## data reports





OPEN d ACCESS

### Crystal structure of bis{2-[(2-hydroxyethyl)amino]ethanol- $\kappa^3 O, N, O'$ }copper(II) terephthalate

# Ya-Ping Li,<sup>a</sup> Dajun Sun,<sup>b</sup>\* Julia Ming,<sup>c</sup> Liying Han<sup>d</sup> and Guan-Fang Su<sup>a</sup>

<sup>a</sup>Department of Ophthalmology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, People's Republic of China, <sup>b</sup>Department of Vascular Surgery, The China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China, <sup>c</sup>St Erik's Eye Hospital, Karolinska Institutet, Polhemsgatan 50, SE-112 82 Stockholm, Sweden, and <sup>d</sup>Department of Gynecology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, People's Republic of China. \*Correspondence e-mail: drsundj@163.com

Received 29 September 2014; accepted 9 October 2014

Edited by M. Weil, Vienna University of Technology, Austria

The molecular components of the title salt,  $[Cu(C_4H_{11}-NO_2)_2](C_8H_4O_4)$ , are one  $Cu^{II}$  cation O,N,O'-chelated by two tridentate 2-[(2-hydroxyethyl)amino]ethanol ligands, and a terephthalate counter-dianion, located about a centre of inversion. The complex  $Cu^{II}$  cation is located about a centre of inversion and shows typical Jahn–Teller distortion, with two short Cu-O and two short Cu-N bonds in the equatorial plane and two long Cu-O bonds to the axial atoms. The cations are arranged in sheets parallel to (100), with the centrosymmetric terephthalate anions located between the sheets. Each anion is the acceptor of four  $O-H\cdots O$  and two  $N-H\cdots O$  hydrogen bonds, forming a three-dimensional network structure.

Keywords: crystal structure; copper(II) chelate complex; terephthalate.

CCDC reference: 1028231

#### 1. Related literature

For related copper(II) compounds with terephthalate anions, see: Abbaszadeh *et al.* (2012); Al-Hashemi *et al.* (2010).



V = 899.47 (16) Å<sup>3</sup>

Mo  $K\alpha$  radiation

 $0.29 \times 0.27 \times 0.26 \ \text{mm}$ 

 $\mu = 1.26 \text{ mm}^{-3}$ 

T = 293 K

Z = 2

#### 2. Experimental

2.1. Crystal data

 $[Cu(C_4H_{11}NO_2)_2](C_8H_4O_4)$   $M_r = 437.93$ Monoclinic,  $P2_1/c$  a = 8.6013 (9) Å b = 9.0398 (9) Å c = 11.5732 (12) Å  $\beta = 91.695$  (2)°

#### 2.2. Data collection

| Bruker SMART APEXII CCD                | 4784 measured reflections              |
|----------------------------------------|----------------------------------------|
| diffractometer                         | 1780 independent reflections           |
| Absorption correction: multi-scan      | 1611 reflections with $I > 2\sigma(I)$ |
| (SADABS; Bruker, 2002)                 | $R_{\rm int} = 0.034$                  |
| $T_{\min} = 0.728, \ T_{\max} = 0.812$ |                                        |
|                                        |                                        |

| 2.3. Refinement                                                                                                        |                                                                                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $R[F^2 > 2\sigma(F^2)] = 0.030$<br>$wR(F^2) = 0.080$<br>S = 1.08<br>1780 reflections<br>133 parameters<br>3 restraints | H atoms treated by a mixture of<br>independent and constrained<br>refinement<br>$\Delta \rho_{max} = 0.31$ e Å <sup>-3</sup><br>$\Delta \rho_{min} = -0.83$ e Å <sup>-3</sup> |

| Table 1       |          |     |     |
|---------------|----------|-----|-----|
| Hydrogen-bond | geometry | (Å, | °). |

. . .

| $D - H \cdot \cdot \cdot A$                                                                                    | D-H                              | $H \cdot \cdot \cdot A$                 | $D \cdots A$                            | $D - \mathbf{H} \cdot \cdot \cdot A$  |
|----------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------------|-----------------------------------------|---------------------------------------|
| $ \begin{array}{c} N1 - H1A \cdots O1^{i} \\ O4 - H4A \cdots O2^{ii} \\ O3 - H3A \cdots O1^{iii} \end{array} $ | 0.85 (2)<br>0.84 (2)<br>0.81 (2) | 2.08 (2)<br>1.66 (2)<br>1.88 (2)        | 2.9196 (19)<br>2.496 (2)<br>2.6803 (19) | 168 (2)<br>180 (3)<br>167 (2)         |
| Symmetry codes:<br>-x + 2, -y + 1, -z +                                                                        | (i) $-x+2$                       | $2, y - \frac{1}{2}, -z + \frac{3}{2};$ | (ii) $x, -y +$                          | $\frac{1}{2}, z + \frac{1}{2};$ (iii) |

Data collection: *APEX2* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXL97*; software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008) and *publCIF* (Westrip, 2010).

Acknowledgements

This project was supported by the International Scientific and Technological Cooperation Foundation of Jilin Province (grant No. 20120722).

Supporting information for this paper is available from the IUCr electronic archives (Reference: WM5069).

References

- Abbaszadeh, A., Safari, N., Amani, V. & Notash, B. (2012). Acta Cryst. E68, m1012.
- Al-Hashemi, R., Safari, N., Amani, S., Amani, V., Abedi, A., Khavasi, H. R. & Ng, S. W. (2010). J. Coord. Chem. 63, 3207–3217.
- Bruker (2002). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

## supporting information

Acta Cryst. (2014). E70, m372-m373 [doi:10.1107/S1600536814022272]

# Crystal structure of bis{2-[(2-hydroxyethyl)amino]ethanol- $\kappa^3 O, N, O'$ }copper(II) terephthalate

#### Ya-Ping Li, Dajun Sun, Julia Ming, Liying Han and Guan-Fang Su

#### S1. Preparation

The synthesis was performed under hydrothermal conditions. A mixture of  $Cu(CH_3COO)_2 \cdot 2H_2O$ , (0.2 mmol, 0.046 g), 2-(2-hydroxy-ethylamine) (0.4 mmol, 0.043 g), sodium terephthalate (0.2 mmol, 0.042 g) and water (20 ml) in a 30 ml stainless steel reactor with a Teflon liner were heated from 293 to 433 K in 2 h, and a constant temperature was maintained at 433 K for 72 h, after which the mixture was cooled to 298 K. Blue crystals of the title compound were recovered from the reaction.

#### S2. Refinement

All C—H H atoms were positioned with idealized geometry and refined with  $U_{iso}(H) = 1.2U_{eq}(C)$  using a riding model. The hydroxy H-atoms and amine H atoms were located in a difference Fourier map and were refined with O—H or N—H distances restrained to 0.85 (3) Å and with  $U_{iso}(H) = 1.5U_{eq}(N,O)$ .



#### Figure 1

The molecular components of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) 3-x, 1-y, 2-z; (ii) 2-x, -y, 2-z.]



#### Figure 2

The packing of the molecular components in the title compound. N—H…O and O—H…O hydrogen bonds are shown by dashed lines.

#### Bis{2-[(2-hydroxyethyl)amino]ethanol- $\kappa^3O, N, O'$ }copper(II) terephthalate

| Crystal data                             |                                                           |
|------------------------------------------|-----------------------------------------------------------|
| $[Cu(C_4H_{11}NO_2)_2](C_8H_4O_4)$       | F(000) = 458                                              |
| $M_r = 437.93$                           | $D_x = 1.617 \text{ Mg m}^{-3}$                           |
| Monoclinic, $P2_1/c$                     | Mo K $\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$    |
| Hall symbol: -P 2ybc                     | Cell parameters from 1780 reflections                     |
| a = 8.6013 (9)  Å                        | $\theta = 1.7-22.8^{\circ}$                               |
| b = 9.0398 (9)  Å                        | $\mu = 1.26 \text{ mm}^{-1}$                              |
| c = 11.5732 (12)  Å                      | T = 293  K                                                |
| $\beta = 91.695 (2)^{\circ}$             | Block, blue                                               |
| $V = 899.47 (16) \text{ Å}^{3}$          | $0.29 \times 0.27 \times 0.26 \text{ mm}$                 |
| Z = 2<br>Data collection                 |                                                           |
| Bruker SMART APEXII CCD                  | 4784 measured reflections                                 |
| diffractometer                           | 1780 independent reflections                              |
| Radiation source: fine-focus sealed tube | 1611 reflections with $I > 2\sigma(I)$                    |
| Graphite monochromator                   | $R_{int} = 0.034$                                         |
| phi and $\omega$ scans                   | $\theta_{max} = 26.1^{\circ}, \theta_{min} = 2.4^{\circ}$ |
| Absorption correction: multi-scan        | $h = -10 \rightarrow 8$                                   |
| ( <i>SADABS</i> ; Bruker, 2002)          | $k = -11 \rightarrow 11$                                  |
| $T_{\min} = 0.728, T_{\max} = 0.812$     | $l = -12 \rightarrow 14$                                  |

Refinement

| Refinement on $F^2$                             | Secondary atom site location: difference Fourier          |
|-------------------------------------------------|-----------------------------------------------------------|
| Least-squares matrix: full                      | map                                                       |
| $R[F^2 > 2\sigma(F^2)] = 0.030$                 | Hydrogen site location: inferred from                     |
| $wR(F^2) = 0.080$                               | neighbouring sites                                        |
| S = 1.08                                        | H atoms treated by a mixture of independent               |
| 1780 reflections                                | and constrained refinement                                |
| 133 parameters                                  | $w = 1/[\sigma^2(F_o^2) + (0.0446P)^2 + 0.3198P]$         |
| 3 restraints                                    | where $P = (F_{o}^{2} + 2F_{c}^{2})/3$                    |
| Primary atom site location: structure-invariant | $(\Delta/\sigma)_{\rm max} < 0.001$                       |
| direct methods                                  | $\Delta \rho_{\rm max} = 0.31 \ {\rm e} \ {\rm \AA}^{-3}$ |
|                                                 | $\Delta \rho_{\rm min} = -0.83 \text{ e} \text{ Å}^{-3}$  |

#### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted R-factor wR and goodness of fit S are based on  $F^2$ , conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2$ sigma( $F^2$ ) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$  are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

|     | x            | У            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |
|-----|--------------|--------------|--------------|-----------------------------|
| C1  | 1.3193 (2)   | 0.5638 (2)   | 0.79022 (15) | 0.0172 (4)                  |
| C2  | 1.4142 (2)   | 0.5319 (2)   | 0.89901 (16) | 0.0152 (4)                  |
| C3  | 1.5213 (2)   | 0.4163 (2)   | 0.90128 (16) | 0.0182 (4)                  |
| Н3  | 1.5359       | 0.3603       | 0.8351       | 0.022*                      |
| C4  | 1.3941 (2)   | 0.6154 (2)   | 0.99805 (15) | 0.0181 (4)                  |
| H4  | 1.3232       | 0.6932       | 0.9968       | 0.022*                      |
| C5  | 1.1185 (2)   | 0.3121 (2)   | 1.02670 (17) | 0.0256 (4)                  |
| H5A | 1.2286       | 0.2892       | 1.0319       | 0.031*                      |
| H5B | 1.1057       | 0.4155       | 1.0468       | 0.031*                      |
| C6  | 1.0583 (2)   | 0.2870 (2)   | 0.90354 (17) | 0.0235 (4)                  |
| H6A | 0.9534       | 0.3259       | 0.8956       | 0.028*                      |
| H6B | 1.1229       | 0.3417       | 0.8511       | 0.028*                      |
| C7  | 1.2043 (2)   | 0.0697 (2)   | 0.82537 (15) | 0.0233 (4)                  |
| H7A | 1.2537       | 0.1440       | 0.7784       | 0.028*                      |
| H7B | 1.1821       | -0.0158      | 0.7769       | 0.028*                      |
| C8  | 1.3139 (2)   | 0.0254 (2)   | 0.92433 (18) | 0.0229 (4)                  |
| H8A | 1.3931       | -0.0412      | 0.8968       | 0.027*                      |
| H8B | 1.3649       | 0.1123       | 0.9568       | 0.027*                      |
| N1  | 1.05698 (17) | 0.12937 (17) | 0.86951 (12) | 0.0159 (3)                  |
| H1A | 0.985 (2)    | 0.123 (2)    | 0.8179 (16)  | 0.024*                      |
| 01  | 1.20598 (16) | 0.64876 (16) | 0.79517 (11) | 0.0258 (3)                  |
| O2  | 1.3607 (2)   | 0.49850 (17) | 0.70051 (13) | 0.0334 (4)                  |
| O3  | 1.03789 (17) | 0.22244 (15) | 1.10678 (11) | 0.0211 (3)                  |
| H3A | 0.956 (2)    | 0.259 (3)    | 1.127 (2)    | 0.032*                      |

## supporting information

| O4  | 1.22477 (15) | -0.04666 (15) | 1.01071 (11) | 0.0163 (3)   |
|-----|--------------|---------------|--------------|--------------|
| H4A | 1.270 (3)    | -0.031 (3)    | 1.0742 (16)  | 0.025*       |
| Cu1 | 1.0000       | 0.0000        | 1.0000       | 0.01196 (13) |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$     | $U^{22}$    | $U^{33}$     | $U^{12}$      | $U^{13}$      | $U^{23}$     |
|-----|--------------|-------------|--------------|---------------|---------------|--------------|
| C1  | 0.0139 (9)   | 0.0228 (10) | 0.0149 (9)   | -0.0016 (8)   | -0.0017 (7)   | 0.0012 (7)   |
| C2  | 0.0130 (9)   | 0.0170 (8)  | 0.0156 (8)   | -0.0019 (8)   | -0.0020 (7)   | 0.0018 (7)   |
| C3  | 0.0173 (9)   | 0.0203 (9)  | 0.0168 (8)   | 0.0013 (7)    | -0.0014 (7)   | -0.0034 (7)  |
| C4  | 0.0162 (9)   | 0.0189 (9)  | 0.0192 (9)   | 0.0040 (8)    | -0.0023 (7)   | -0.0008 (7)  |
| C5  | 0.0279 (11)  | 0.0218 (10) | 0.0268 (10)  | -0.0081 (8)   | -0.0029 (8)   | -0.0039 (8)  |
| C6  | 0.0283 (11)  | 0.0185 (9)  | 0.0235 (10)  | -0.0043 (8)   | -0.0035 (8)   | 0.0038 (8)   |
| C7  | 0.0184 (10)  | 0.0378 (12) | 0.0137 (8)   | 0.0013 (9)    | 0.0006 (7)    | 0.0045 (8)   |
| C8  | 0.0140 (10)  | 0.0371 (11) | 0.0176 (9)   | 0.0004 (8)    | 0.0027 (8)    | 0.0047 (8)   |
| N1  | 0.0135 (8)   | 0.0210 (8)  | 0.0128 (7)   | -0.0019 (6)   | -0.0052 (6)   | 0.0016 (6)   |
| 01  | 0.0223 (8)   | 0.0351 (8)  | 0.0195 (7)   | 0.0124 (6)    | -0.0071 (5)   | -0.0038 (6)  |
| O2  | 0.0252 (9)   | 0.0597 (13) | 0.0149 (7)   | 0.0192 (7)    | -0.0050 (6)   | -0.0049 (6)  |
| O3  | 0.0216 (7)   | 0.0223 (7)  | 0.0194 (6)   | 0.0015 (6)    | -0.0005 (5)   | -0.0037 (5)  |
| O4  | 0.0126 (6)   | 0.0238 (7)  | 0.0125 (6)   | 0.0002 (6)    | -0.0023 (5)   | 0.0010 (5)   |
| Cu1 | 0.01017 (19) | 0.0143 (2)  | 0.01133 (18) | -0.00020 (10) | -0.00122 (12) | 0.00137 (10) |

#### Geometric parameters (Å, °)

| C101                   | 1.243 (2)   | C7—N1                | 1.482 (2)   |  |
|------------------------|-------------|----------------------|-------------|--|
| C1—O2                  | 1.255 (2)   | C7—C8                | 1.515 (3)   |  |
| C1—C2                  | 1.508 (2)   | C7—H7A               | 0.9700      |  |
| C2—C4                  | 1.387 (3)   | С7—Н7В               | 0.9700      |  |
| C2—C3                  | 1.392 (3)   | C8—O4                | 1.434 (2)   |  |
| C3—C4 <sup>i</sup>     | 1.386 (2)   | C8—H8A               | 0.9700      |  |
| С3—Н3                  | 0.9300      | C8—H8B               | 0.9700      |  |
| C4—C3 <sup>i</sup>     | 1.386 (2)   | N1—Cu1               | 1.9830 (15) |  |
| C4—H4                  | 0.9300      | N1—H1A               | 0.847 (16)  |  |
| C5—O3                  | 1.427 (2)   | O3—Cu1               | 2.3776 (13) |  |
| С5—С6                  | 1.519 (3)   | O3—H3A               | 0.814 (16)  |  |
| С5—Н5А                 | 0.9700      | O4—Cu1               | 1.9791 (13) |  |
| С5—Н5В                 | 0.9700      | O4—H4A               | 0.835 (17)  |  |
| C6—N1                  | 1.478 (2)   | Cu1—O4 <sup>ii</sup> | 1.9791 (13) |  |
| С6—Н6А                 | 0.9700      | Cu1—N1 <sup>ii</sup> | 1.9830 (15) |  |
| С6—Н6В                 | 0.9700      | Cu1—O3 <sup>ii</sup> | 2.3776 (13) |  |
| 01—C1—O2               | 124.81 (17) | C7—C8—H8A            | 110.0       |  |
| 01—C1—C2               | 119.04 (16) | O4—C8—H8B            | 110.0       |  |
| O2—C1—C2               | 116.13 (16) | C7—C8—H8B            | 110.0       |  |
| C4—C2—C3               | 119.43 (17) | H8A—C8—H8B           | 108.4       |  |
| C4—C2—C1               | 120.51 (17) | C6—N1—C7             | 116.30 (16) |  |
| C3—C2—C1               | 120.05 (17) | C6—N1—Cu1            | 111.45 (11) |  |
| C4 <sup>i</sup> —C3—C2 | 120.13 (17) | C7—N1—Cu1            | 106.31 (11) |  |
|                        |             |                      |             |  |

| C4 <sup>i</sup> —C3—H3     | 119.9        | C6—N1—H1A                              | 104.5 (15)   |
|----------------------------|--------------|----------------------------------------|--------------|
| С2—С3—Н3                   | 119.9        | C7—N1—H1A                              | 110.2 (15)   |
| C3 <sup>i</sup> —C4—C2     | 120.43 (17)  | Cu1—N1—H1A                             | 107.9 (15)   |
| C3 <sup>i</sup> —C4—H4     | 119.8        | C5—O3—Cu1                              | 101.82 (10)  |
| C2—C4—H4                   | 119.8        | С5—О3—НЗА                              | 113.5 (18)   |
| O3—C5—C6                   | 111.45 (16)  | Cu1—O3—H3A                             | 112.5 (18)   |
| O3—C5—H5A                  | 109.3        | C8—O4—Cu1                              | 113.63 (11)  |
| С6—С5—Н5А                  | 109.3        | C8—O4—H4A                              | 106.7 (18)   |
| O3—C5—H5B                  | 109.3        | Cu1—O4—H4A                             | 116.8 (18)   |
| С6—С5—Н5В                  | 109.3        | O4—Cu1—O4 <sup>ii</sup>                | 180.0        |
| H5A—C5—H5B                 | 108.0        | O4—Cu1—N1 <sup>ii</sup>                | 95.14 (6)    |
| N1—C6—C5                   | 113.19 (15)  | O4 <sup>ii</sup> —Cu1—N1 <sup>ii</sup> | 84.86 (6)    |
| N1—C6—H6A                  | 108.9        | O4—Cu1—N1                              | 84.86 (6)    |
| С5—С6—Н6А                  | 108.9        | O4 <sup>ii</sup> —Cu1—N1               | 95.14 (6)    |
| N1—C6—H6B                  | 108.9        | N1 <sup>ii</sup> —Cu1—N1               | 180.0        |
| С5—С6—Н6В                  | 108.9        | O4—Cu1—O3 <sup>ii</sup>                | 88.34 (5)    |
| H6A—C6—H6B                 | 107.8        | O4 <sup>ii</sup> —Cu1—O3 <sup>ii</sup> | 91.66 (5)    |
| N1—C7—C8                   | 110.78 (15)  | N1 <sup>ii</sup> —Cu1—O3 <sup>ii</sup> | 82.18 (5)    |
| N1—C7—H7A                  | 109.5        | N1—Cu1—O3 <sup>ii</sup>                | 97.82 (5)    |
| С8—С7—Н7А                  | 109.5        | O4—Cu1—O3                              | 91.66 (5)    |
| N1—C7—H7B                  | 109.5        | O4 <sup>ii</sup> —Cu1—O3               | 88.34 (5)    |
| С8—С7—Н7В                  | 109.5        | N1 <sup>ii</sup> —Cu1—O3               | 97.82 (5)    |
| H7A—C7—H7B                 | 108.1        | N1—Cu1—O3                              | 82.18 (5)    |
| O4—C8—C7                   | 108.27 (16)  | O3 <sup>ii</sup> —Cu1—O3               | 180.0        |
| O4—C8—H8A                  | 110.0        |                                        |              |
| 01—C1—C2—C4                | -11.6 (3)    | C8—O4—Cu1—N1                           | -1.66 (13)   |
| O2—C1—C2—C4                | 169.71 (18)  | C8—O4—Cu1—O3 <sup>ii</sup>             | 96.35 (13)   |
| O1—C1—C2—C3                | 167.30 (18)  | C8—O4—Cu1—O3                           | -83.65 (13)  |
| O2—C1—C2—C3                | -11.4 (3)    | C6—N1—Cu1—O4                           | -103.85 (13) |
| $C4-C2-C3-C4^{i}$          | 0.4 (3)      | C7—N1—Cu1—O4                           | 23.81 (11)   |
| $C1-C2-C3-C4^{i}$          | -178.47 (17) | C6—N1—Cu1—O4 <sup>ii</sup>             | 76.15 (13)   |
| C3-C2-C4-C3 <sup>i</sup>   | -0.4 (3)     | C7—N1—Cu1—O4 <sup>ii</sup>             | -156.19 (11) |
| $C1-C2-C4-C3^{i}$          | 178.46 (17)  | C6—N1—Cu1—N1 <sup>ii</sup>             | 5 (100)      |
| O3—C5—C6—N1                | -52.7 (2)    | C7—N1—Cu1—N1 <sup>ii</sup>             | 133 (100)    |
| N1—C7—C8—O4                | 41.4 (2)     | C6—N1—Cu1—O3 <sup>ii</sup>             | 168.55 (12)  |
| C5—C6—N1—C7                | -85.3 (2)    | C7—N1—Cu1—O3 <sup>ii</sup>             | -63.79 (12)  |
| C5—C6—N1—Cu1               | 36.8 (2)     | C6—N1—Cu1—O3                           | -11.45 (12)  |
| C8—C7—N1—C6                | 82.9 (2)     | C7—N1—Cu1—O3                           | 116.21 (12)  |
| C8—C7—N1—Cu1               | -41.82 (18)  | C5—O3—Cu1—O4                           | 69.87 (12)   |
| C6—C5—O3—Cu1               | 37.08 (18)   | C5—O3—Cu1—O4 <sup>ii</sup>             | -110.13 (12) |
| C7—C8—O4—Cu1               | -20.7(2)     | C5—O3—Cu1—N1 <sup>ii</sup>             | 165.29 (12)  |
| C8—O4—Cu1—O4 <sup>ii</sup> | -53 (21)     | C5—O3—Cu1—N1                           | -14.71 (12)  |
| C8—O4—Cu1—N1 <sup>ii</sup> | 178.34 (13)  | C5—O3—Cu1—O3 <sup>ii</sup>             | -40.8 (3)    |

Symmetry codes: (i) -*x*+3, -*y*+1, -*z*+2; (ii) -*x*+2, -*y*, -*z*+2.

#### Hydrogen-bond geometry (Å, °)

| D—H···A                           | <i>D</i> —Н | H···A    | D····A      | D—H···A |
|-----------------------------------|-------------|----------|-------------|---------|
| N1—H1A···O1 <sup>iii</sup>        | 0.85 (2)    | 2.08 (2) | 2.9196 (19) | 168 (2) |
| O4—H4A···O2 <sup>iv</sup>         | 0.84 (2)    | 1.66 (2) | 2.496 (2)   | 180 (3) |
| O3—H3 <i>A</i> ···O1 <sup>v</sup> | 0.81 (2)    | 1.88 (2) | 2.6803 (19) | 167 (2) |

Symmetry codes: (iii) -x+2, y-1/2, -z+3/2; (iv) x, -y+1/2, z+1/2; (v) -x+2, -y+1, -z+2.