metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­{2-[bis­­(2-hy­dr­oxy­eth­yl)amino]­ethanol-κ4O,N,O′,O′′}cadmium terephthalate

aDepartment of Ophthalmology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, People's Republic of China, bDepartment of Gynaecology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, People's Republic of China, and cSt Erik's Eye Hospital, Karolinska Institutet, Polhemsgatan 50, SE-112 82 Stockholm, Sweden
*Correspondence e-mail: drhanly@163.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 29 September 2014; accepted 11 October 2014; online 18 October 2014)

In the title salt, [Cd(C6H15NO3)2](C8H4O4), the Cd2+ cation is coordinated by six O atoms and two N atoms from two tetra­dentate 2-[bis­(2-hy­droxy­eth­yl)amino]­ethanol ligands, displaying a distorted square-anti­prismatic coordination. The terephthalate dianion does not coordinate to the cation but is connected through O⋯H—O hydrogen bonds of medium strength to the complex cations, leading to a layered structure extending parallel to (100).

1. Related literature

For Cd—O and Cd—N bond lengths resulting from CdN2O6 and CdN4O4 coordination sets, see: Shirvan & Dezfuli (2012[Shirvan, S. A. & Haydari Dezfuli, S. (2012). Acta Cryst. E68, m1008-m1009.]); Shi & Tiekink (2009[Shi, L.-P. & Tiekink, E. R. T. (2009). Acta Cryst. E65, m885-m886.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Cd(C6H15NO3)2](C8H4O4)

  • Mr = 574.89

  • Orthorhombic, P b c a

  • a = 13.2789 (12) Å

  • b = 14.6329 (14) Å

  • c = 24.278 (2) Å

  • V = 4717.4 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.98 mm−1

  • T = 296 K

  • 0.28 × 0.25 × 0.24 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.725, Tmax = 0.812

  • 28314 measured reflections

  • 4639 independent reflections

  • 2694 reflections with I > 2σ(I)

  • Rint = 0.093

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.099

  • S = 0.98

  • 4639 reflections

  • 316 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.77 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H01⋯O4 0.84 (2) 1.86 (2) 2.692 (4) 168 (5)
O8—H02⋯O2i 0.83 (2) 1.79 (2) 2.612 (4) 170 (5)
O5—H03⋯O4ii 0.84 (2) 1.82 (2) 2.645 (5) 170 (6)
O9—H04⋯O1i 0.84 (2) 1.84 (2) 2.673 (4) 169 (5)
O10—H05⋯O1iii 0.84 (2) 1.82 (2) 2.647 (4) 169 (6)
O7—H06⋯O3 0.86 (2) 1.78 (2) 2.635 (4) 171 (5)
Symmetry codes: (i) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iii) [-x+{\script{1\over 2}}, -y, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2002[Bruker (2002). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Preparation top

The synthesis was performed under hydro­thermal conditions. A mixture of Cd(CH3COO)2·2H2O, (0.2 mmol, 0.053 g), [tris­(2-hy­droxy­ethyl)­amino]­ethanol (0.4 mmol, 0.062 g), sodium terephthalate (0.2 mmol, 0.042 g) and water (20 ml) in a 30 ml stainless steel reactor with a Teflon liner was heated from 293 to 433 K in 2 h and a constant temperature was maintained at 433 K for 72 h, after which the mixture was cooled to 298 K. Colorless crystals of the title compound were recovered from the resulting reaction solution.

Refinement top

The C—H H atoms were positioned with idealized geometry and refined with Uiso(H) = 1.2Ueq(C) using a riding model. The hy­droxy H-atoms were located in a difference Fourier map and were refined with an O—H distance restrained to 0.85 (1) Å and with Uiso(H) = 1.5Ueq(O). One reflection (002) was obstracted from the beamstop and was omitted from the refinement.

Related literature top

For Cd—O and Cd—N bond lengths resulting from CdN2O6 and CdN4O4 coordination sets, see: Shirvan & Dezfuli (2012); Shi & Tiekink (2009).

Computing details top

Data collection: APEX2 (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
The molecular components of the title compound with displacement ellipsoids drawn at the 30% probability level.

The packing of the molecular components in the crystal structure of the title compound. O—H···O hydrogen bonds are indicated by dashed lines.
Bis{2-[bis(2-hydroxyethyl)amino]ethanol-κ4O,N,O',O''}cadmium terephthalate top
Crystal data top
[Cd(C6H15NO3)2](C8H4O4)F(000) = 2368
Mr = 574.89Dx = 1.619 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4657 reflections
a = 13.2789 (12) Åθ = 1.7–22.8°
b = 14.6329 (14) ŵ = 0.98 mm1
c = 24.278 (2) ÅT = 296 K
V = 4717.4 (8) Å3Block, colorless
Z = 80.28 × 0.25 × 0.24 mm
Data collection top
Bruker APEXII CCD
diffractometer
4639 independent reflections
Radiation source: fine-focus sealed tube2694 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.093
ϕ and ω scansθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1615
Tmin = 0.725, Tmax = 0.812k = 1718
28314 measured reflectionsl = 2929
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 0.98 w = 1/[σ2(Fo2) + (0.0439P)2 + 0.0385P]
where P = (Fo2 + 2Fc2)/3
4639 reflections(Δ/σ)max = 0.001
316 parametersΔρmax = 0.77 e Å3
6 restraintsΔρmin = 0.50 e Å3
Crystal data top
[Cd(C6H15NO3)2](C8H4O4)V = 4717.4 (8) Å3
Mr = 574.89Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 13.2789 (12) ŵ = 0.98 mm1
b = 14.6329 (14) ÅT = 296 K
c = 24.278 (2) Å0.28 × 0.25 × 0.24 mm
Data collection top
Bruker APEXII CCD
diffractometer
4639 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2694 reflections with I > 2σ(I)
Tmin = 0.725, Tmax = 0.812Rint = 0.093
28314 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0376 restraints
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 0.98Δρmax = 0.77 e Å3
4639 reflectionsΔρmin = 0.50 e Å3
316 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2024 (3)0.1259 (3)0.77515 (18)0.0269 (10)
C20.2153 (3)0.1917 (3)0.82266 (18)0.0229 (10)
C30.2323 (3)0.2840 (3)0.81455 (17)0.0232 (10)
H30.23550.30670.77880.028*
C40.2447 (3)0.3434 (3)0.85847 (17)0.0214 (8)
H40.25620.40520.85200.026*
C50.2400 (3)0.3108 (3)0.91230 (18)0.0216 (9)
C60.2230 (3)0.2185 (3)0.92059 (18)0.0251 (10)
H60.21960.19590.95630.030*
C70.2110 (3)0.1594 (3)0.87684 (17)0.0274 (10)
H70.19990.09760.88340.033*
C80.2551 (3)0.3762 (3)0.95972 (16)0.0250 (9)
C90.1119 (4)0.2604 (3)0.6575 (2)0.0433 (13)
H9A0.12780.29580.62480.052*
H9B0.08800.30170.68590.052*
C100.0344 (4)0.1908 (3)0.6448 (2)0.0474 (14)
H10A0.01520.16000.67860.057*
H10B0.02490.22100.63030.057*
C110.0503 (3)0.0201 (3)0.65781 (19)0.0338 (12)
H11A0.04880.01420.69200.041*
H11B0.00930.07450.66240.041*
C120.0110 (3)0.0362 (3)0.6121 (2)0.0366 (13)
H12A0.05890.05120.61940.044*
H12B0.01360.00110.57830.044*
C130.0602 (4)0.1576 (4)0.5480 (2)0.0496 (15)
H13A0.09030.21790.54630.060*
H13B0.01070.16400.53910.060*
C140.1083 (4)0.0988 (4)0.5058 (2)0.0497 (15)
H14A0.06940.04320.50110.060*
H14B0.11020.13060.47080.060*
C150.3955 (4)0.0473 (4)0.7273 (2)0.0451 (14)
H15A0.41910.01470.72160.054*
H15B0.40240.06200.76610.054*
C160.4576 (4)0.1130 (4)0.6931 (2)0.0430 (13)
H16A0.43960.17520.70280.052*
H16B0.52830.10440.70160.052*
C170.4911 (4)0.0136 (3)0.6150 (2)0.0437 (14)
H17A0.56020.02660.60470.052*
H17B0.49220.03010.64500.052*
C180.4374 (3)0.0270 (3)0.5672 (2)0.0416 (13)
H18A0.43690.01550.53650.050*
H18B0.47050.08280.55550.050*
C190.4816 (4)0.1776 (3)0.6017 (2)0.0502 (15)
H19A0.54170.20070.61970.060*
H19B0.50080.15650.56530.060*
C200.4083 (3)0.2523 (3)0.5961 (2)0.0408 (12)
H20A0.39340.27820.63190.049*
H20B0.43550.30010.57280.049*
N10.0693 (3)0.1224 (3)0.60478 (15)0.0306 (9)
N20.4415 (3)0.0993 (3)0.63382 (16)0.0326 (9)
O10.2571 (2)0.3443 (2)1.00821 (12)0.0369 (8)
O20.2658 (2)0.4589 (2)0.94888 (12)0.0398 (9)
O30.1960 (3)0.0423 (2)0.78535 (12)0.0408 (9)
O40.1988 (3)0.1589 (2)0.72712 (12)0.0346 (8)
O50.1974 (3)0.2125 (2)0.67582 (16)0.0522 (10)
H030.236 (4)0.251 (3)0.690 (2)0.078*
O60.1506 (2)0.0445 (2)0.64437 (12)0.0270 (7)
H010.174 (3)0.080 (3)0.6685 (15)0.040*
O70.2943 (3)0.0547 (2)0.71137 (12)0.0353 (8)
H060.257 (3)0.026 (3)0.7342 (17)0.053*
O80.2064 (3)0.0772 (2)0.52263 (13)0.0342 (8)
H020.226 (3)0.035 (3)0.5023 (18)0.051*
O90.3366 (2)0.0460 (2)0.58471 (12)0.0314 (8)
H040.304 (3)0.078 (3)0.5619 (16)0.047*
O100.3200 (3)0.2158 (2)0.57235 (16)0.0534 (11)
H050.289 (4)0.255 (3)0.554 (2)0.080*
Cd10.25186 (2)0.085556 (19)0.618765 (11)0.02039 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.024 (2)0.034 (3)0.023 (3)0.002 (2)0.004 (2)0.003 (2)
C20.019 (2)0.027 (3)0.022 (2)0.0035 (17)0.0035 (18)0.0032 (19)
C30.025 (3)0.027 (2)0.017 (2)0.0013 (18)0.0014 (18)0.0037 (18)
C40.0197 (19)0.020 (2)0.025 (2)0.001 (2)0.000 (2)0.0003 (18)
C50.015 (2)0.027 (2)0.022 (2)0.0026 (19)0.003 (2)0.0009 (17)
C60.031 (3)0.028 (3)0.016 (2)0.0021 (18)0.0010 (18)0.0038 (18)
C70.029 (2)0.023 (2)0.031 (3)0.0015 (19)0.004 (2)0.004 (2)
C80.024 (2)0.030 (2)0.021 (2)0.003 (2)0.000 (2)0.0019 (19)
C90.042 (3)0.031 (3)0.057 (4)0.008 (2)0.005 (3)0.000 (3)
C100.036 (3)0.034 (3)0.073 (4)0.005 (2)0.012 (3)0.005 (3)
C110.030 (3)0.037 (3)0.035 (3)0.002 (2)0.012 (2)0.001 (2)
C120.019 (2)0.042 (3)0.049 (3)0.006 (2)0.000 (2)0.002 (3)
C130.028 (3)0.069 (4)0.052 (4)0.009 (3)0.002 (3)0.032 (3)
C140.034 (3)0.086 (4)0.029 (3)0.017 (3)0.007 (2)0.008 (3)
C150.051 (3)0.053 (3)0.032 (3)0.008 (3)0.016 (3)0.001 (3)
C160.036 (3)0.046 (3)0.047 (3)0.002 (2)0.019 (3)0.008 (3)
C170.024 (3)0.046 (3)0.062 (4)0.002 (2)0.009 (2)0.003 (3)
C180.029 (3)0.049 (3)0.047 (3)0.004 (2)0.019 (2)0.003 (3)
C190.033 (3)0.041 (3)0.077 (4)0.008 (2)0.007 (3)0.007 (3)
C200.034 (3)0.032 (3)0.056 (3)0.008 (2)0.003 (2)0.000 (3)
N10.028 (2)0.031 (2)0.033 (2)0.0069 (17)0.0026 (18)0.0043 (18)
N20.024 (2)0.031 (2)0.043 (3)0.0033 (17)0.0015 (18)0.0016 (19)
O10.059 (2)0.0299 (17)0.0212 (16)0.0052 (17)0.0000 (17)0.0011 (13)
O20.073 (3)0.0216 (17)0.0246 (17)0.0099 (17)0.0092 (16)0.0015 (14)
O30.071 (2)0.0246 (19)0.0265 (19)0.0041 (17)0.0081 (17)0.0015 (15)
O40.052 (2)0.0309 (19)0.0208 (17)0.0054 (16)0.0057 (16)0.0014 (15)
O50.049 (2)0.046 (2)0.061 (3)0.0186 (19)0.025 (2)0.019 (2)
O60.0220 (17)0.0293 (18)0.0296 (19)0.0016 (13)0.0023 (14)0.0040 (15)
O70.0362 (19)0.041 (2)0.029 (2)0.0052 (16)0.0096 (15)0.0083 (16)
O80.0411 (19)0.035 (2)0.0263 (19)0.0046 (16)0.0084 (16)0.0061 (15)
O90.0274 (19)0.039 (2)0.0273 (19)0.0003 (15)0.0012 (14)0.0075 (15)
O100.049 (2)0.046 (2)0.065 (3)0.0230 (19)0.030 (2)0.0273 (19)
Cd10.01904 (16)0.02366 (17)0.01848 (16)0.00051 (15)0.00175 (15)0.00114 (13)
Geometric parameters (Å, º) top
C1—O31.250 (5)C14—H14B0.9700
C1—O41.263 (5)C15—O71.402 (5)
C1—C21.512 (6)C15—C161.513 (7)
C2—C31.385 (5)C15—H15A0.9700
C2—C71.398 (6)C15—H15B0.9700
C3—C41.385 (5)C16—N21.469 (6)
C3—H30.9300C16—H16A0.9700
C4—C51.393 (6)C16—H16B0.9700
C4—H40.9300C17—C181.486 (6)
C5—C61.384 (5)C17—N21.488 (5)
C5—C81.511 (6)C17—H17A0.9700
C6—C71.378 (6)C17—H17B0.9700
C6—H60.9300C18—O91.432 (5)
C7—H70.9300C18—H18A0.9700
C8—O21.246 (5)C18—H18B0.9700
C8—O11.267 (5)C19—C201.469 (6)
C9—O51.407 (5)C19—N21.485 (6)
C9—C101.480 (6)C19—H19A0.9700
C9—H9A0.9700C19—H19B0.9700
C9—H9B0.9700C20—O101.412 (5)
C10—N11.470 (6)C20—H20A0.9700
C10—H10A0.9700C20—H20B0.9700
C10—H10B0.9700N1—Cd12.506 (4)
C11—O61.417 (5)N2—Cd12.553 (4)
C11—C121.477 (6)O5—Cd12.427 (3)
C11—H11A0.9700O5—H030.84 (2)
C11—H11B0.9700O6—Cd12.412 (3)
C12—N11.490 (6)O6—H010.841 (19)
C12—H12A0.9700O7—Cd12.362 (3)
C12—H12B0.9700O7—H060.859 (19)
C13—N11.477 (6)O8—Cd12.414 (3)
C13—C141.481 (7)O8—H020.831 (19)
C13—H13A0.9700O9—Cd12.378 (3)
C13—H13B0.9700O9—H040.841 (19)
C14—O81.402 (6)O10—Cd12.392 (3)
C14—H14A0.9700O10—H050.84 (2)
O3—C1—O4123.7 (4)H17A—C17—H17B108.0
O3—C1—C2118.6 (4)O9—C18—C17107.1 (4)
O4—C1—C2117.7 (4)O9—C18—H18A110.3
C3—C2—C7118.0 (4)C17—C18—H18A110.3
C3—C2—C1122.1 (4)O9—C18—H18B110.3
C7—C2—C1119.9 (4)C17—C18—H18B110.3
C4—C3—C2121.5 (4)H18A—C18—H18B108.5
C4—C3—H3119.3C20—C19—N2112.6 (4)
C2—C3—H3119.3C20—C19—H19A109.1
C3—C4—C5120.1 (4)N2—C19—H19A109.1
C3—C4—H4119.9C20—C19—H19B109.1
C5—C4—H4119.9N2—C19—H19B109.1
C6—C5—C4118.6 (4)H19A—C19—H19B107.8
C6—C5—C8122.0 (4)O10—C20—C19107.9 (4)
C4—C5—C8119.4 (4)O10—C20—H20A110.1
C7—C6—C5121.2 (4)C19—C20—H20A110.1
C7—C6—H6119.4O10—C20—H20B110.1
C5—C6—H6119.4C19—C20—H20B110.1
C6—C7—C2120.6 (4)H20A—C20—H20B108.4
C6—C7—H7119.7C10—N1—C13110.7 (4)
C2—C7—H7119.7C10—N1—C12109.5 (4)
O2—C8—O1123.5 (4)C13—N1—C12111.4 (4)
O2—C8—C5118.0 (4)C10—N1—Cd1111.2 (3)
O1—C8—C5118.4 (4)C13—N1—Cd1106.3 (3)
O5—C9—C10106.5 (4)C12—N1—Cd1107.7 (3)
O5—C9—H9A110.4C16—N2—C19111.0 (4)
C10—C9—H9A110.4C16—N2—C17110.6 (4)
O5—C9—H9B110.4C19—N2—C17109.3 (4)
C10—C9—H9B110.4C16—N2—Cd1107.1 (3)
H9A—C9—H9B108.6C19—N2—Cd1109.8 (3)
N1—C10—C9112.8 (4)C17—N2—Cd1109.0 (3)
N1—C10—H10A109.0C9—O5—Cd1116.2 (3)
C9—C10—H10A109.0C9—O5—H03107 (4)
N1—C10—H10B109.0Cd1—O5—H03124 (4)
C9—C10—H10B109.0C11—O6—Cd1112.6 (2)
H10A—C10—H10B107.8C11—O6—H01110 (3)
O6—C11—C12107.4 (3)Cd1—O6—H01117 (3)
O6—C11—H11A110.2C15—O7—Cd1120.4 (3)
C12—C11—H11A110.2C15—O7—H06110 (3)
O6—C11—H11B110.2Cd1—O7—H06125 (3)
C12—C11—H11B110.2C14—O8—Cd1120.2 (3)
H11A—C11—H11B108.5C14—O8—H02107 (3)
C11—C12—N1112.3 (4)Cd1—O8—H02122 (4)
C11—C12—H12A109.1C18—O9—Cd1112.8 (3)
N1—C12—H12A109.1C18—O9—H04113 (4)
C11—C12—H12B109.1Cd1—O9—H04116 (4)
N1—C12—H12B109.1C20—O10—Cd1115.0 (3)
H12A—C12—H12B107.9C20—O10—H05112 (4)
N1—C13—C14114.0 (4)Cd1—O10—H05127 (4)
N1—C13—H13A108.8O7—Cd1—O993.62 (11)
C14—C13—H13A108.8O7—Cd1—O10120.72 (11)
N1—C13—H13B108.8O9—Cd1—O10107.59 (13)
C14—C13—H13B108.8O7—Cd1—O674.73 (10)
H13A—C13—H13B107.6O9—Cd1—O673.42 (10)
O8—C14—C13109.4 (4)O10—Cd1—O6163.97 (10)
O8—C14—H14A109.8O7—Cd1—O8166.04 (11)
C13—C14—H14A109.8O9—Cd1—O874.99 (10)
O8—C14—H14B109.8O10—Cd1—O871.32 (12)
C13—C14—H14B109.8O6—Cd1—O893.99 (11)
H14A—C14—H14B108.3O7—Cd1—O571.00 (12)
O7—C15—C16108.8 (4)O9—Cd1—O5163.50 (11)
O7—C15—H15A109.9O10—Cd1—O576.81 (14)
C16—C15—H15A109.9O6—Cd1—O5106.89 (12)
O7—C15—H15B109.9O8—Cd1—O5121.08 (11)
C16—C15—H15B109.9O7—Cd1—N1113.65 (12)
H15A—C15—H15B108.3O9—Cd1—N1125.77 (11)
N2—C16—C15111.8 (4)O10—Cd1—N197.51 (12)
N2—C16—H16A109.3O6—Cd1—N170.45 (11)
C15—C16—H16A109.3O8—Cd1—N168.78 (12)
N2—C16—H16B109.3O5—Cd1—N167.95 (12)
C15—C16—H16B109.3O7—Cd1—N269.10 (12)
H16A—C16—H16B107.9O9—Cd1—N269.32 (11)
C18—C17—N2111.4 (4)O10—Cd1—N268.38 (12)
C18—C17—H17A109.4O6—Cd1—N2125.13 (11)
N2—C17—H17A109.4O8—Cd1—N2112.90 (12)
C18—C17—H17B109.4O5—Cd1—N298.74 (12)
N2—C17—H17B109.4N1—Cd1—N2163.06 (13)
O3—C1—C2—C3173.8 (4)C20—O10—Cd1—O578.4 (3)
O4—C1—C2—C36.0 (6)C20—O10—Cd1—N1143.5 (3)
O3—C1—C2—C75.6 (6)C20—O10—Cd1—N226.8 (3)
O4—C1—C2—C7174.5 (4)C11—O6—Cd1—O7100.0 (3)
C7—C2—C3—C40.1 (6)C11—O6—Cd1—O9161.4 (3)
C1—C2—C3—C4179.5 (4)C11—O6—Cd1—O1065.3 (5)
C2—C3—C4—C50.1 (6)C11—O6—Cd1—O888.4 (3)
C3—C4—C5—C60.1 (6)C11—O6—Cd1—O535.8 (3)
C3—C4—C5—C8179.2 (4)C11—O6—Cd1—N122.5 (3)
C4—C5—C6—C70.1 (6)C11—O6—Cd1—N2149.9 (3)
C8—C5—C6—C7179.0 (4)C14—O8—Cd1—O7105.2 (5)
C5—C6—C7—C20.3 (7)C14—O8—Cd1—O9141.3 (4)
C3—C2—C7—C60.3 (7)C14—O8—Cd1—O10103.8 (4)
C1—C2—C7—C6179.8 (4)C14—O8—Cd1—O669.7 (3)
C6—C5—C8—O2177.1 (4)C14—O8—Cd1—O542.8 (4)
C4—C5—C8—O23.9 (6)C14—O8—Cd1—N12.4 (3)
C6—C5—C8—O13.6 (6)C14—O8—Cd1—N2159.4 (3)
C4—C5—C8—O1175.5 (4)C9—O5—Cd1—O7149.8 (4)
O5—C9—C10—N156.0 (6)C9—O5—Cd1—O9171.7 (4)
O6—C11—C12—N161.9 (5)C9—O5—Cd1—O1080.8 (3)
N1—C13—C14—O849.3 (6)C9—O5—Cd1—O683.1 (3)
O7—C15—C16—N253.9 (5)C9—O5—Cd1—O822.5 (4)
N2—C17—C18—O959.8 (5)C9—O5—Cd1—N123.1 (3)
N2—C19—C20—O1055.9 (6)C9—O5—Cd1—N2146.0 (3)
C9—C10—N1—C1381.6 (5)C10—N1—Cd1—O748.2 (3)
C9—C10—N1—C12155.2 (4)C13—N1—Cd1—O7168.8 (3)
C9—C10—N1—Cd136.4 (5)C12—N1—Cd1—O771.7 (3)
C14—C13—N1—C10171.0 (4)C10—N1—Cd1—O9161.8 (3)
C14—C13—N1—C1267.0 (5)C13—N1—Cd1—O977.6 (3)
C14—C13—N1—Cd150.1 (5)C12—N1—Cd1—O941.9 (3)
C11—C12—N1—C1081.3 (5)C10—N1—Cd1—O1080.1 (3)
C11—C12—N1—C13155.9 (4)C13—N1—Cd1—O1040.5 (3)
C11—C12—N1—Cd139.7 (4)C12—N1—Cd1—O10160.0 (3)
C15—C16—N2—C19165.7 (4)C10—N1—Cd1—O6110.8 (3)
C15—C16—N2—C1772.8 (5)C13—N1—Cd1—O6128.6 (3)
C15—C16—N2—Cd145.9 (4)C12—N1—Cd1—O69.1 (3)
C20—C19—N2—C1686.5 (5)C10—N1—Cd1—O8146.6 (3)
C20—C19—N2—C17151.3 (4)C13—N1—Cd1—O826.0 (3)
C20—C19—N2—Cd131.7 (5)C12—N1—Cd1—O893.4 (3)
C18—C17—N2—C16150.9 (4)C10—N1—Cd1—O57.6 (3)
C18—C17—N2—C1986.7 (5)C13—N1—Cd1—O5113.0 (3)
C18—C17—N2—Cd133.4 (5)C12—N1—Cd1—O5127.6 (3)
C10—C9—O5—Cd149.1 (5)C10—N1—Cd1—N247.5 (6)
C12—C11—O6—Cd151.2 (4)C13—N1—Cd1—N273.1 (5)
C16—C15—O7—Cd134.1 (5)C12—N1—Cd1—N2167.5 (4)
C13—C14—O8—Cd122.1 (5)C16—N2—Cd1—O720.5 (3)
C17—C18—O9—Cd156.8 (4)C19—N2—Cd1—O7141.1 (3)
C19—C20—O10—Cd153.3 (5)C17—N2—Cd1—O799.2 (3)
C15—O7—Cd1—O958.4 (3)C16—N2—Cd1—O9123.0 (3)
C15—O7—Cd1—O1054.6 (4)C19—N2—Cd1—O9116.4 (3)
C15—O7—Cd1—O6130.1 (3)C17—N2—Cd1—O93.3 (3)
C15—O7—Cd1—O893.1 (6)C16—N2—Cd1—O10117.2 (3)
C15—O7—Cd1—O5115.5 (3)C19—N2—Cd1—O103.4 (3)
C15—O7—Cd1—N1169.8 (3)C17—N2—Cd1—O10123.1 (3)
C15—O7—Cd1—N27.8 (3)C16—N2—Cd1—O672.6 (3)
C18—O9—Cd1—O794.5 (3)C19—N2—Cd1—O6166.8 (3)
C18—O9—Cd1—O1029.3 (3)C17—N2—Cd1—O647.1 (3)
C18—O9—Cd1—O6167.4 (3)C16—N2—Cd1—O8174.4 (3)
C18—O9—Cd1—O893.7 (3)C19—N2—Cd1—O853.8 (3)
C18—O9—Cd1—O573.8 (5)C17—N2—Cd1—O865.9 (3)
C18—O9—Cd1—N1142.8 (3)C16—N2—Cd1—O545.2 (3)
C18—O9—Cd1—N228.5 (3)C19—N2—Cd1—O575.4 (3)
C20—O10—Cd1—O720.2 (4)C17—N2—Cd1—O5164.9 (3)
C20—O10—Cd1—O985.1 (3)C16—N2—Cd1—N182.2 (5)
C20—O10—Cd1—O6176.3 (4)C19—N2—Cd1—N138.4 (6)
C20—O10—Cd1—O8151.9 (4)C17—N2—Cd1—N1158.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H01···O40.84 (2)1.86 (2)2.692 (4)168 (5)
O8—H02···O2i0.83 (2)1.79 (2)2.612 (4)170 (5)
O5—H03···O4ii0.84 (2)1.82 (2)2.645 (5)170 (6)
O9—H04···O1i0.84 (2)1.84 (2)2.673 (4)169 (5)
O10—H05···O1iii0.84 (2)1.82 (2)2.647 (4)169 (6)
O7—H06···O30.86 (2)1.78 (2)2.635 (4)171 (5)
Symmetry codes: (i) x, y1/2, z1/2; (ii) x+1/2, y+1/2, z; (iii) x+1/2, y, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H01···O40.841 (19)1.86 (2)2.692 (4)168 (5)
O8—H02···O2i0.831 (19)1.79 (2)2.612 (4)170 (5)
O5—H03···O4ii0.84 (2)1.82 (2)2.645 (5)170 (6)
O9—H04···O1i0.841 (19)1.84 (2)2.673 (4)169 (5)
O10—H05···O1iii0.84 (2)1.82 (2)2.647 (4)169 (6)
O7—H06···O30.859 (19)1.78 (2)2.635 (4)171 (5)
Symmetry codes: (i) x, y1/2, z1/2; (ii) x+1/2, y+1/2, z; (iii) x+1/2, y, z1/2.
 

Acknowledgements

This project was supported by the Inter­national Scientific and Technological Cooperation Foundation of Jilin Province (grant No. 20120722).

References

First citationBruker (2002). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, L.-P. & Tiekink, E. R. T. (2009). Acta Cryst. E65, m885–m886.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShirvan, S. A. & Haydari Dezfuli, S. (2012). Acta Cryst. E68, m1008–m1009.  CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds