research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4-amino-5-fluoro-2-oxo-2,3-di­hydro­pyrimidin-1-ium 3-hy­dr­oxy­pyridine-2-carboxyl­ate

aSchool of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu, India, bFaculty of Chemistry and Chemical Technology, University of Ljubljana, Vecna pot 113, PO Box 537, SI-1000 Ljubljana, Slovenia, and cCO EN-FIST, Trg Osvobodilne fronte 13, SI-1000 Ljubljana, Slovenia
*Correspondence e-mail: tommtrichy@yahoo.co.in

Edited by E. R. T. Tiekink, University of Malaya, Malaysia (Received 30 September 2014; accepted 4 October 2014; online 11 October 2014)

The asymmetric unit of the title salt, C4H5FN3O+·C6H4NO3, contains one 4-amino-5-fluoro-2-oxo-2,3-di­hydro­pyrimidin-1-ium (5-fluoro­cytosinium, 5FC) cation and a 3-hy­droxy­picolinate (3HAP) anion. The 4-amino-5-fluoro-2-oxo-2,3-di­hydro­pyrimidine mol­ecule is protonated at one of the pyrimidine N atoms. The typical intra­molecular N—H⋯F and O—H⋯O S(5) and S(6) hydrogen-bond ring motifs are observed in the cations and anions. The protonated N atom and 2-amine group of the 5FC cation inter­act with the 3HPA anion through a pair of nearly parallel N—H⋯O hydrogen bonds, forming a robust R22(8) ring motif. The ions are further linked by N—H⋯N, O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds, generating R22(7), R33(12) and R65(18) ring motifs, respectively, leading to supra­molecular wave-like sheets parallel to (010). The crystal structure is further stabilized by C—H⋯π inter­actions, generating a three-dimensional architecture.

1. Chemical context

Fluorinated pyrimidine and purine derivatives have received much inter­est because of their wide range of biological applications (Giner-Sorolla & Bendich, 1958[Giner-Sorolla, A. & Bendich, A. (1958). J. Am. Chem. Soc. 80, 5744-5752.]). 5-Fuoro­cyto­sine is a fluorinated pyrimidine derivative anti-metabolite drug and is also extensively used as an anti-fungal agent for the treatment of Candida and Cryptococcus (Vermes et al., 2000[Vermes, A., Guchelaar, H. J. & Dankert, J. (2000). J. Antimicrob. Chemother. 46, 171-179.]). 5-Fluorocytosine is a versatile mol­ecule that plays essential roles in many biological applications, such as anti-tumour, potential gene therapy and gene-directed prodrug therapy (GDEPT) in the treatment of cancer (Kohila et al., 2012[Kohila, V., Jaiswal, A. & Ghosh, S. S. (2012). Med. Chem. Commun. 3, 1316-1322.]). The crystal structures of 5-fluoro­cytosine monohydrate, 5-fluorocytosine co-crystals and salts have also been reported (Louis et al., 1982[Louis, T., Low, J. N. & Tollin, P. (1982). Cryst. Struct. Commun. 11, 1059-1064.]; Tutughamiarso et al., 2012[Tutughamiarso, M., Wagner, G. & Egert, E. (2012). Acta Cryst. B68, 431-443.]; Perumalla & Sun, 2014[Perumalla, S. R. & Sun, C. C. (2014). J. Pharm. Sci. 4, 1126-1132.]; Prabakaran et al., 2001[Prabakaran, P., Murugesan, S., Mu­thiah, P. T., Bocelli, G. & Righi, L. (2001). Acta Cryst. E57, o933-o936.]). The crystal structures of various salts and complexes of 3-hy­droxy­picolinic acid have also been reported (Quintal et al., 2000[Quintal, S. M. O., Nogueira, H. I. S., Felix, V. & Drew, M. G. B. (2000). New J. Chem. 24, 511-517.]; Soares-Santos et al., 2003[Soares-Santos, P. C. R., Nogueira, H. I. S., Rocha, J., Félix, V., Drew, M. G. B., Sá Ferreira, R. A., Carlos, L. D. & Trindade, T. (2003). Polyhedron, 22, 3529-3539.]; Betz and Gerber, 2011[Betz, R. & Gerber, T. (2011). Acta Cryst. E67, o2039.]; Nirmalram et al., 2011[Nirmalram, J. S., Tamilselvi, D. & Muthiah, P. T. (2011). J. Chem. Crystallogr. 41, 864-867.]).

[Scheme 1]

We report herein the mol­ecular structure of the title salt[link], formed from the reaction of 5-fluoro­cytosine with 3-hy­droxy­picoinic acid, namely 5-fluoro­cytosinium 3-hy­droxy­picolinate.

2. Structural commentary

The asymmetric unit contains a 5-fluoro­cytosinium cation and a 3-hy­droxy­picolinate anion (Fig. 1[link]). The 5-fluoro­cytosine mol­ecule is protonated at N3, as is evident from the increase in the inter­nal angle at N3 from 120.8 (5) in neutral 5-fluoro­cytosine (Louis et al., 1982[Louis, T., Low, J. N. & Tollin, P. (1982). Cryst. Struct. Commun. 11, 1059-1064.]) to 124.85 (15)°. There is an intra­molecular N—H⋯F hydrogen bond with an S(5) ring motif between the N4 amino group and the F atom of the 5-fluoro­cytosinum cation. These hydrogen-bonding parameters are similar to those observed in 5-fluoro­cytosinium salicylate (Prabakaran et al., 2001[Prabakaran, P., Murugesan, S., Mu­thiah, P. T., Bocelli, G. & Righi, L. (2001). Acta Cryst. E57, o933-o936.]). An intra­molecular O—H⋯O inter­action forms an S(6) motif between the phenolic OH and carboxyl­ate group, which is also observed in 3-hy­droxy­pyridinium-2-carboxyl­ate (Betz & Gerber, 2011[Betz, R. & Gerber, T. (2011). Acta Cryst. E67, o2039.]).

[Figure 1]
Figure 1
The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids. Dashed lines represent hydrogen bonds.

3. Supra­molecular features

In the crystal structure, the carboxyl­ate group of the 3-hy­droxy­picolinate anion (O3 and O4) inter­acts with the proton­ated N3 atom and the 4-amino group of the 5-fluoro­cytosinium moiety through a pair of N—H⋯O hydrogen bonds, forming a robust [R_{2}^{2}](8) motif (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). The 3-hy­droxy­picolinate (N2 and C12) atoms inter­act with the N1 atom and the exocyclic oxygen O2 atom of the 5-fluoro­cytosinium moiety through a pair of N—H⋯N and C—H⋯O hydrogen bonds, forming an [R_{2}^{2}](7) motif. This type of motif rarely occurs in cytosinium carboxyl­ate inter­actions (Benali-Cherif et al., 2009[Benali-Cherif, N., Falek, W. & Direm, A. (2009). Acta Cryst. E65, o3058-o3059.]). The motif is further connected on the other side by R33(12) and R56(18) motifs formed (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) through C—H⋯O and N—H⋯O hydrogen bonds involving the O2 and N4 atoms of the 5-fluoro­cytosinium cation and the symmetry-related C6 atom of the another cytosinium cation and O1 atoms of 3-hy­droxy­picolinate anions, generating a wavy sheet-like structure parallel to (010) (Fig. 2[link]). These wavy sheets are inter­connected via C10—H10⋯O2 hydrogen bonds (Fig. 3[link]). The crystal structure is further stabilized by C—H⋯π inter­actions between 3-hy­droxy­picolinate anions, Table 1[link], Fig. 4[link].

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the N2/C8–C12 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N2i 0.86 2.04 2.873 (2) 163
N3—H3⋯O4 0.86 1.85 2.6665 (18) 158
N4—H4A⋯O3 0.86 1.98 2.830 (2) 169
N4—H4B⋯O1ii 0.86 2.26 3.076 (2) 159
N4—H4B⋯F1 0.86 2.43 2.7312 (18) 101
O1—H1A⋯O3 0.82 1.83 2.5542 (18) 146
C6—H6⋯O2i 0.93 2.29 3.127 (2) 150
C10—H10⋯O3iii 0.93 2.54 3.272 (2) 136
C12—H12⋯O2iv 0.93 2.39 3.129 (2) 137
Cll—H11⋯Cg1v 0.93 2.88 3.426 (2) 119
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (v) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z].
[Figure 2]
Figure 2
A view of the supra­molecular wavy sheet-like structure formed by N—H⋯F, O—H⋯O, N—H⋯O, N—H⋯N and C—H⋯O hydrogen bonds. Symmetry codes are given in Table 1[link]. Dashed lines represent hydrogen bonds.
[Figure 3]
Figure 3
The wavy sheets inter­linked by C—H⋯O hydrogen bonds. Dashed lines represent hydrogen bonds (see Table 1[link] for details).
[Figure 4]
Figure 4
A view of the C—H⋯π inter­actions shown as dashed lines. Symmetry codes are given in Table 1[link].

4. Synthesis and crystallization

Hot aqueous solutions of 5-fluoro­cytosine (32 mg, Alfa Aesar) and 3-hy­droxy­picolinic acid (37 mg, Alfa Aesar) were mixed in a 1:1 molar ratio. The resulting solution was warmed over a water bath for half an hour and then kept at room temperature for crystallization. After a week, colourless prismatic crystals were obtained.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were initially located in difference Fourier maps and were subsequently treated as riding atoms in geometrically idealized positions, with C—H = 0.93, N—H = 0.86 and O—H = 0.83 Å, and with Uiso(H) = 1.2Ueq(C,N) and Uiso(H) = 1.5Ueq(O).

Table 2
Experimental details

Crystal data
Chemical formula C4H5FN3O+·C6H4NO3
Mr 268.21
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 293
a, b, c (Å) 12.6487 (4), 7.0786 (2), 23.7200 (6)
V3) 2123.77 (10)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.14
Crystal size (mm) 0.15 × 0.05 × 0.05
 
Data collection
Diffractometer Agilent SuperNova (Dual, Cu at zero, Atlas)
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.])
Tmin, Tmax 0.979, 0.993
No. of measured, independent and observed [I > 2σ(I)] reflections 8914, 2437, 1955
Rint 0.027
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.111, 1.08
No. of reflections 2437
No. of parameters 173
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.24, −0.19
Computer programs: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Chemical context top

Fluorinated pyrimidine and purine derivatives have received much inter­est because of their wide range of biological applications (Giner-Sorolla & Bendich, 1958). 5-Fuorocytosine is a fluorinated pyrimidine derivative anti-metabolite drug and is also extensively used as an anti-fungal agent for the treatment of Candida and Cryptococcus (Vermes et al., 2000). 5-Flurocytosine is a versatile molecule that plays essential roles in many biological applications, such as anti-tumour, potential gene therapy and gene-directed prodrug therapy (GDEPT) in the treatment of cancer (Kohila et al., 2012). The crystal structures of 5-fluoro­cytosine monohydrate, 5-flurocytosine co-crystals and salts have also been reported (Louis et al., 1982; Tutughamiarso et al., 2012; Perumalla & Sun, 2014; Prabakaran et al., 2001). The crystal structures of various salts and complexes of 3-hy­droxy­picolinc acid have also been reported (Quintal et al., 2000; Soares-Santos et al., 2003; Betz and Gerber, 2011; Nirmalram et al., 2011). We report here the molecular structure of a salt, (I), formed from the reaction of 5-fluoro­cytosine with 3-hy­droxy­picoinic acid, namely 5-fluoro­cytosinium 3-hy­droxy­picolinate.

Structural commentary top

The asymmetric unit of (I) contains an 5-fluoro­cytosinium molecule and a 3-hy­droxy­picolininate anion (Fig. 1). The 5-fluoro­cytosine molecule is protonated at N3, as is evident from the increase in the inter­nal angle at N3 from 120.8 (5) neutral 5-fluoro­cytosine (Louis et al., 1982) to 124.85 (15)°. There is an intra­molecular N—H···F hydrogen bond with an S(5) ring motif between the N4 amino group and the F atom of the 5-fluoro­cytosinum cation. These hydrogen-bonding parameters are in agreement those in with 5-fluoro­cytosinium salicylate (Prabakaran et al., 2001). An intra­molecular O—H···O inter­action forms an S(6) motif between the phenolic OH and carboxyl­ate groups, which is also observed in 3-hy­droxy­pyridinium-2-carboxyl­ate (Betz & Gerber, 2011).

Supra­molecular features top

In the crystal structure, the carboxyl­ate group of the 3-hy­droxy­picolinate anion (O3 and O4) inter­acts with the protonated N3 atom and the 4-amino group of the 5-fluoro­cytosinium moiety through a pair of N—H···O hydrogen bonds, forming a robust R22(8) motif (Etter, 1990; Bernstein et al., 1995). The 3-hy­droxy­picolinate (N2 and C12) atoms inter­act with the N1 atom and the exocyclic oxygen O2 atom of the 5-fluoro­cytosinium moiety through a pair of N—H···N and C—H···O hydrogen bonds, forming an R22(7) motif. This type of motif rarely occurs in cytosinium carboxyl­ate inter­actions (Benali-Cherif et al., 2009). The motif is further connected on the other side by R33(12) and R56(18) motifs (Bernstein et al., 1995) formed through C—H···O and N—H···O hydrogen bonds involving the O2 and N4 atoms of the 5-fluoro­cytosinium cation and the symmetry-related C6 atom of the another cytosine cation and O1 atoms of 3-hy­droxy­picolinate anions, generating a wavy sheet-like structure parallel to (010) [OK?] (Fig. 2). These wavy sheets are inter­connected via C10—H10···O2 hydrogen bonds (Fig. 3). The crystal structure is further stabilized by C—H···π inter­actions between 3-hy­droxy­picolinate anions, Table 1.

Synthesis and crystallization top

Hot aqueous solutions of 5-fluoro­cytosine (32 mg, Alfa Aesar) and 3-hy­droxy­picolinicacid (37 mg, Alfa Aesar) were mixed in a 1:1 molar ratio. The resulting solution was warmed over a water bath for half an hour and then kept at room temperature for crystallization. After a week, colourless prismatic crystals were obtained.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were initially located in difference Fourier maps and were subsequently treated as riding atoms in geometrically idealized positions, with C—H = 0.93, N—H = 0.86 and O—H = 0.83 Å, and with Uiso(H) = 1.2Ueq(C,N) and Uiso(H) = 1.5Ueq(O).

Related literature top

For applications of 5-flurocytosine, see: Vermes et al. (2000); Kohila et al. (2012). For applications and crystal structures of 3-hydroxypicolinic acid derivatives, see: Quintal et al. (2000); Soares-Santos et al. (2003); Betz and Gerber (2011); Nirmalram et al. (2011). For related structures, see: Louis et al. (1982); Prabakaran et al. (2001); Tutughamiarso et al. (2012); Perumalla et al. (2014); Benali-Cherif et al. (2009). For hydrogen-bond graph-set notation, see: Etter et al. (1990); Bernstein et al. (1995).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids. Dashed lines represent hydrogen bonds.

A view of the supramolecular wavy sheet-like structure formed by N—H···F, O—H···O, N—H···O, N—H···N and C—H···O hydrogen bonds. Symmetry codes are given in Table 1. Dashed lines represent hydrogen bonds.

The wavy sheets interlinked by C—H···O hydrogen bonds. Dashed lines represent hydrogen bonds.

A view of the C—H···π interactions shown as dashed lines. Symmetry codes are given in Table 1.
4-Amino-5-fluoro-2-oxo-2,3-dihydropyrimidin-1-ium 3-hydroxypicolinate top
Crystal data top
C4H5FN3O+·C6H4NO3F(000) = 1104
Mr = 268.21Dx = 1.678 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3551 reflections
a = 12.6487 (4) Åθ = 3.7–29.7°
b = 7.0786 (2) ŵ = 0.14 mm1
c = 23.7200 (6) ÅT = 293 K
V = 2123.77 (10) Å3Needle, colourless
Z = 80.15 × 0.05 × 0.05 mm
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
2437 independent reflections
Radiation source: SuperNova (Mo) X-ray Source1955 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.027
Detector resolution: 10.4933 pixels mm-1θmax = 27.5°, θmin = 3.2°
ω scansh = 1611
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 96
Tmin = 0.979, Tmax = 0.993l = 3030
8914 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0458P)2 + 0.8599P]
where P = (Fo2 + 2Fc2)/3
2437 reflections(Δ/σ)max < 0.001
173 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C4H5FN3O+·C6H4NO3V = 2123.77 (10) Å3
Mr = 268.21Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.6487 (4) ŵ = 0.14 mm1
b = 7.0786 (2) ÅT = 293 K
c = 23.7200 (6) Å0.15 × 0.05 × 0.05 mm
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
2437 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
1955 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.993Rint = 0.027
8914 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.08Δρmax = 0.24 e Å3
2437 reflectionsΔρmin = 0.19 e Å3
173 parameters
Special details top

Experimental. 185 frames in 5 runs of ω scans. Crystal-detector distance = 55.0 mm.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.04979 (8)0.58078 (18)0.39473 (5)0.0483 (3)
N10.10109 (11)0.8014 (2)0.50442 (6)0.0335 (3)
H10.09090.84910.53730.040*
N30.21136 (11)0.7249 (2)0.42943 (6)0.0312 (3)
H30.27330.72390.41450.037*
N40.14821 (12)0.5828 (2)0.34880 (6)0.0392 (4)
H4A0.21080.58460.33470.047*
H4B0.09660.53600.32980.047*
O20.27785 (10)0.8667 (2)0.50714 (5)0.0446 (4)
C20.20128 (14)0.8021 (3)0.48270 (7)0.0317 (4)
C40.13147 (14)0.6513 (2)0.39922 (7)0.0296 (4)
C50.03071 (13)0.6548 (3)0.42474 (7)0.0332 (4)
C60.01722 (14)0.7286 (3)0.47624 (7)0.0346 (4)
H60.04960.72990.49260.041*
O10.49981 (11)0.4529 (2)0.24635 (5)0.0430 (4)
H1A0.44100.48330.25780.064*
O30.36400 (10)0.5738 (2)0.31741 (5)0.0408 (3)
O40.41321 (10)0.6570 (2)0.40413 (5)0.0416 (3)
N20.61308 (11)0.5297 (2)0.38561 (6)0.0296 (3)
C70.43231 (13)0.5915 (3)0.35634 (7)0.0301 (4)
C80.54219 (13)0.5251 (2)0.34318 (7)0.0274 (4)
C90.56959 (14)0.4572 (3)0.28970 (7)0.0306 (4)
C100.67182 (14)0.3927 (3)0.28059 (7)0.0347 (4)
H100.69180.34640.24550.042*
C110.74279 (14)0.3982 (3)0.32407 (7)0.0339 (4)
H110.81180.35650.31890.041*
C120.71035 (14)0.4669 (3)0.37608 (7)0.0332 (4)
H120.75890.46900.40550.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0265 (6)0.0690 (8)0.0494 (7)0.0079 (5)0.0027 (5)0.0139 (6)
N10.0293 (8)0.0439 (9)0.0272 (7)0.0025 (7)0.0027 (6)0.0036 (6)
N30.0221 (7)0.0427 (8)0.0288 (7)0.0005 (6)0.0025 (5)0.0008 (6)
N40.0295 (8)0.0552 (10)0.0330 (8)0.0036 (8)0.0024 (6)0.0086 (7)
O20.0291 (7)0.0668 (9)0.0379 (7)0.0048 (7)0.0022 (5)0.0131 (7)
C20.0278 (9)0.0392 (9)0.0280 (8)0.0024 (8)0.0003 (7)0.0009 (7)
C40.0278 (9)0.0330 (9)0.0280 (8)0.0017 (7)0.0008 (6)0.0039 (7)
C50.0238 (8)0.0406 (10)0.0351 (9)0.0010 (8)0.0034 (7)0.0001 (8)
C60.0249 (8)0.0426 (10)0.0362 (9)0.0019 (8)0.0043 (7)0.0038 (8)
O10.0331 (7)0.0677 (9)0.0280 (6)0.0063 (7)0.0043 (5)0.0070 (6)
O30.0251 (6)0.0644 (9)0.0329 (7)0.0030 (6)0.0020 (5)0.0009 (6)
O40.0275 (7)0.0623 (9)0.0349 (7)0.0053 (6)0.0032 (5)0.0091 (6)
N20.0244 (7)0.0380 (8)0.0265 (7)0.0016 (6)0.0002 (5)0.0011 (6)
C70.0247 (8)0.0361 (9)0.0294 (8)0.0013 (7)0.0015 (7)0.0045 (7)
C80.0238 (8)0.0326 (9)0.0258 (8)0.0020 (7)0.0014 (6)0.0024 (7)
C90.0292 (9)0.0367 (9)0.0258 (8)0.0007 (8)0.0012 (6)0.0007 (7)
C100.0357 (10)0.0394 (10)0.0290 (8)0.0047 (8)0.0048 (7)0.0026 (7)
C110.0257 (9)0.0375 (9)0.0386 (9)0.0058 (8)0.0028 (7)0.0011 (8)
C120.0267 (9)0.0411 (10)0.0319 (9)0.0005 (8)0.0030 (7)0.0012 (8)
Geometric parameters (Å, º) top
F1—C51.348 (2)O1—C91.355 (2)
N1—C61.356 (2)O1—H1A0.8200
N1—C21.368 (2)O3—C71.271 (2)
N1—H10.8600O4—C71.248 (2)
N3—C41.344 (2)N2—C121.328 (2)
N3—C21.383 (2)N2—C81.348 (2)
N3—H30.8600C7—C81.500 (2)
N4—C41.308 (2)C8—C91.400 (2)
N4—H4A0.8600C9—C101.388 (2)
N4—H4B0.8600C10—C111.368 (2)
O2—C21.218 (2)C10—H100.9300
C4—C51.411 (2)C11—C121.388 (2)
C5—C61.340 (2)C11—H110.9300
C6—H60.9300C12—H120.9300
C6—N1—C2122.73 (15)C9—O1—H1A109.5
C6—N1—H1118.6C12—N2—C8118.75 (14)
C2—N1—H1118.6O4—C7—O3124.40 (16)
C4—N3—C2124.84 (15)O4—C7—C8118.99 (15)
C4—N3—H3117.6O3—C7—C8116.60 (15)
C2—N3—H3117.6N2—C8—C9121.32 (15)
C4—N4—H4A120.0N2—C8—C7116.96 (14)
C4—N4—H4B120.0C9—C8—C7121.70 (15)
H4A—N4—H4B120.0O1—C9—C10118.77 (15)
O2—C2—N1123.98 (16)O1—C9—C8122.25 (16)
O2—C2—N3120.68 (16)C10—C9—C8118.98 (15)
N1—C2—N3115.34 (15)C11—C10—C9118.99 (16)
N4—C4—N3120.63 (16)C11—C10—H10120.5
N4—C4—C5123.02 (16)C9—C10—H10120.5
N3—C4—C5116.34 (15)C10—C11—C12119.08 (16)
C6—C5—F1122.47 (16)C10—C11—H11120.5
C6—C5—C4120.85 (16)C12—C11—H11120.5
F1—C5—C4116.68 (15)N2—C12—C11122.87 (16)
C5—C6—N1119.89 (16)N2—C12—H12118.6
C5—C6—H6120.1C11—C12—H12118.6
N1—C6—H6120.1
C6—N1—C2—O2179.95 (18)C12—N2—C8—C7178.04 (16)
C6—N1—C2—N30.7 (3)O4—C7—C8—N24.0 (2)
C4—N3—C2—O2179.68 (17)O3—C7—C8—N2174.95 (16)
C4—N3—C2—N10.4 (3)O4—C7—C8—C9177.49 (17)
C2—N3—C4—N4179.33 (17)O3—C7—C8—C93.6 (3)
C2—N3—C4—C50.0 (3)N2—C8—C9—O1179.39 (16)
N4—C4—C5—C6179.16 (18)C7—C8—C9—O12.2 (3)
N3—C4—C5—C60.2 (3)N2—C8—C9—C100.3 (3)
N4—C4—C5—F10.8 (3)C7—C8—C9—C10178.17 (16)
N3—C4—C5—F1179.85 (15)O1—C9—C10—C11179.43 (17)
F1—C5—C6—N1179.86 (16)C8—C9—C10—C110.3 (3)
C4—C5—C6—N10.1 (3)C9—C10—C11—C120.4 (3)
C2—N1—C6—C50.5 (3)C8—N2—C12—C110.7 (3)
C12—N2—C8—C90.5 (3)C10—C11—C12—N20.7 (3)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the N2/C8–C12 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.862.042.873 (2)163
N3—H3···O40.861.852.6665 (18)158
N4—H4A···O30.861.982.830 (2)169
N4—H4B···O1ii0.862.263.076 (2)159
N4—H4B···F10.862.432.7312 (18)101
O1—H1A···O30.821.832.5542 (18)146
C6—H6···O2i0.932.293.127 (2)150
C10—H10···O3iii0.932.543.272 (2)136
C12—H12···O2iv0.932.393.129 (2)137
Cll—H11···Cg1v0.932.883.426 (2)119
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x1/2, y, z+1/2; (iii) x+1, y1/2, z+1/2; (iv) x+1/2, y+3/2, z+1; (v) x+3/2, y1/2, z.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the N2/C8–C12 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.862.042.873 (2)163
N3—H3···O40.861.852.6665 (18)158
N4—H4A···O30.861.982.830 (2)169
N4—H4B···O1ii0.862.263.076 (2)159
N4—H4B···F10.862.432.7312 (18)101
O1—H1A···O30.821.832.5542 (18)146
C6—H6···O2i0.932.293.127 (2)150
C10—H10···O3iii0.932.543.272 (2)136
C12—H12···O2iv0.932.393.129 (2)137
Cll—H11···Cg1v0.932.883.426 (2)119
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x1/2, y, z+1/2; (iii) x+1, y1/2, z+1/2; (iv) x+1/2, y+3/2, z+1; (v) x+3/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC4H5FN3O+·C6H4NO3
Mr268.21
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)12.6487 (4), 7.0786 (2), 23.7200 (6)
V3)2123.77 (10)
Z8
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.15 × 0.05 × 0.05
Data collection
DiffractometerAgilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.979, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
8914, 2437, 1955
Rint0.027
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.111, 1.08
No. of reflections2437
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.19

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

 

Acknowledgements

AK thanks the UGC–SAP, India, for the award of an RFSMS. PTM is thankful to the UGC, New Delhi, for a UGC–BSR one-time grant to Faculty. FP thanks the Slovenian Research Agency for financial support (P1–0230–0175), as well as the EN–FIST Centre of Excellence, Trg Osvobodilne fronte 13, 1000 Ljubljana, Slovenia, for use of the SuperNova diffractometer.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.  Google Scholar
First citationBenali-Cherif, N., Falek, W. & Direm, A. (2009). Acta Cryst. E65, o3058–o3059.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBetz, R. & Gerber, T. (2011). Acta Cryst. E67, o2039.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationGiner-Sorolla, A. & Bendich, A. (1958). J. Am. Chem. Soc. 80, 5744–5752.  CAS Google Scholar
First citationKohila, V., Jaiswal, A. & Ghosh, S. S. (2012). Med. Chem. Commun. 3, 1316–1322.  Web of Science CrossRef CAS Google Scholar
First citationLouis, T., Low, J. N. & Tollin, P. (1982). Cryst. Struct. Commun. 11, 1059–1064.  CAS Google Scholar
First citationNirmalram, J. S., Tamilselvi, D. & Muthiah, P. T. (2011). J. Chem. Crystallogr. 41, 864–867.  Web of Science CSD CrossRef CAS Google Scholar
First citationPerumalla, S. R. & Sun, C. C. (2014). J. Pharm. Sci. 4, 1126–1132.  Web of Science CrossRef Google Scholar
First citationPrabakaran, P., Murugesan, S., Mu­thiah, P. T., Bocelli, G. & Righi, L. (2001). Acta Cryst. E57, o933–o936.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQuintal, S. M. O., Nogueira, H. I. S., Felix, V. & Drew, M. G. B. (2000). New J. Chem. 24, 511–517.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoares-Santos, P. C. R., Nogueira, H. I. S., Rocha, J., Félix, V., Drew, M. G. B., Sá Ferreira, R. A., Carlos, L. D. & Trindade, T. (2003). Polyhedron, 22, 3529–3539.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTutughamiarso, M., Wagner, G. & Egert, E. (2012). Acta Cryst. B68, 431–443.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationVermes, A., Guchelaar, H. J. & Dankert, J. (2000). J. Antimicrob. Chemother. 46, 171–179.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds