organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 11| November 2014| Pages o1171-o1172

Crystal structure of 1-[2,4-bis­(4-meth­oxy­phenyl)-3-azabi­cyclo[3.3.1]nonan-3-yl]ethanone

aDepartment of Physics, Anna Adarsh College for Women, Chennai-40, Tamilnadu, India, bPG and Research Department of Physics, Queen Mary's College, Chennai-4, Tamilnadu, India, and cPG and Research Department of Chemistry, Government Arts College, Coimbatore-18, Tamilnadu, India
*Correspondence e-mail: guqmc@yahoo.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 13 October 2014; accepted 14 October 2014; online 24 October 2014)

In the title compound, C24H29NO3, the aza­bicycle contains two six-membered rings, viz. a cyclo­hexane ring and a piperidine ring. The first adopts a chair conformation and the second a half-chair conformation. The dihedral angle between their mean planes is 86.21 (13)°, indicating that they are almost perpendicular to one another. The dihedral angle between the planes of the 4-meth­oxy­phenyl rings is 17.51 (13)°, and they make dihedral angles of 81.9 (3) and 81.3 (3)° with the ethan-1-one group. In the crystal, mol­ecules are linked by C—H⋯π inter­actions forming chains along [10-1].

1. Related literature

For the biological activity of piperidine derivatives, see: Barker et al. (2005[Barker, D., Lin, D. H. S., Carland, J. E., Chu, C. P. Y., Chebib, M., Brimble, M. A., Savage, G. P. & McLeod, M. D. (2005). Bioorg. Med. Chem. 13, 4565-4575.]); Hardick et al. (1996[Hardick, D. J., Blagbrough, I. S., Cooper, G., Potter, B. V. L., Critchley, T. & Wonnacott, S. (1996). J. Med. Chem. 39, 4860-4866.]); Jeyaraman & Avila (1981[Jeyaraman, R. & Avila, S. (1981). Chem. Rev. 81, 149-174.]); Parthiban, Aridoss et al. (2009[Parthiban, P., Aridoss, G., Rathika, P., Ramkumar, V. & Kabilan, S. (2009). Bioorg. Med. Chem. Lett. 19, 6981-6985.]); Parthiban, Rathika et al. (2010[Parthiban, P., Rathika, P., Park, K. S. & Jeong, Y. T. (2010). Monatsh. Chem. 141, 79-93.]). For the crystal structures of similar compounds, see: Parthiban et al. (2008[Parthiban, P., Ramkumar, V., Kim, M. S., Lim, K. T. & Jeong, Y. T. (2008). Acta Cryst. E64, o1586.]); Parthiban, Ramkumar et al. (2009[Parthiban, P., Ramkumar, V., Amirthaganesan, S. & Jeong, Y. T. (2009). Acta Cryst. E65, o1356.], 2010[Parthiban, P., Ramkumar, V. & Jeong, Y. T. (2010). Acta Cryst. E66, o48-o49.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C24H29NO3

  • Mr = 379.48

  • Monoclinic, P 21 /n

  • a = 7.6309 (13) Å

  • b = 17.102 (3) Å

  • c = 15.395 (2) Å

  • β = 93.886 (5)°

  • V = 2004.5 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.35 × 0.30 × 0.25 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.972, Tmax = 0.980

  • 17249 measured reflections

  • 4597 independent reflections

  • 2524 reflections with I > 2σ(I)

  • Rint = 0.070

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.267

  • S = 0.86

  • 4597 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C18–C23 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯Cgi 0.93 2.97 3.843 (3) 158
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Azabicyclononanes are present in many alkaloids and they have immense biological activities (Jeyaraman & Avila, 1981; Hardick et al., 1996; Barker et al., 2005). This class of compounds has been observed to exhibit a wide range of biological activities, like antifungal, antibacterial, antimycobacterial, analgesic, antagonistic, anticancer, anti-inflammatory, local anesthetic and hypotensive activity (Parthiban, Aridoss et al., 2009; Parthiban, Rathika et al., 2010).

The molecular structure of the title compound is illustrated in Fig. 1. The cyclohexane ring (C4–C6/C8–C10) adopts a chair conformation [puckering parameters of q2 = 1.3151 (6) Å, T2 = -21.70 (4)°, q3 = 0.0436 (7) Å, QT = 1.3158 (6) Å and ϕ2 = 88.10 (3)° with the smallest asymmetry parameter D2(C5) = 0.0757 (1)°]. The piperidine ring (C3–C7/N1) adopts a half-chair conformation [puckering parameters of q2 = 0.4230 (5) Å, T2 = 133.78 (5)°, q3 = -0.4053 (5) Å, QT = 0.5858 (5) Å and ϕ2 = 0.60 (7)° with the smallest asymmetry parameters DS(N1) = 0.0027 (3)° and D2(N1) = 0.2432 (2)°]. Their mean planes are almost normal to one another with a dihedral angle of 86.21 (13)°. The two benzene rings (C11–C16 and C18–C23) are inclined to one another by 17.51 (13)°.

In the crystal, molecules are linked by C—H···π interactions, forming chains along [101] (Table 1 and Fig. 2).

Related literature top

For the biological activity of piperidine derivatives, see: Barker et al. (2005); Hardick et al. (1996); Jeyaraman & Avila (1981); Parthiban, Aridoss et al. (2009); Parthiban, Rathika et al. (2010). For the crystal structures of similar compounds, see: Parthiban et al. (2008); Parthiban, Ramkumar et al. (2009, 2010).

Experimental top

2,4-Bis(4-methoxyphenyl)-3-azabicyclo[3.3.1]nonan-9-one (5 mmol) was dissolved in benzene (80 ml). To this solution, triethylamine (20 mmol) and acetyl chloride (20 mmol) were added and the reaction mixture was stirred using a magnetic stirrer. The precipitated ammonium salt was dried, purified and evaporated. The oily mass was crystallized from petroleum ether (333–353 K).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms were positioned geometrically and treated as riding, with C—H = 0.93–0.98 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms or 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
The molecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

A view of the crystal packing of the title compound, with C—H···π interactions indicted by dashed lines (see Table 1 for details).
1-[2,4-Bis(4-methoxyphenyl)-3-azabicyclo[3.3.1]nonan-3-yl]ethanone top
Crystal data top
C24H29NO3F(000) = 816
Mr = 379.48Dx = 1.258 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4597 reflections
a = 7.6309 (13) Åθ = 1.8–27.5°
b = 17.102 (3) ŵ = 0.08 mm1
c = 15.395 (2) ÅT = 293 K
β = 93.886 (5)°Block, colourless
V = 2004.5 (6) Å30.35 × 0.30 × 0.25 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4597 independent reflections
Radiation source: fine-focus sealed tube2524 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.070
ω and ϕ scanθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 99
Tmin = 0.972, Tmax = 0.980k = 1722
17249 measured reflectionsl = 1119
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.267H-atom parameters constrained
S = 0.86 w = 1/[σ2(Fo2) + (0.2P)2]
where P = (Fo2 + 2Fc2)/3
4597 reflections(Δ/σ)max < 0.001
253 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C24H29NO3V = 2004.5 (6) Å3
Mr = 379.48Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.6309 (13) ŵ = 0.08 mm1
b = 17.102 (3) ÅT = 293 K
c = 15.395 (2) Å0.35 × 0.30 × 0.25 mm
β = 93.886 (5)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4597 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2524 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.980Rint = 0.070
17249 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.267H-atom parameters constrained
S = 0.86Δρmax = 0.36 e Å3
4597 reflectionsΔρmin = 0.31 e Å3
253 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C170.8638 (4)0.0399 (2)0.3303 (2)0.0653 (9)
H17A0.90810.01960.38260.098*
H17B0.84540.00230.29090.098*
H17C0.94720.07600.30340.098*
O20.7019 (3)0.07911 (13)0.35081 (12)0.0573 (6)
C10.5412 (3)0.29402 (17)0.00731 (18)0.0436 (7)
C20.6109 (4)0.32952 (18)0.0732 (2)0.0568 (8)
H2A0.55570.30490.12400.085*
H2B0.73560.32170.07210.085*
H2C0.58570.38450.07480.085*
C30.3379 (3)0.21999 (15)0.08463 (15)0.0374 (6)
H30.31450.27160.10910.045*
C40.1578 (3)0.17762 (16)0.07593 (18)0.0433 (7)
H40.09320.19320.12610.052*
C50.0536 (3)0.20673 (18)0.00516 (18)0.0484 (7)
H5A0.04750.26340.00460.058*
H5B0.06520.18630.00710.058*
C60.1460 (3)0.17879 (15)0.08472 (18)0.0427 (7)
H60.07330.19480.13660.051*
C70.3238 (3)0.22232 (15)0.08655 (16)0.0367 (6)
H70.29470.27450.10950.044*
C80.1669 (4)0.08798 (17)0.07604 (19)0.0515 (8)
H8A0.23530.07060.12790.062*
H8B0.04920.06700.07810.062*
C90.2488 (4)0.05627 (17)0.00362 (18)0.0504 (8)
H9A0.23910.00030.00460.061*
H9B0.37250.06970.00090.061*
C100.1580 (4)0.08982 (16)0.0861 (2)0.0514 (7)
H10A0.22170.07390.13560.062*
H10B0.04040.06830.09390.062*
C110.4351 (3)0.18444 (14)0.15337 (16)0.0369 (6)
C120.3798 (4)0.19133 (16)0.24134 (17)0.0445 (7)
H120.28070.22100.25730.053*
C130.4695 (4)0.15478 (18)0.30543 (17)0.0485 (7)
H130.42880.15910.36360.058*
C140.6198 (4)0.11180 (16)0.28286 (17)0.0418 (6)
C150.6765 (4)0.10439 (16)0.19611 (17)0.0453 (7)
H150.77690.07560.18020.054*
C160.5828 (3)0.14024 (16)0.13281 (17)0.0433 (7)
H160.62120.13410.07460.052*
C180.4612 (3)0.17922 (15)0.15212 (16)0.0374 (6)
C190.4146 (4)0.17657 (17)0.23760 (17)0.0468 (7)
H190.31660.20460.25260.056*
C200.5081 (4)0.13399 (18)0.30143 (17)0.0490 (7)
H200.47110.13260.35770.059*
C210.6567 (4)0.09341 (16)0.28126 (17)0.0453 (7)
C220.7103 (4)0.09808 (17)0.19684 (18)0.0469 (7)
H220.81280.07300.18280.056*
C230.6124 (3)0.13963 (16)0.13384 (17)0.0428 (7)
H230.64920.14100.07750.051*
C240.6961 (5)0.0322 (2)0.4205 (2)0.0767 (11)
H24A0.78260.00260.45460.115*
H24B0.58990.00220.41230.115*
H24C0.67240.08000.45020.115*
N10.4169 (3)0.23550 (12)0.00014 (12)0.0360 (5)
O10.5968 (3)0.31891 (13)0.07875 (14)0.0597 (6)
O30.7598 (3)0.04949 (14)0.33867 (13)0.0630 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C170.070 (2)0.064 (2)0.064 (2)0.0193 (17)0.0146 (17)0.0021 (16)
O20.0631 (13)0.0652 (14)0.0442 (11)0.0102 (11)0.0079 (10)0.0055 (10)
C10.0374 (15)0.0421 (15)0.0515 (17)0.0049 (12)0.0034 (12)0.0017 (13)
C20.0556 (18)0.0518 (18)0.064 (2)0.0179 (14)0.0117 (15)0.0049 (14)
C30.0374 (14)0.0358 (14)0.0397 (14)0.0005 (11)0.0086 (11)0.0041 (11)
C40.0357 (14)0.0470 (16)0.0483 (16)0.0040 (12)0.0115 (12)0.0034 (12)
C50.0313 (14)0.0492 (17)0.0648 (19)0.0001 (12)0.0032 (13)0.0075 (14)
C60.0338 (14)0.0456 (16)0.0477 (15)0.0032 (12)0.0055 (11)0.0053 (12)
C70.0355 (13)0.0336 (14)0.0407 (14)0.0011 (11)0.0011 (11)0.0041 (10)
C80.0488 (16)0.0467 (17)0.0588 (18)0.0121 (13)0.0016 (14)0.0132 (14)
C90.0506 (17)0.0371 (16)0.063 (2)0.0080 (13)0.0009 (14)0.0040 (13)
C100.0493 (17)0.0435 (17)0.0601 (18)0.0119 (13)0.0054 (14)0.0028 (14)
C110.0377 (14)0.0348 (14)0.0378 (13)0.0012 (11)0.0009 (11)0.0025 (11)
C120.0440 (15)0.0485 (17)0.0401 (14)0.0068 (13)0.0048 (12)0.0055 (12)
C130.0553 (17)0.0549 (18)0.0345 (14)0.0035 (14)0.0017 (12)0.0024 (12)
C140.0448 (15)0.0432 (15)0.0376 (13)0.0006 (12)0.0041 (11)0.0011 (11)
C150.0422 (15)0.0488 (17)0.0445 (15)0.0091 (13)0.0001 (12)0.0004 (12)
C160.0428 (15)0.0502 (16)0.0363 (13)0.0056 (13)0.0023 (11)0.0026 (12)
C180.0382 (14)0.0371 (14)0.0374 (13)0.0039 (11)0.0063 (11)0.0023 (10)
C190.0407 (15)0.0607 (19)0.0400 (15)0.0036 (13)0.0100 (12)0.0045 (13)
C200.0486 (16)0.0635 (19)0.0361 (14)0.0015 (14)0.0112 (12)0.0015 (13)
C210.0458 (15)0.0460 (16)0.0437 (15)0.0018 (13)0.0002 (12)0.0041 (12)
C220.0440 (15)0.0549 (18)0.0426 (15)0.0072 (13)0.0085 (12)0.0051 (13)
C230.0441 (15)0.0490 (16)0.0359 (13)0.0041 (13)0.0080 (11)0.0029 (12)
C240.084 (2)0.090 (3)0.056 (2)0.001 (2)0.0027 (18)0.0272 (19)
N10.0338 (11)0.0365 (12)0.0376 (11)0.0050 (9)0.0028 (9)0.0016 (9)
O10.0614 (14)0.0608 (14)0.0563 (13)0.0233 (11)0.0008 (10)0.0103 (10)
O30.0631 (14)0.0753 (16)0.0499 (12)0.0115 (12)0.0012 (10)0.0149 (11)
Geometric parameters (Å, º) top
C17—O21.423 (4)C9—C101.518 (4)
C17—H17A0.9600C9—H9A0.9700
C17—H17B0.9600C9—H9B0.9700
C17—H17C0.9600C10—H10A0.9700
O2—C141.374 (3)C10—H10B0.9700
C1—O11.228 (3)C11—C161.376 (4)
C1—N11.378 (3)C11—C121.396 (3)
C1—C21.509 (4)C12—C131.387 (4)
C2—H2A0.9600C12—H120.9300
C2—H2B0.9600C13—C141.387 (4)
C2—H2C0.9600C13—H130.9300
C3—N11.498 (3)C14—C151.381 (4)
C3—C181.522 (4)C15—C161.390 (4)
C3—C41.552 (3)C15—H150.9300
C3—H30.9800C16—H160.9300
C4—C51.518 (4)C18—C231.383 (4)
C4—C81.535 (4)C18—C191.387 (3)
C4—H40.9800C19—C201.382 (4)
C5—C61.531 (4)C19—H190.9300
C5—H5A0.9700C20—C211.383 (4)
C5—H5B0.9700C20—H200.9300
C6—C101.524 (4)C21—O31.367 (3)
C6—C71.549 (4)C21—C221.391 (4)
C6—H60.9800C22—C231.380 (4)
C7—N11.482 (3)C22—H220.9300
C7—C111.522 (3)C23—H230.9300
C7—H70.9800C24—O31.412 (4)
C8—C91.514 (4)C24—H24A0.9600
C8—H8A0.9700C24—H24B0.9600
C8—H8B0.9700C24—H24C0.9600
O2—C17—H17A109.5C8—C9—H9B109.5
O2—C17—H17B109.5C10—C9—H9B109.5
H17A—C17—H17B109.5H9A—C9—H9B108.1
O2—C17—H17C109.5C6—C10—C9113.0 (2)
H17A—C17—H17C109.5C6—C10—H10A109.0
H17B—C17—H17C109.5C9—C10—H10A109.0
C14—O2—C17117.2 (2)C6—C10—H10B109.0
O1—C1—N1121.4 (2)C9—C10—H10B109.0
O1—C1—C2118.5 (3)H10A—C10—H10B107.8
N1—C1—C2120.2 (2)C16—C11—C12117.3 (2)
C1—C2—H2A109.5C16—C11—C7124.3 (2)
C1—C2—H2B109.5C12—C11—C7118.3 (2)
H2A—C2—H2B109.5C13—C12—C11121.4 (2)
C1—C2—H2C109.5C13—C12—H12119.3
H2A—C2—H2C109.5C11—C12—H12119.3
H2B—C2—H2C109.5C12—C13—C14120.0 (2)
N1—C3—C18114.16 (19)C12—C13—H13120.0
N1—C3—C4114.5 (2)C14—C13—H13120.0
C18—C3—C4110.3 (2)O2—C14—C15124.7 (2)
N1—C3—H3105.7O2—C14—C13115.9 (2)
C18—C3—H3105.7C15—C14—C13119.4 (2)
C4—C3—H3105.7C14—C15—C16119.7 (2)
C5—C4—C8110.5 (2)C14—C15—H15120.2
C5—C4—C3109.2 (2)C16—C15—H15120.2
C8—C4—C3115.2 (2)C11—C16—C15122.2 (2)
C5—C4—H4107.2C11—C16—H16118.9
C8—C4—H4107.2C15—C16—H16118.9
C3—C4—H4107.2C23—C18—C19116.6 (2)
C4—C5—C6108.2 (2)C23—C18—C3124.8 (2)
C4—C5—H5A110.1C19—C18—C3118.5 (2)
C6—C5—H5A110.1C20—C19—C18122.6 (3)
C4—C5—H5B110.1C20—C19—H19118.7
C6—C5—H5B110.1C18—C19—H19118.7
H5A—C5—H5B108.4C19—C20—C21119.8 (2)
C10—C6—C5110.7 (2)C19—C20—H20120.1
C10—C6—C7115.2 (2)C21—C20—H20120.1
C5—C6—C7108.4 (2)O3—C21—C22116.3 (2)
C10—C6—H6107.4O3—C21—C20125.1 (3)
C5—C6—H6107.4C22—C21—C20118.6 (3)
C7—C6—H6107.4C23—C22—C21120.4 (3)
N1—C7—C11114.6 (2)C23—C22—H22119.8
N1—C7—C6115.1 (2)C21—C22—H22119.8
C11—C7—C6109.7 (2)C18—C23—C22121.9 (2)
N1—C7—H7105.5C18—C23—H23119.1
C11—C7—H7105.5C22—C23—H23119.1
C6—C7—H7105.5O3—C24—H24A109.5
C9—C8—C4112.2 (2)O3—C24—H24B109.5
C9—C8—H8A109.2H24A—C24—H24B109.5
C4—C8—H8A109.2O3—C24—H24C109.5
C9—C8—H8B109.2H24A—C24—H24C109.5
C4—C8—H8B109.2H24B—C24—H24C109.5
H8A—C8—H8B107.9C1—N1—C7118.1 (2)
C8—C9—C10110.6 (3)C1—N1—C3111.8 (2)
C8—C9—H9A109.5C7—N1—C3123.93 (19)
C10—C9—H9A109.5C21—O3—C24118.3 (2)
N1—C3—C4—C536.4 (3)C12—C11—C16—C150.9 (4)
C18—C3—C4—C5166.8 (2)C7—C11—C16—C15177.6 (2)
N1—C3—C4—C888.6 (3)C14—C15—C16—C111.0 (4)
C18—C3—C4—C841.8 (3)N1—C3—C18—C2317.5 (4)
C8—C4—C5—C660.1 (3)C4—C3—C18—C23113.1 (3)
C3—C4—C5—C667.6 (3)N1—C3—C18—C19167.0 (2)
C4—C5—C6—C1059.2 (3)C4—C3—C18—C1962.4 (3)
C4—C5—C6—C768.1 (3)C23—C18—C19—C202.9 (4)
C10—C6—C7—N187.1 (3)C3—C18—C19—C20173.0 (3)
C5—C6—C7—N137.6 (3)C18—C19—C20—C211.6 (5)
C10—C6—C7—C1143.8 (3)C19—C20—C21—O3179.9 (3)
C5—C6—C7—C11168.5 (2)C19—C20—C21—C221.3 (4)
C5—C4—C8—C958.0 (3)O3—C21—C22—C23178.5 (2)
C3—C4—C8—C966.3 (3)C20—C21—C22—C232.8 (4)
C4—C8—C9—C1052.3 (3)C19—C18—C23—C221.4 (4)
C5—C6—C10—C956.1 (3)C3—C18—C23—C22174.2 (2)
C7—C6—C10—C967.4 (3)C21—C22—C23—C181.4 (4)
C8—C9—C10—C651.7 (3)O1—C1—N1—C7164.8 (2)
N1—C7—C11—C1622.7 (3)C2—C1—N1—C714.6 (4)
C6—C7—C11—C16108.5 (3)O1—C1—N1—C311.4 (4)
N1—C7—C11—C12160.7 (2)C2—C1—N1—C3168.1 (2)
C6—C7—C11—C1268.1 (3)C11—C7—N1—C172.4 (3)
C16—C11—C12—C130.3 (4)C6—C7—N1—C1159.1 (2)
C7—C11—C12—C13176.5 (2)C11—C7—N1—C3137.6 (2)
C11—C12—C13—C141.5 (4)C6—C7—N1—C39.1 (3)
C17—O2—C14—C155.0 (4)C18—C3—N1—C171.7 (3)
C17—O2—C14—C13175.2 (3)C4—C3—N1—C1159.8 (2)
C12—C13—C14—O2178.7 (2)C18—C3—N1—C7136.7 (2)
C12—C13—C14—C151.5 (4)C4—C3—N1—C78.2 (3)
O2—C14—C15—C16179.9 (3)C22—C21—O3—C24169.6 (3)
C13—C14—C15—C160.2 (4)C20—C21—O3—C2411.8 (4)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C18–C23 ring.
D—H···AD—HH···AD···AD—H···A
C12—H12···Cgi0.932.973.843 (3)158
Symmetry code: (i) x1/2, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C18–C23 ring.
D—H···AD—HH···AD···AD—H···A
C12—H12···Cgi0.932.973.843 (3)158
Symmetry code: (i) x1/2, y+1/2, z1/2.
 

Acknowledgements

The authors thank Professor D. Velmurugan, Centre for Advanced Study in Crystallography and Biophysics, University of Madras, for providing data-collection facilities.

References

First citationBarker, D., Lin, D. H. S., Carland, J. E., Chu, C. P. Y., Chebib, M., Brimble, M. A., Savage, G. P. & McLeod, M. D. (2005). Bioorg. Med. Chem. 13, 4565–4575.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHardick, D. J., Blagbrough, I. S., Cooper, G., Potter, B. V. L., Critchley, T. & Wonnacott, S. (1996). J. Med. Chem. 39, 4860–4866.  CrossRef CAS PubMed Web of Science Google Scholar
First citationJeyaraman, R. & Avila, S. (1981). Chem. Rev. 81, 149–174.  CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParthiban, P., Aridoss, G., Rathika, P., Ramkumar, V. & Kabilan, S. (2009). Bioorg. Med. Chem. Lett. 19, 6981–6985.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationParthiban, P., Ramkumar, V., Amirthaganesan, S. & Jeong, Y. T. (2009). Acta Cryst. E65, o1356.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParthiban, P., Ramkumar, V. & Jeong, Y. T. (2010). Acta Cryst. E66, o48–o49.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParthiban, P., Ramkumar, V., Kim, M. S., Lim, K. T. & Jeong, Y. T. (2008). Acta Cryst. E64, o1586.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParthiban, P., Rathika, P., Park, K. S. & Jeong, Y. T. (2010). Monatsh. Chem. 141, 79–93.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 11| November 2014| Pages o1171-o1172
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds