organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 12| December 2014| Pages o1257-o1258

Crystal structure of (4R,5S)-4-methyl-3-methyl­sulfinyl-5-phenyl-1,3-oxazolidin-2-one

aUniversidade Federal do Rio Grande do Sul, Instituto de Química Depto. Química Orgânica, Av. Bento Gonçalves, 9500 Agronomia, CEP 91.501-970, Porto Alegre/RS, Brazil, and bUniversity of Notre Dame, Department of Chemistry and Biochemistry, 235 Nieuwland Science Hall, Notre Dame, IN 46556-5670, USA
*Correspondence e-mail: gustavo.silveira@iq.ufrgs.br

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 31 October 2014; accepted 11 November 2014; online 15 November 2014)

The absolute structure of the chiral asymmetric indole precursor title compound, C11H13NO3S, was confirmed by refinement of the Flack and Hooft parameters and is that expected based on the starting materials for the synthesis. The phenyl group subtends a dihedral angle of 56.40 (5)° with the mean plane of the oxazolidinone ring, which adopts an envelope conformation, with the C atom bearing the methyl group as the flap. In the crystal, no significant directional inter­actions beyond van der Waals contacts are observed.

1. Related literature

For general background to the preparation of naturally occurring alkaloids, see: Marino et al. (1992[Marino, J. P., Bogdan, S. & Kimura, K. (1992). J. Am. Chem. Soc. 114, 5566-5572.]). For further synthetic details, see: Silveira & Marino, 2013[Silveira, G. P. & Marino, J. P. (2013). J. Org. Chem. 78, 3379-3383.]. For related structures, see: Evans et al. (1992[Evans, D. A., Faul, M. M., Colombo, L., Bisaha, J. J., Clardy, J. & Cherry, D. (1992). J. Am. Chem. Soc. 114, 5977-5985.]); Silveira et al. (2013[Pozza Silveira, G., Oliver, A. G. & Noll, B. C. (2013). Acta Cryst. E69, o979.]); Silveira et al. (2012[Pozza Silveira, G., Bonfante de Carvallho, C. & Oliver, A. (2012). Acta Cryst. E68, o2048.]); Clara-Sosa et al. (2004[Clara-Sosa, A., Pérez, L., Sánchez, M., Melgar-Fernández, R., Juaristi, E., Quintero, L. & Anaya de Parrodi, C. (2004). Tetrahedron, 60, 12147-12152.]); Romanenko et al. (2003[Romanenko, V. D., Thoumazet, C., Lavallo, V., Tham, F. S. & Bertrand, G. (2003). Chem. Commun. pp. 1680-1681.]). A statistical analysis (Hooft et al., 2008[Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96-103.]) was used to corroborate that the correct enanti­omorph of the space group and hence handedness of the mol­ecule had been determined.

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C11H13NO3S

  • Mr = 239.28

  • Orthorhombic, P 21 21 21

  • a = 6.1605 (4) Å

  • b = 11.8490 (8) Å

  • c = 15.3861 (11) Å

  • V = 1123.12 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 100 K

  • 0.22 × 0.09 × 0.06 mm

2.2. Data collection

  • Bruker X8 APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.]) Tmin = 0.707, Tmax = 0.746

  • 30938 measured reflections

  • 3761 independent reflections

  • 3507 reflections with I > 2σ(I)

  • Rint = 0.032

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.070

  • S = 1.03

  • 3761 reflections

  • 147 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.18 e Å−3

  • Absolute structure: Flack x determined using 1431 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])

  • Absolute structure parameter: −0.012 (16)

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker-Nonius AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker-Nonius AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: XCIF (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Introduction top

Our research group has inter­est in the development of new methodologies to the synthesis of chiral sulfur compounds (Silveira & Marino, 2013). Thus, we have been preparing chiral oxazolidinones (Silveira, Oliver & Noll, 2013) to the synthesis of asymmetric indole derivatives (Pozza Silveira et al., 2012) as precursors to the preparation of naturally occurring alkaloids (Marino et al., 1992).

Experimental top

Experimental discussion

Synthesis and crystallization top

411 mg of (4R,5S)-4-methyl-5-phenyl­oxazolidin-2-one (2.32 mmol) and 25 mL of dry THF were added to a 50 mL flame-dried round bottom flask charged with argon gas at 0 °C. To this 1.21 mL of n-buthyl lithium (1.83 M, 2.21 mmol) was added dropwise into the solution during five minutes and the mixture obtained cooled to -78 °C. Subsequently, 320 mg of sulfinyl chloride was added. After 10 min. the reaction was quenched with 6.5 mL of saturated NH4Cl solution. The aqueous layer was extracted with 25 mL of ethyl acetate and the organic phase washed with 8 mL of saturated NaHCO3 solution and 10 mL of saturated NaCl solution, respectively. The organic phase was dried over Na2SO4 and the salt removed by filtration. The solvent was removed under reduced pressure to give a white solid. The crude solid was dissolved with ethyl acetate and hexanes were added dropwise to the solution until a cloudy suspension was observed. The ethyl acetate / hexanes solution was left overnight to evaporate yielding 238 mg of clear colorless rods (45%).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. All non-hydrogen atoms were refined with anisotropic thermal displacement parameters. Hydrogen atoms were included in geometrically calculated positions riding on the carbon to which they are bonded. C—H bond distances were restrained to 0.95 Å (aromatic), 0.98 Å (methyl) and 1.00 Å (methyne). Hydrogen thermal parameters were set as Uiso(H) = 1.2 × Ueq(C)aromatic/methyne and 1.5 × Ueq(C)methyl.

The absolute stereochemistry was determined both by the known chiralty that was retained during synthesis and by comparison of intensities of Friedel pairs of reflections. Both a direct measurement in the differences in intensities (Flack x paramter = -0.012 (3), (Parsons et al., 2013)) and a statistical analysis (Hooft y parameter = -0.015 (17), Hooft et al., 2008) corroborate that the correct enanti­omorph of the space group and hence handedness of the molecule were determined. All three techniques agree and the correct chirality is shown.

Results and discussion top

The structure of the oxazolidinone is as expected. The steroechemistry from the parent rea­cta­nts was retained through the synthesis. Surprisingly, no significant inter­molecular inter­actions are observed in the crystal. The phenyl group which could exhibit either π···π inter­actions or C—H···π inter­actions shows no sign or indication of such arrangements.

Related literature top

For general background to the preparation of naturally occurring alkaloids, see: Marino et al. (1992). For further synthetic details, see: Silveira & Marino, 2013. For related structures, see: Evans et al. (1992); Silveira, Oliver & Noll (2013); Pozza Silveira et al. (2012); Clara-Sosa et al. (2004); Romanenko et al. (2003). Astatistical analysis (Hooft et al., 2008) was used to corroborate that the correct enantiomorph of the space group and hence handedness of the molecule had been determined.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: XCIF (Sheldrick, 2008), enCIFer (Allen et al., 2004) and publCIF (Westrip, 2010).

Figures top
Labelling scheme for (4R,5S)-4-methyl-3-methylsulfinyl-5-phenyl-1,3-oxazolidin-2-one. Thermal displacement ellipsoids are depicted at the 50% probability level.
(4R,5S)-4-Methyl-3-methylsulfinyl-5-phenyl-1,3-oxazolidin-2-one top
Crystal data top
C11H13NO3SDx = 1.415 Mg m3
Mr = 239.28Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 9865 reflections
a = 6.1605 (4) Åθ = 3.2–31.4°
b = 11.8490 (8) ŵ = 0.28 mm1
c = 15.3861 (11) ÅT = 100 K
V = 1123.12 (13) Å3Rod, colorless
Z = 40.22 × 0.09 × 0.06 mm
F(000) = 504
Data collection top
Bruker X8 APEXII CCD
diffractometer
3761 independent reflections
Radiation source: fine-focus sealed tube3507 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 8.33 pixels mm-1θmax = 31.6°, θmin = 2.2°
ϕ and ω scansh = 89
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 1717
Tmin = 0.707, Tmax = 0.746l = 2122
30938 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.027 w = 1/[σ2(Fo2) + (0.0431P)2 + 0.127P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.070(Δ/σ)max = 0.001
S = 1.03Δρmax = 0.31 e Å3
3761 reflectionsΔρmin = 0.18 e Å3
147 parametersAbsolute structure: Flack x determined using 1431 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.012 (16)
Crystal data top
C11H13NO3SV = 1123.12 (13) Å3
Mr = 239.28Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.1605 (4) ŵ = 0.28 mm1
b = 11.8490 (8) ÅT = 100 K
c = 15.3861 (11) Å0.22 × 0.09 × 0.06 mm
Data collection top
Bruker X8 APEXII CCD
diffractometer
3761 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
3507 reflections with I > 2σ(I)
Tmin = 0.707, Tmax = 0.746Rint = 0.032
30938 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.070Δρmax = 0.31 e Å3
S = 1.03Δρmin = 0.18 e Å3
3761 reflectionsAbsolute structure: Flack x determined using 1431 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
147 parametersAbsolute structure parameter: 0.012 (16)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.97856 (6)0.27012 (3)0.33636 (2)0.01721 (9)
N10.8121 (2)0.16070 (11)0.31202 (8)0.0153 (2)
O10.74140 (17)0.00157 (9)0.24121 (6)0.0175 (2)
O21.04668 (18)0.09415 (9)0.20595 (7)0.0194 (2)
O31.13406 (18)0.23613 (11)0.40470 (7)0.0241 (2)
C10.5547 (2)0.02282 (12)0.29661 (9)0.0156 (3)
H10.43760.05890.26120.019*
C20.6387 (2)0.10893 (12)0.36433 (9)0.0152 (3)
H20.52360.16590.37750.018*
C30.8831 (2)0.08716 (12)0.24861 (9)0.0154 (3)
C40.4715 (2)0.08568 (12)0.33334 (9)0.0155 (2)
C50.5964 (2)0.18255 (12)0.33741 (10)0.0169 (2)
H50.73800.18310.31300.020*
C60.5153 (3)0.27897 (12)0.37712 (9)0.0190 (3)
H60.60210.34510.38030.023*
C70.3081 (3)0.27882 (14)0.41209 (9)0.0208 (3)
H70.25280.34470.43940.025*
C80.1815 (3)0.18222 (14)0.40706 (10)0.0221 (3)
H80.03870.18230.43040.026*
C90.2623 (2)0.08596 (14)0.36827 (10)0.0204 (3)
H90.17550.01980.36530.025*
C100.7241 (3)0.05758 (13)0.44793 (10)0.0189 (3)
H10A0.83430.00060.43420.028*
H10B0.60430.02210.47960.028*
H10C0.78890.11690.48400.028*
C110.7753 (3)0.35377 (13)0.38865 (10)0.0211 (3)
H11A0.73440.31840.44390.032*
H11B0.64740.35920.35100.032*
H11C0.83270.42950.39970.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01616 (15)0.01850 (15)0.01696 (15)0.00282 (12)0.00025 (12)0.00138 (12)
N10.0135 (5)0.0171 (5)0.0154 (5)0.0015 (4)0.0024 (4)0.0005 (4)
O10.0169 (5)0.0178 (5)0.0179 (5)0.0019 (4)0.0058 (4)0.0002 (4)
O20.0158 (5)0.0222 (5)0.0202 (5)0.0013 (4)0.0045 (4)0.0026 (4)
O30.0191 (5)0.0288 (6)0.0245 (5)0.0005 (5)0.0068 (4)0.0011 (5)
C10.0114 (6)0.0180 (6)0.0174 (6)0.0006 (5)0.0021 (5)0.0025 (5)
C20.0136 (6)0.0147 (6)0.0172 (6)0.0011 (5)0.0045 (5)0.0010 (5)
C30.0147 (6)0.0162 (6)0.0152 (6)0.0017 (5)0.0004 (5)0.0027 (5)
C40.0133 (5)0.0183 (6)0.0149 (5)0.0014 (5)0.0004 (5)0.0014 (5)
C50.0160 (6)0.0185 (6)0.0160 (6)0.0004 (5)0.0011 (5)0.0016 (5)
C60.0243 (7)0.0161 (6)0.0166 (6)0.0003 (6)0.0016 (5)0.0021 (5)
C70.0245 (7)0.0225 (7)0.0155 (6)0.0078 (6)0.0025 (5)0.0029 (6)
C80.0148 (6)0.0311 (8)0.0203 (7)0.0040 (6)0.0007 (5)0.0065 (6)
C90.0140 (6)0.0252 (7)0.0221 (7)0.0015 (6)0.0004 (5)0.0060 (6)
C100.0229 (7)0.0185 (7)0.0153 (6)0.0003 (6)0.0031 (6)0.0003 (5)
C110.0240 (7)0.0173 (6)0.0220 (7)0.0020 (6)0.0001 (6)0.0004 (6)
Geometric parameters (Å, º) top
S1—O31.4783 (12)C5—C61.389 (2)
S1—N11.6948 (13)C5—H50.9500
S1—C111.7882 (16)C6—C71.385 (2)
N1—C31.3791 (18)C6—H60.9500
N1—C21.4716 (18)C7—C81.387 (2)
O1—C31.3428 (17)C7—H70.9500
O1—C11.4534 (16)C8—C91.380 (2)
O2—C31.2056 (17)C8—H80.9500
C1—C41.4952 (19)C9—H90.9500
C1—C21.547 (2)C10—H10A0.9800
C1—H11.0000C10—H10B0.9800
C2—C101.517 (2)C10—H10C0.9800
C2—H21.0000C11—H11A0.9800
C4—C51.3832 (19)C11—H11B0.9800
C4—C91.396 (2)C11—H11C0.9800
O3—S1—N1109.93 (7)C4—C5—H5119.9
O3—S1—C11106.55 (7)C6—C5—H5119.9
N1—S1—C1195.73 (7)C7—C6—C5120.08 (14)
C3—N1—C2110.71 (12)C7—C6—H6120.0
C3—N1—S1116.62 (10)C5—C6—H6120.0
C2—N1—S1129.58 (10)C6—C7—C8119.83 (14)
C3—O1—C1109.49 (11)C6—C7—H7120.1
O1—C1—C4110.13 (11)C8—C7—H7120.1
O1—C1—C2104.16 (11)C9—C8—C7120.21 (14)
C4—C1—C2115.28 (11)C9—C8—H8119.9
O1—C1—H1109.0C7—C8—H8119.9
C4—C1—H1109.0C8—C9—C4120.09 (14)
C2—C1—H1109.0C8—C9—H9120.0
N1—C2—C10112.29 (12)C4—C9—H9120.0
N1—C2—C198.58 (11)C2—C10—H10A109.5
C10—C2—C1114.99 (12)C2—C10—H10B109.5
N1—C2—H2110.2H10A—C10—H10B109.5
C10—C2—H2110.2C2—C10—H10C109.5
C1—C2—H2110.2H10A—C10—H10C109.5
O2—C3—O1123.30 (13)H10B—C10—H10C109.5
O2—C3—N1127.34 (14)S1—C11—H11A109.5
O1—C3—N1109.34 (11)S1—C11—H11B109.5
C5—C4—C9119.60 (13)H11A—C11—H11B109.5
C5—C4—C1122.67 (12)S1—C11—H11C109.5
C9—C4—C1117.65 (13)H11A—C11—H11C109.5
C4—C5—C6120.18 (13)H11B—C11—H11C109.5
O3—S1—N1—C388.16 (11)C2—N1—C3—O2165.15 (14)
C11—S1—N1—C3161.92 (11)S1—N1—C3—O23.1 (2)
O3—S1—N1—C269.87 (14)C2—N1—C3—O113.73 (15)
C11—S1—N1—C240.05 (14)S1—N1—C3—O1175.77 (9)
C3—O1—C1—C4145.05 (12)O1—C1—C4—C519.91 (18)
C3—O1—C1—C220.89 (14)C2—C1—C4—C597.55 (16)
C3—N1—C2—C1096.80 (14)O1—C1—C4—C9163.13 (12)
S1—N1—C2—C1062.25 (16)C2—C1—C4—C979.41 (16)
C3—N1—C2—C124.78 (14)C9—C4—C5—C60.9 (2)
S1—N1—C2—C1176.17 (11)C1—C4—C5—C6175.97 (13)
O1—C1—C2—N126.31 (13)C4—C5—C6—C70.6 (2)
C4—C1—C2—N1147.08 (12)C5—C6—C7—C80.2 (2)
O1—C1—C2—C1093.27 (14)C6—C7—C8—C90.8 (2)
C4—C1—C2—C1027.50 (17)C7—C8—C9—C40.5 (2)
C1—O1—C3—O2175.68 (13)C5—C4—C9—C80.4 (2)
C1—O1—C3—N15.38 (15)C1—C4—C9—C8176.66 (14)

Experimental details

Crystal data
Chemical formulaC11H13NO3S
Mr239.28
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)6.1605 (4), 11.8490 (8), 15.3861 (11)
V3)1123.12 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.22 × 0.09 × 0.06
Data collection
DiffractometerBruker X8 APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.707, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
30938, 3761, 3507
Rint0.032
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.070, 1.03
No. of reflections3761
No. of parameters147
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.18
Absolute structureFlack x determined using 1431 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Absolute structure parameter0.012 (16)

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), XCIF (Sheldrick, 2008), enCIFer (Allen et al., 2004) and publCIF (Westrip, 2010).

 

Acknowledgements

We thank Professor Joseph P. Marino (UND) for insightful discussions and guidance and Dr Bruce C. Noll (Bruker AXS) for assistance with sample preparation. GPS is grateful to CNPq and CAPES for a PVE Science Without Borders (096/2013) and the CAPES/UDELAR bilateral program Projetos conjuntos de pesquisa (049/2013).

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker–Nonius AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClara-Sosa, A., Pérez, L., Sánchez, M., Melgar-Fernández, R., Juaristi, E., Quintero, L. & Anaya de Parrodi, C. (2004). Tetrahedron, 60, 12147–12152.  CAS Google Scholar
First citationEvans, D. A., Faul, M. M., Colombo, L., Bisaha, J. J., Clardy, J. & Cherry, D. (1992). J. Am. Chem. Soc. 114, 5977–5985.  CrossRef CAS Web of Science Google Scholar
First citationHooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMarino, J. P., Bogdan, S. & Kimura, K. (1992). J. Am. Chem. Soc. 114, 5566–5572.  CrossRef CAS Web of Science Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRomanenko, V. D., Thoumazet, C., Lavallo, V., Tham, F. S. & Bertrand, G. (2003). Chem. Commun. pp. 1680–1681.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSilveira, G. P. & Marino, J. P. (2013). J. Org. Chem. 78, 3379–3383.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPozza Silveira, G., Bonfante de Carvallho, C. & Oliver, A. (2012). Acta Cryst. E68, o2048.  CSD CrossRef IUCr Journals Google Scholar
First citationPozza Silveira, G., Oliver, A. G. & Noll, B. C. (2013). Acta Cryst. E69, o979.  CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 12| December 2014| Pages o1257-o1258
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds