organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 11| November 2014| Pages o1202-o1203

Crystal structure of (2E)-3-(3-eth­­oxy-4-hy­dr­oxy­phen­yl)-1-(4-hy­dr­oxy­phen­yl)prop-2-en-1-one

aPG and Research Department of Physics, Queen Mary's College, Chennai-4, Tamilnadu, India, and bDepartment of Chemistry, Madras Christian College, Chennai-59, India
*Correspondence e-mail: guqmc@yahoo.com

Edited by G. Smith, Queensland University of Technology, Australia (Received 26 September 2014; accepted 23 October 2014; online 29 October 2014)

In the title compound, C17H16O4, the dihedral angle between the benzene rings is 21.22 (1)° and the mean plane of the prop-2-en-1-one group makes dihedral angles of 10.60 (1) and 11.28 (1)°, respectively, with those of the hy­droxy­phenyl and eth­oxy­phenyl rings. The eth­oxy substituent forms a dihedral angle of 88.79 (2)° with the the prop-2-en-1-one group, which is found to be slightly twisted. In the crystal, phenolic O—H⋯O hydrogen bonds to the carbonyl O atom form a two-dimensional supra­molecular network structure lying parallel to (010).

1. Related literature

For the biological activity of chalcone derivatives, see: Nowakowska (2007[Nowakowska, Z. (2007). Eur. J. Med. Chem. 42, 125-137.]); Ram et al. (2000[Ram, V. J., Saxena, A., Srivastava, S. & Chandra, S. (2000). Bioorg. Med. Chem. Lett. 10, 2159-2161.]); Khatib et al. (2005[Khatib, S., Nerya, O., Musa, R., Shmuel, M., Tamir, S. & Vaya, J. (2005). Bioorg. Med. Chem. 13, 433-441.]); Papo & Shai (2003[Papo, N. & Shai, Y. (2003). Peptides, 24, 1693-1703.]). For related structures, see: Jasinski et al. (2011[Jasinski, J. P., Butcher, R. J., Musthafa Khaleel, V., Sarojini, B. K. & Yathirajan, H. S. (2011). Acta Cryst. E67, o845.]); Sathya et al. (2014[Sathya, S., Reuben Jonathan, D., Prathebha, K., Usha, G. & Jovita, J. (2014). Acta Cryst. E70, o593-o594.]); Joothamongkhon et al. (2010[Joothamongkhon, J., Chantrapromma, S., Kobkeatthawin, T. & Fun, H.-K. (2010). Acta Cryst. E66, o2669-o2670.]); Horkaew et al. (2010[Horkaew, J., Chantrapromma, S., Saewan, N. & Fun, H.-K. (2010). Acta Cryst. E66, o2346-o2347.]). For the synthesis, see: Sidharthan et al. (2012[Sidharthan, D., Reuben Jonathan, K. S. & Amaladhas, T. (2012). Int. J. Chem. Appl. 4, 241-250.]); Chitra et al. (2013[Chitra, M., Reuben Jonathan, D., Rajan, Y. C. & Duraipandian, V. (2013). Int. J. Chem. Appl. 5, 73-81.]); Sathya et al. (2014[Sathya, S., Reuben Jonathan, D., Prathebha, K., Usha, G. & Jovita, J. (2014). Acta Cryst. E70, o593-o594.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C17H16O4

  • Mr = 284.30

  • Orthorhombic, P b c a

  • a = 16.3670 (4) Å

  • b = 10.5512 (3) Å

  • c = 16.6153 (4) Å

  • V = 2869.32 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.22 × 0.21 × 0.19 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.970, Tmax = 0.985

  • 14416 measured reflections

  • 3592 independent reflections

  • 2619 reflections with I > 2σ(I)

  • Rint = 0.028

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.215

  • S = 0.72

  • 3592 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.74 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O4i 0.82 2.25 2.958 (2) 145
O3—H3A⋯O4ii 0.82 1.95 2.766 (2) 171
Symmetry codes: (i) [x, -y+{\script{5\over 2}}, z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Chalcones belonging to the flavonoid family constitute an important group of natural products due to their unforseen pharmacological potential. Chemically they consist of open-chain flavonoids in which the two aromatic rings are joined by a three-carbon α,β-unsaturated carbonyl system. The radical quenching properties of the phenolic groups present in many chalcones have raised interest in using the compounds or chalcone-rich plant extracts as drugs or food preservatives. Chalcones have been reported to possess many exciting activities which include anti-inflammatory, antimicrobial, antifungal, antioxidant, cytotoxic, anti-tumor and anticancer (Nowakowska, 2007). A number of chalcones having hydroxy or alkoxy groups in different position have been observed to possess vasodilatory (Ram et al., 2000), antimitotic (Khatib et al., 2005) and antimalarial activities (Papo & Shai, 2003). The crystal structures of closely related chalcones, viz., (E)-3-(4-ethoxyphenyl)-1-(2-hydroxyphenyl)prop-2-en-one (Horkaew et al., 2010) (Z)-3-(anthracen-9-yl)-1-(2-ethoxyphenyl)prop-2-en-one (Joothamongkhon et al., 2010) have been reported. The enormous research potentials of this group of compounds prompted us to synthesize an analogous compound, the chalcone derivative C17H16O4 and we report the crystal structure in this communication.

In the title compound, the C—C bond lengths of the hydroxyphenyl and ethoxyphenyl rings are in the range of 1.376 (3)–1.398 (3)Å and 1.366 (3)–1.408 (3) Å, respectively, and are in good agreement with similar reported values [1.374 (3)–1.389 (3) Å and 1.369 (3)–1.401 (3) Å] (Sathya et al., 2014). The C—O bond lengths 1.354 (2)–1.450 (3)Å and 1.237 (2)Å, respectively, indicate the single and double bond characters and are comparable with literature values. The bond angles C9—C10—C11 [118.40 (15)°], C5—C7—C9 [127.10 (19)°] are comparable with those in similar reported structure (Sathya et al., 2014; Jasinski et al., 2011). The prop-2-en-1-one group is twisted slightly with O4—C10—C11—C12 and C7—C9—C10—O4 torsion angles of -10.8 (3) and -14.2 (3)°, respectively, and are comparable with those in similar reported structures (Sathya et al., 2014; Jasinski et al., 2011). The torsion angle C1—O2—C17—C1 [76.2 (3)°] indicates that the ethoxy group is in a +synclinal (+sc) orientation with respect to the benzene ring. The dihedral angle between the benzene rings is 21.22 (1)°. The prop-2-en-one group makes dihedral angles of 10.60 (1) and 11.28 (1)° with the hydroxyphenyl and ethoxyphenyl rings, respectively. The ethoxy substituent forms a dihedral angle of 88.79 (2)° with the prop-2-en-one group. The molecular conformation is stabilized by interamolecular O1—H···O2 and C7—H···O4 interactions (Table 1).

In the crystal packing (Fig. 2), the molecule are linked through hydroxyl O1—H···O4i and O3—H···O4ii hydrogen bonds to the carbonyl O-atom acceptor (Table 1). Atom O4 acts as a tricentre being involved also in the previously mentioned intramolecular interaction with C7—H7. The overall structure is a two-dimensional supramolecular network lying parallel to (010).

Related literature top

For the biological activity of chalcone derivatives, see: Nowakowska (2007); Ram et al. (2000); Khatib et al. (2005); Papo & Shai (2003). For related structures, see: Jasinski et al. (2011); Sathya et al. (2014); Joothamongkhon et al. (2010); Horkaew et al. (2010). For the synthesis, see: Sidharthan et al. (2012); Chitra et al. (2013); Sathya et al. (2014).

Experimental top

This is the acid catalyzed Claisen-Schmidt reaction and the procedure (Sidharthan et al., 2012; Chitra et al., 2013; Sathya et al., 2014) adopted in the synthesis of the typical chalcone diol is represented here. Dry HCl gas was passed for one hour through a well cooled and stirred solution of 4-hydroxyacetophenone (0.05 mol) and 4-hydroxy-3-ethoxybenzaldehyde (0.05 mol) in 120 mL of absolute alcohol in a 250 mL round-bottomed flask. A wine red coloured solution was formed. On addition of a sufficient quantity of ice cold water, a yellow precipitate of (2E)-3-(4-hydroxy-3-ethoxyphenyl)-1-(4-hydroxyphenyl)prop-2-en -1-one was formed, which was filtered, then washed with double distilled water and finally allowed to dry. The dried product was re-crystallized from hot ethanol: yield 80%.

Refinement top

Hydrogen atoms were positioned geometrically and treated as riding on their parent atoms, with C—H distances of 0.93 Å, O—H distances of 0.82 Å with Uiso(H)= 1.5 Ueq(c-methyl) and Uiso(H)= 1.2Ueq(C) for other H atom.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.

Fig. 2. The packing of the molecules in the unit cell. Non-associative H-atoms are omitted and dashed lines indicate hydrogen bonds.
(2E)-3-(3-Ethoxy-4-hydroxyphenyl)-1-(4-hydroxyphenyl)prop-2-en-1-one top
Crystal data top
C17H16O4F(000) = 1200
Mr = 284.30Dx = 1.316 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3592 reflections
a = 16.3670 (4) Åθ = 2.5–28.4°
b = 10.5512 (3) ŵ = 0.09 mm1
c = 16.6153 (4) ÅT = 293 K
V = 2869.32 (13) Å3Block, colourless
Z = 80.22 × 0.21 × 0.19 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3592 independent reflections
Radiation source: fine-focus sealed tube2619 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω and ϕ scanθmax = 28.4°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 2121
Tmin = 0.970, Tmax = 0.985k = 1114
14416 measured reflectionsl = 2122
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.215H-atom parameters constrained
S = 0.72 w = 1/[σ2(Fo2) + (0.189P)2 + 2.3286P]
where P = (Fo2 + 2Fc2)/3
3592 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.74 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
C17H16O4V = 2869.32 (13) Å3
Mr = 284.30Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 16.3670 (4) ŵ = 0.09 mm1
b = 10.5512 (3) ÅT = 293 K
c = 16.6153 (4) Å0.22 × 0.21 × 0.19 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3592 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2619 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.985Rint = 0.028
14416 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.215H-atom parameters constrained
S = 0.72Δρmax = 0.74 e Å3
3592 reflectionsΔρmin = 0.43 e Å3
190 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C80.4080 (2)1.4090 (4)0.5257 (2)0.0948 (11)
H8A0.46381.38120.52460.142*
H8B0.40601.49690.54040.142*
H8C0.38411.39800.47340.142*
C10.22651 (13)1.3374 (2)0.52630 (13)0.0481 (5)
C20.14997 (13)1.39834 (19)0.52749 (12)0.0459 (5)
C30.09113 (13)1.3644 (2)0.47328 (13)0.0519 (5)
H30.04021.40360.47480.062*
C40.10695 (12)1.2720 (2)0.41605 (12)0.0464 (5)
H40.06621.24910.37980.056*
C50.18244 (11)1.21328 (18)0.41214 (11)0.0405 (4)
C60.24215 (12)1.2466 (2)0.46881 (13)0.0491 (5)
H60.29291.20690.46760.059*
C70.19783 (11)1.11972 (18)0.34958 (11)0.0405 (4)
H70.15381.09870.31690.049*
C90.26765 (11)1.0613 (2)0.33418 (12)0.0424 (4)
H90.31221.07790.36730.051*
C100.27837 (10)0.97178 (17)0.26748 (11)0.0353 (4)
C110.36197 (10)0.93496 (16)0.24468 (10)0.0331 (4)
C120.37395 (11)0.83378 (18)0.19164 (12)0.0404 (4)
H120.32890.79280.16950.048*
C130.45150 (11)0.79391 (19)0.17169 (12)0.0439 (5)
H130.45860.72650.13630.053*
C140.51931 (10)0.85457 (17)0.20461 (11)0.0369 (4)
C150.50858 (11)0.95616 (18)0.25631 (12)0.0388 (4)
H150.55370.99780.27770.047*
C160.43087 (11)0.99521 (17)0.27588 (11)0.0383 (4)
H160.42411.06340.31070.046*
C170.36220 (17)1.3339 (3)0.58491 (17)0.0685 (7)
H17A0.36491.24490.57060.082*
H17B0.38661.34430.63770.082*
O10.13388 (11)1.48915 (16)0.58349 (10)0.0614 (5)
H10.17421.49960.61200.092*
O20.27758 (11)1.3744 (2)0.58724 (11)0.0693 (5)
O30.59416 (8)0.81036 (15)0.18410 (10)0.0521 (4)
H3A0.62940.85220.20710.078*
O40.21879 (8)0.92718 (14)0.23142 (9)0.0459 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C80.073 (2)0.102 (3)0.109 (3)0.0156 (18)0.0008 (18)0.020 (2)
C10.0428 (10)0.0523 (11)0.0490 (11)0.0000 (8)0.0078 (8)0.0092 (8)
C20.0484 (11)0.0444 (9)0.0447 (10)0.0038 (8)0.0164 (8)0.0003 (8)
C30.0447 (11)0.0565 (12)0.0546 (12)0.0179 (9)0.0094 (9)0.0036 (9)
C40.0383 (10)0.0543 (11)0.0468 (11)0.0080 (8)0.0016 (8)0.0021 (9)
C50.0352 (9)0.0435 (9)0.0430 (10)0.0025 (7)0.0056 (7)0.0001 (7)
C60.0351 (9)0.0587 (12)0.0536 (12)0.0053 (8)0.0009 (8)0.0135 (9)
C70.0327 (8)0.0458 (9)0.0429 (10)0.0003 (7)0.0004 (7)0.0022 (7)
C90.0291 (8)0.0559 (11)0.0423 (10)0.0000 (7)0.0010 (7)0.0087 (8)
C100.0264 (8)0.0425 (9)0.0370 (9)0.0010 (6)0.0000 (6)0.0016 (7)
C110.0265 (8)0.0395 (8)0.0334 (8)0.0017 (6)0.0007 (6)0.0007 (6)
C120.0300 (8)0.0465 (10)0.0447 (10)0.0037 (7)0.0052 (7)0.0093 (7)
C130.0347 (9)0.0460 (9)0.0510 (11)0.0021 (7)0.0030 (7)0.0160 (8)
C140.0266 (8)0.0411 (8)0.0428 (9)0.0009 (6)0.0008 (6)0.0003 (7)
C150.0262 (8)0.0459 (9)0.0444 (10)0.0062 (7)0.0030 (7)0.0063 (7)
C160.0302 (9)0.0414 (9)0.0433 (10)0.0036 (7)0.0007 (7)0.0081 (7)
C170.0640 (16)0.0714 (16)0.0699 (16)0.0077 (12)0.0186 (12)0.0210 (13)
O10.0625 (10)0.0616 (9)0.0600 (10)0.0136 (8)0.0132 (8)0.0155 (7)
O20.0556 (10)0.0857 (12)0.0666 (11)0.0044 (9)0.0012 (8)0.0341 (10)
O30.0292 (7)0.0553 (8)0.0719 (10)0.0039 (6)0.0018 (6)0.0147 (7)
O40.0266 (6)0.0603 (9)0.0508 (8)0.0045 (6)0.0024 (5)0.0078 (6)
Geometric parameters (Å, º) top
C8—C171.469 (5)C9—H90.9300
C8—H8A0.9600C10—O41.237 (2)
C8—H8B0.9600C10—C111.472 (2)
C8—H8C0.9600C11—C161.394 (2)
C1—O21.370 (3)C11—C121.398 (2)
C1—C61.377 (3)C12—C131.378 (3)
C1—C21.408 (3)C12—H120.9300
C2—O11.361 (2)C13—C141.393 (3)
C2—C31.366 (3)C13—H130.9300
C3—C41.387 (3)C14—O31.354 (2)
C3—H30.9300C14—C151.385 (3)
C4—C51.384 (3)C15—C161.376 (3)
C4—H40.9300C15—H150.9300
C5—C61.402 (3)C16—H160.9300
C5—C71.455 (3)C17—O21.450 (3)
C6—H60.9300C17—H17A0.9700
C7—C91.323 (3)C17—H17B0.9700
C7—H70.9300O1—H10.8200
C9—C101.467 (3)O3—H3A0.8200
C17—C8—H8A109.5O4—C10—C9121.10 (16)
C17—C8—H8B109.5O4—C10—C11120.50 (16)
H8A—C8—H8B109.5C9—C10—C11118.40 (15)
C17—C8—H8C109.5C16—C11—C12117.97 (16)
H8A—C8—H8C109.5C16—C11—C10122.39 (16)
H8B—C8—H8C109.5C12—C11—C10119.61 (15)
O2—C1—C6126.71 (19)C13—C12—C11120.93 (16)
O2—C1—C2113.72 (18)C13—C12—H12119.5
C6—C1—C2119.5 (2)C11—C12—H12119.5
O1—C2—C3119.90 (19)C12—C13—C14119.96 (17)
O1—C2—C1120.2 (2)C12—C13—H13120.0
C3—C2—C1119.88 (18)C14—C13—H13120.0
C2—C3—C4120.31 (19)O3—C14—C15122.50 (16)
C2—C3—H3119.8O3—C14—C13117.62 (17)
C4—C3—H3119.8C15—C14—C13119.88 (16)
C5—C4—C3120.91 (19)C16—C15—C14119.71 (16)
C5—C4—H4119.5C16—C15—H15120.1
C3—C4—H4119.5C14—C15—H15120.1
C4—C5—C6118.62 (18)C15—C16—C11121.54 (16)
C4—C5—C7119.44 (18)C15—C16—H16119.2
C6—C5—C7121.93 (17)C11—C16—H16119.2
C1—C6—C5120.71 (19)O2—C17—C8110.3 (3)
C1—C6—H6119.6O2—C17—H17A109.6
C5—C6—H6119.6C8—C17—H17A109.6
C9—C7—C5127.10 (18)O2—C17—H17B109.6
C9—C7—H7116.4C8—C17—H17B109.6
C5—C7—H7116.4H17A—C17—H17B108.1
C7—C9—C10123.31 (17)C2—O1—H1109.5
C7—C9—H9118.3C1—O2—C17118.63 (17)
C10—C9—H9118.3C14—O3—H3A109.5
O2—C1—C2—O12.9 (3)O4—C10—C11—C16171.05 (18)
C6—C1—C2—O1179.4 (2)C9—C10—C11—C169.5 (3)
O2—C1—C2—C3175.8 (2)O4—C10—C11—C1210.8 (3)
C6—C1—C2—C31.9 (3)C9—C10—C11—C12168.66 (18)
O1—C2—C3—C4179.95 (19)C16—C11—C12—C130.8 (3)
C1—C2—C3—C41.3 (3)C10—C11—C12—C13177.40 (18)
C2—C3—C4—C50.6 (3)C11—C12—C13—C140.1 (3)
C3—C4—C5—C61.8 (3)C12—C13—C14—O3178.93 (19)
C3—C4—C5—C7177.92 (19)C12—C13—C14—C151.1 (3)
O2—C1—C6—C5176.6 (2)O3—C14—C15—C16178.90 (18)
C2—C1—C6—C50.7 (3)C13—C14—C15—C161.1 (3)
C4—C5—C6—C11.1 (3)C14—C15—C16—C110.1 (3)
C7—C5—C6—C1178.6 (2)C12—C11—C16—C150.8 (3)
C4—C5—C7—C9175.3 (2)C10—C11—C16—C15177.37 (18)
C6—C5—C7—C94.5 (3)C6—C1—O2—C1712.3 (4)
C5—C7—C9—C10177.43 (18)C2—C1—O2—C17170.2 (2)
C7—C9—C10—O414.2 (3)C8—C17—O2—C176.2 (3)
C7—C9—C10—C11166.32 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O4i0.822.252.958 (2)145
O3—H3A···O4ii0.821.952.766 (2)171
C7—H7···O40.932.532.846 (2)100
Symmetry codes: (i) x, y+5/2, z+1/2; (ii) x+1/2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O4i0.822.252.958 (2)145
O3—H3A···O4ii0.821.952.766 (2)171
C7—H7···O40.932.532.846 (2)100.
Symmetry codes: (i) x, y+5/2, z+1/2; (ii) x+1/2, y, z+1/2.
 

Acknowledgements

The authors thank Professor D. Velmurugan, Centre for Advanced Study in Crystallography and Biophysics, University of Madras, for providing data-collection facilities.

References

First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChitra, M., Reuben Jonathan, D., Rajan, Y. C. & Duraipandian, V. (2013). Int. J. Chem. Appl. 5, 73–81.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHorkaew, J., Chantrapromma, S., Saewan, N. & Fun, H.-K. (2010). Acta Cryst. E66, o2346–o2347.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJasinski, J. P., Butcher, R. J., Musthafa Khaleel, V., Sarojini, B. K. & Yathirajan, H. S. (2011). Acta Cryst. E67, o845.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJoothamongkhon, J., Chantrapromma, S., Kobkeatthawin, T. & Fun, H.-K. (2010). Acta Cryst. E66, o2669–o2670.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhatib, S., Nerya, O., Musa, R., Shmuel, M., Tamir, S. & Vaya, J. (2005). Bioorg. Med. Chem. 13, 433–441.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNowakowska, Z. (2007). Eur. J. Med. Chem. 42, 125–137.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPapo, N. & Shai, Y. (2003). Peptides, 24, 1693–1703.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRam, V. J., Saxena, A., Srivastava, S. & Chandra, S. (2000). Bioorg. Med. Chem. Lett. 10, 2159–2161.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSathya, S., Reuben Jonathan, D., Prathebha, K., Usha, G. & Jovita, J. (2014). Acta Cryst. E70, o593–o594.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSidharthan, D., Reuben Jonathan, K. S. & Amaladhas, T. (2012). Int. J. Chem. Appl. 4, 241–250.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 11| November 2014| Pages o1202-o1203
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds