hydrazino-4-phenyl­thia­zole was added drop wise to an etanolic solution of 1.47g (0.01 M) of isatin with constant stirring. After the complete addition, the reaction mixture was stirred further for 8-9 hrs until the solid separated out from the reaction mixture. The separated solid was filtered and washed with cold alcohol, dried and recrystallized from DMF (Yield: 95 %. MP: 443-446K). Block-shaped colourless crystals were obtained by slow evaporation of a solution of the title compound at room temperature in DMF:water in the ratio 2:1.

Refinement top

H atoms were placed in idealized positions and refined using a riding-model approximation with N—H = 0.86 Å, C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(N,C).

Comment top

Isatin derivatives and compounds containing a thia­zole ring are class of organic compounds which have fascinated many synthetic researchers due to their wide range of biological activity ( Ali et al., 2011; Bharti et al., 2010; Kondratieva et al., 2007).

The molecular structure of the title compound is shown in Fig. 1. An intra­molecular N—H···O hydrogen bond is observed. The thia­zole ring is essentially planar with a maximum deviation of 0.005 (2) Å for atom N1. The thia­zole ring (S1/C9/N1/C7/C8) forms dihedral angles of 10.8 (2)° with the phenyl ring (C1–C6) and 3.1 (3)° with the indole ring system (C10—C16/N4/C17, with a maximum deviation of 0.035 (2)Å for atom C17). The dihedral angle between the phenyl ring and the indole ring system is 11.5 (1)Å. In the crystal, pairs of N—H···O hydrogen bonds form inversion dimers (Fig. 2). A closely related structure appears in the literature (Sadik, et al., 2004).

Related literature top

For the biological activities of substituted thiazoles, see: Ali et al. (2011); Bharti et al. (2010); Kondratieva et al. (2007). For a related structure, see: Sadik et al. (2004).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. The dashed line indicates an intramolecular N—H···N bond

Fig. 2. Part of the crystal structure with hydrogen bonds indicated as dotted lines
3-[(E)-2-(4-Phenyl-1,3-thiazol-2-yl)hydrazin-1-ylidene]indolin-2-one top
Crystal data top
C17H12N4OSZ = 4
Mr = 320.37F(000) = 664
Monoclinic, P21/cDx = 1.474 Mg m3
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 17.7108 (8) ŵ = 0.23 mm1
b = 5.1411 (2) ÅT = 296 K
c = 15.9065 (6) ÅBlock, colourless
β = 94.706 (3)°0.35 × 0.31 × 0.25 mm
V = 1443.45 (10) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
2124 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ϕ and ω scansθmax = 27.1°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2222
Tmin = 0.887, Tmax = 0.934k = 66
11530 measured reflectionsl = 2020
3142 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0451P)2 + 0.0098P]
where P = (Fo2 + 2Fc2)/3
3142 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C17H12N4OSV = 1443.45 (10) Å3
Mr = 320.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.7108 (8) ŵ = 0.23 mm1
b = 5.1411 (2) ÅT = 296 K
c = 15.9065 (6) Å0.35 × 0.31 × 0.25 mm
β = 94.706 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3142 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2124 reflections with I > 2σ(I)
Tmin = 0.887, Tmax = 0.934Rint = 0.039
11530 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.09Δρmax = 0.20 e Å3
3142 reflectionsΔρmin = 0.25 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.33816 (3)0.66660 (12)0.39879 (3)0.04097 (19)
O10.08908 (8)0.2212 (3)0.51706 (8)0.0481 (4)
N10.28727 (8)0.7985 (3)0.54037 (9)0.0325 (4)
N20.21944 (9)0.4599 (3)0.46996 (9)0.0369 (4)
H20.18730.44890.50750.044*
N30.21516 (9)0.3013 (3)0.40283 (9)0.0341 (4)
N40.05982 (9)0.1170 (3)0.42364 (9)0.0387 (5)
H40.02250.18420.44740.046*
C10.43038 (11)1.3281 (4)0.58140 (12)0.0359 (5)
H10.45041.3350.52920.043*
C20.45583 (11)1.5006 (4)0.64372 (12)0.0419 (5)
H2A0.49311.62140.63350.05*
C30.42631 (12)1.4945 (4)0.72089 (12)0.0410 (5)
H30.44331.61130.76290.049*
C40.37150 (12)1.3150 (4)0.73568 (12)0.0415 (5)
H4A0.35121.31130.78770.05*
C50.34649 (11)1.1406 (4)0.67384 (12)0.0376 (5)
H50.30981.01880.68490.045*
C60.37525 (10)1.1438 (4)0.59528 (11)0.0304 (5)
C70.34960 (10)0.9552 (4)0.52935 (11)0.0309 (5)
C80.38282 (11)0.9102 (4)0.45680 (11)0.0367 (5)
H80.42471.00070.44060.044*
C90.27677 (11)0.6406 (4)0.47676 (11)0.0314 (5)
C100.16106 (11)0.1315 (4)0.39588 (11)0.0319 (5)
C110.14763 (10)0.0560 (4)0.32827 (11)0.0317 (5)
C120.18154 (11)0.1039 (4)0.25430 (12)0.0409 (5)
H120.2220.0030.23970.049*
C130.15406 (12)0.3045 (4)0.20274 (12)0.0451 (6)
H130.17620.33860.15280.054*
C140.09393 (12)0.4556 (4)0.22454 (12)0.0422 (6)
H140.07680.59120.18930.051*
C150.05887 (11)0.4091 (4)0.29754 (12)0.0392 (5)
H150.01830.510.3120.047*
C160.08638 (10)0.2078 (4)0.34775 (11)0.0319 (5)
C170.10069 (11)0.0896 (4)0.45404 (12)0.0362 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0424 (3)0.0466 (4)0.0351 (3)0.0080 (3)0.0099 (2)0.0052 (2)
O10.0479 (9)0.0568 (11)0.0417 (8)0.0142 (8)0.0156 (7)0.0154 (8)
N10.0296 (9)0.0333 (11)0.0350 (8)0.0022 (8)0.0050 (7)0.0018 (8)
N20.0329 (10)0.0424 (12)0.0363 (9)0.0091 (9)0.0080 (7)0.0058 (8)
N30.0328 (9)0.0359 (11)0.0335 (8)0.0026 (9)0.0026 (7)0.0024 (8)
N40.0354 (10)0.0422 (12)0.0400 (9)0.0129 (9)0.0112 (7)0.0035 (8)
C10.0343 (11)0.0375 (14)0.0362 (10)0.0027 (10)0.0056 (8)0.0039 (10)
C20.0377 (12)0.0398 (15)0.0478 (12)0.0074 (11)0.0010 (9)0.0001 (11)
C30.0436 (13)0.0342 (14)0.0442 (12)0.0026 (11)0.0030 (9)0.0071 (10)
C40.0454 (13)0.0432 (15)0.0366 (11)0.0002 (12)0.0078 (9)0.0046 (10)
C50.0359 (12)0.0366 (14)0.0411 (11)0.0069 (11)0.0085 (9)0.0020 (10)
C60.0291 (11)0.0275 (12)0.0343 (10)0.0043 (10)0.0010 (8)0.0020 (9)
C70.0289 (10)0.0285 (12)0.0354 (10)0.0006 (10)0.0026 (8)0.0023 (9)
C80.0345 (11)0.0377 (14)0.0385 (11)0.0086 (10)0.0071 (9)0.0001 (10)
C90.0290 (11)0.0309 (13)0.0344 (10)0.0004 (10)0.0026 (8)0.0012 (9)
C100.0282 (11)0.0341 (13)0.0334 (10)0.0010 (10)0.0025 (8)0.0010 (9)
C110.0275 (10)0.0331 (13)0.0342 (10)0.0012 (10)0.0016 (8)0.0001 (9)
C120.0326 (12)0.0505 (15)0.0404 (11)0.0049 (11)0.0080 (9)0.0022 (11)
C130.0370 (12)0.0588 (17)0.0398 (11)0.0042 (12)0.0047 (9)0.0104 (11)
C140.0381 (12)0.0428 (15)0.0445 (12)0.0027 (11)0.0042 (9)0.0094 (11)
C150.0343 (12)0.0387 (14)0.0442 (11)0.0016 (11)0.0013 (9)0.0029 (10)
C160.0279 (11)0.0358 (13)0.0321 (10)0.0026 (10)0.0026 (8)0.0003 (9)
C170.0322 (11)0.0398 (14)0.0368 (11)0.0016 (11)0.0040 (9)0.0008 (10)
Geometric parameters (Å, º) top
S1—C81.711 (2)C4—C51.377 (3)
S1—C91.7203 (19)C4—H4A0.93
O1—C171.240 (2)C5—C61.388 (2)
N1—C91.299 (2)C5—H50.93
N1—C71.389 (2)C6—C71.472 (3)
N2—N31.341 (2)C7—C81.358 (2)
N2—C91.374 (2)C8—H80.93
N2—H20.86C10—C111.449 (3)
N3—C101.294 (2)C10—C171.486 (3)
N4—C171.352 (2)C11—C121.386 (2)
N4—C161.411 (2)C11—C161.392 (3)
N4—H40.86C12—C131.381 (3)
C1—C21.378 (3)C12—H120.93
C1—C61.391 (3)C13—C141.385 (3)
C1—H10.93C13—H130.93
C2—C31.373 (3)C14—C151.382 (3)
C2—H2A0.93C14—H140.93
C3—C41.373 (3)C15—C161.372 (3)
C3—H30.93C15—H150.93
C8—S1—C987.69 (9)C7—C8—S1111.71 (15)
C9—N1—C7109.19 (15)C7—C8—H8124.1
N3—N2—C9117.83 (15)S1—C8—H8124.1
N3—N2—H2121.1N1—C9—N2122.80 (17)
C9—N2—H2121.1N1—C9—S1117.03 (15)
C10—N3—N2118.11 (16)N2—C9—S1120.17 (14)
C17—N4—C16111.08 (16)N3—C10—C11125.96 (17)
C17—N4—H4124.5N3—C10—C17127.60 (18)
C16—N4—H4124.5C11—C10—C17106.44 (17)
C2—C1—C6121.10 (18)C12—C11—C16119.27 (18)
C2—C1—H1119.5C12—C11—C10133.79 (19)
C6—C1—H1119.5C16—C11—C10106.93 (16)
C3—C2—C1120.2 (2)C13—C12—C11118.73 (19)
C3—C2—H2A119.9C13—C12—H12120.6
C1—C2—H2A119.9C11—C12—H12120.6
C2—C3—C4119.63 (19)C12—C13—C14120.71 (19)
C2—C3—H3120.2C12—C13—H13119.6
C4—C3—H3120.2C14—C13—H13119.6
C3—C4—C5120.37 (19)C15—C14—C13121.4 (2)
C3—C4—H4A119.8C15—C14—H14119.3
C5—C4—H4A119.8C13—C14—H14119.3
C4—C5—C6121.01 (19)C16—C15—C14117.20 (19)
C4—C5—H5119.5C16—C15—H15121.4
C6—C5—H5119.5C14—C15—H15121.4
C5—C6—C1117.73 (18)C15—C16—C11122.65 (18)
C5—C6—C7121.26 (18)C15—C16—N4128.34 (18)
C1—C6—C7121.00 (17)C11—C16—N4109.01 (17)
C8—C7—N1114.38 (17)O1—C17—N4126.73 (19)
C8—C7—C6126.00 (18)O1—C17—C10126.84 (19)
N1—C7—C6119.59 (16)N4—C17—C10106.42 (17)
C9—N2—N3—C10179.69 (17)N2—N3—C10—C170.7 (3)
C6—C1—C2—C30.6 (3)N3—C10—C11—C123.6 (4)
C1—C2—C3—C40.2 (3)C17—C10—C11—C12176.1 (2)
C2—C3—C4—C50.4 (3)N3—C10—C11—C16177.11 (18)
C3—C4—C5—C60.7 (3)C17—C10—C11—C163.2 (2)
C4—C5—C6—C10.3 (3)C16—C11—C12—C131.0 (3)
C4—C5—C6—C7179.04 (18)C10—C11—C12—C13179.7 (2)
C2—C1—C6—C50.3 (3)C11—C12—C13—C140.2 (3)
C2—C1—C6—C7178.37 (17)C12—C13—C14—C150.9 (3)
C9—N1—C7—C80.9 (2)C13—C14—C15—C160.3 (3)
C9—N1—C7—C6177.30 (17)C14—C15—C16—C110.9 (3)
C5—C6—C7—C8167.50 (19)C14—C15—C16—N4178.32 (18)
C1—C6—C7—C811.2 (3)C12—C11—C16—C151.6 (3)
C5—C6—C7—N110.4 (3)C10—C11—C16—C15178.92 (17)
C1—C6—C7—N1170.89 (17)C12—C11—C16—N4177.75 (17)
N1—C7—C8—S10.5 (2)C10—C11—C16—N41.7 (2)
C6—C7—C8—S1177.49 (15)C17—N4—C16—C15178.68 (18)
C9—S1—C8—C70.06 (16)C17—N4—C16—C110.7 (2)
C7—N1—C9—N2179.57 (17)C16—N4—C17—O1176.05 (19)
C7—N1—C9—S10.8 (2)C16—N4—C17—C102.7 (2)
N3—N2—C9—N1178.05 (17)N3—C10—C17—O14.6 (3)
N3—N2—C9—S12.4 (2)C11—C10—C17—O1175.10 (19)
C8—S1—C9—N10.48 (16)N3—C10—C17—N4176.72 (18)
C8—S1—C9—N2179.92 (16)C11—C10—C17—N43.6 (2)
N2—N3—C10—C11179.72 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.862.122.771 (2)133
N4—H4···O1i0.862.112.922 (2)158
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.862.122.771 (2)133
N4—H4···O1i0.862.112.922 (2)158
Symmetry code: (i) x, y, z+1.
 

Acknowledgements

USIC, Karnatak University, Dharwad, is greatly acknowledged for the single-crystal XRD data collection. BMH is grateful to the UGC for financial support in the form of an RFSMS scholarship.

References

First citationAli, M. A., Mirza, A. H., Bakar, H. J. H. A. & Bernhardt, P. V. (2011). Polyhedron, 30, 556–564.  Web of Science CSD CrossRef CAS Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBharti, S. K., Nath, G., Tilak, R. & Singh, S. K. (2010). Eur. J. Med. Chem. 45, 651–660.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKondratieva, M. L., Pepeleva, A. V., Belskaia, N. P., Koksharov, A. V., Groundwater, P. V., Robeyns, K., Van Meervelt, L., Dehaen, W., Fan, Z. J. & Bakulev, V. A. (2007). Tetrahedron, 63, 3042–3048.  Web of Science CSD CrossRef CAS Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSadık, G., Necmi, D., Ibrahim, Y., Alaaddin, Ç. & Dinçer, M. (2004). Acta Cryst. E60, o889–o891.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatkin, D. M., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 11| November 2014| Pages o1177-o1178
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds