# data reports



OPEN a ACCESS



b = 6.100 (4) Åc = 21.357 (5) Å  $\beta = 131.876 \ (5)^{\circ}$  $V = 2947 (2) \text{ Å}^3$ 

Monoclinic, C2/c

a = 30.381 (5) Å

#### 2.2. Data collection

| Bruker Kappa APEXII CCD              | 14174 measured reflections             |
|--------------------------------------|----------------------------------------|
| diffractometer                       | 3675 independent reflections           |
| Absorption correction: multi-scan    | 2748 reflections with $I > 2\sigma(I)$ |
| (SADABS; Sheldrick, 1996)            | $R_{\rm int} = 0.021$                  |
| $T_{\min} = 0.976, T_{\max} = 0.982$ |                                        |
|                                      |                                        |

2.3. Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.043$ | H atoms treated by a mixture of                            |
|---------------------------------|------------------------------------------------------------|
| $vR(F^2) = 0.124$               | independent and constrained                                |
| S = 1.03                        | refinement                                                 |
| 675 reflections                 | $\Delta \rho_{\rm max} = 0.21 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 00 parameters                   | $\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$ |
| restraints                      |                                                            |

Z = 8

Mo  $K\alpha$  radiation

 $0.26 \times 0.24 \times 0.20 \text{ mm}$ 

 $\mu = 0.09 \text{ mm}^-$ 

T = 295 K

Received 15 November 2014; accepted 18 November 2014

India. \*Correspondence e-mail: mohan66@hotmail.com,

chakkaravarthi\_2005@yahoo.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

In the title hydrated molecular salt,  $C_8H_{12}N^+ \cdot C_6H_4NO_3^- \cdot H_2O_3$ the conformation of the side chain in the cation is anti [C- $C-C-N = 179.62 (12)^{\circ}$  and the dihedral angle between the aromatic ring and the nitro group in the anion is  $3.34 (11)^{\circ}$ . In the crystal, the components are linked by  $O-H \cdots O$  and N- $H \cdot \cdot \cdot O$  hydrogen bonds, generating (101) sheets, which feature  $R_4^4(21)$  loops. The sheets interact by weak aromatic  $\pi - \pi$ stacking interactions [centroid-centroid distance = 3.896 (3) Å], forming a three-dimensional network.

Crystal structure of 2-phenylethylamin-

N. Swarna Sowmya,<sup>a</sup> S. Sampathkrishnan,<sup>a</sup> S. Sudhahar,<sup>b</sup>

<sup>a</sup>Department of Applied Physics, Sri Venkateswara College of Engineering, Chennai 602 117, India, <sup>b</sup>Department of Physics, Presidency College, Chennai 600 005, India, and <sup>c</sup>Department of Physics, CPCL Polytechnic College, Chennai 600 068,

ium 4-nitrophenolate monohydrate

**R.** Mohan Kumar<sup>b\*</sup> and **G.** Chakkaravarthi<sup>c\*</sup>

Keywords: crystal structure; 2-phenylethylaminium; 4-nitrophenolate; hydrated salt; O—H···O and N—H···O hydrogen bonds;  $\pi$ - $\pi$  stacking interactions.

#### CCDC reference: 1034880

#### 1. Related literature

For related structures, see: Kanagathara et al. (2012); Lejon et al. (2006); Sankar et al. (2014); Smith et al. (2003).



2. Experimental 2.1. Crystal data  $C_8H_{12}N^+ \cdot C_6H_4NO_3^- \cdot H_2O$ 

 $M_r = 278.30$ 

Table 1 Hydrogen-bond geometry (Å, °).

| $D - H \cdot \cdot \cdot A$         | D-H      | $H \cdots A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|-------------------------------------|----------|--------------|--------------|--------------------------------------|
| N1-H1A···O1                         | 0.90 (1) | 1.81 (1)     | 2.7108 (17)  | 176 (18)                             |
| $O4-H4B\cdots O1$                   | 0.84 (1) | 1.90(1)      | 2.7262 (18)  | 173 (2)                              |
| $N1 - H1B \cdot \cdot \cdot O2^{i}$ | 0.90(1)  | 2.11 (1)     | 2.8937 (17)  | 145 (15)                             |
| $N1 - H1C \cdot \cdot \cdot O4^{n}$ | 0.91 (1) | 1.84 (1)     | 2.742 (2)    | 172 (18)                             |
| $O4-H4A\cdots O1^{iii}$             | 0.83 (1) | 1.93 (1)     | 2.7574 (16)  | 175 (2)                              |

Symmetry codes: (i) -x, -y + 2, -z; (ii) x, y - 1, z; (iii)  $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$ 

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

#### Acknowledgements

The authors thank the SAIF, IIT, Madras, for the data collection.

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7318).

#### References

- Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Kanagathara, N., Chakkaravarthi, G., Marchewka, M. K., Gunasekaran, S. & Anbalagan, G. (2012). Acta Cryst. E68, o2286.

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Smith, G., Wermuth, U. D. & White, J. M. (2003). Acta Cryst. E59, o1977-01979.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Lejon, T., Ingebrigtsen, T. & Hansen, L. K. (2006). Acta Cryst. E62, o701-o702. Sankar, A., Ambalatharasu, S., Peramaiyan, G., Chakkaravarthi, G. & Kanagadurai, R. (2014). Acta Cryst. E70, 0450.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

# supporting information

Acta Cryst. (2014). E70, o1280 [doi:10.1107/S1600536814025318]

# Crystal structure of 2-phenylethylaminium 4-nitrophenolate monohydrate

## N. Swarna Sowmya, S. Sampathkrishnan, S. Sudhahar, R. Mohan Kumar and G. Chakkaravarthi

#### S1. Structural commentary

The geometric parameters of the title compound (I) (Fig.1) are comparable with the reported similar structures (Kanagathara *et al.*, 2012; Sankar *et al.*, 2014; Lejon *et al.*, 2006; Smith *et al.*, 2003). The cation is protonated at N1 atom. The dihedral angle between the two benzene rings (C1—C6) and (C9—C14) is  $3.71 (11)^\circ$ . In the anion, the nitro group (N2/O2/O3) is twisted at an angle of  $3.34 (11)^\circ$  with the benzene ring (C9—C14).

#### **S2.** Supramolecular features

In the molecular structure, weak N—H···O and O—H···O hydrogen bonds link the cation, anion and water molecule which generates S(6) graph set motif. In the crystal structure, N—H···O and O—H···O hydrogen bonds link the anions, cations and water molecules into sheets, parallel to ac plane and further theses sheets are linked by O—H···O hydrogen bonds along [0 1 0] (Table 2 & Fig. 2). The N—H···O hydrogen bonds generates  $R_4^4(21)$  graph-set motif (Fig. 2).

The crystal structure also features weak C—H··· $\pi$  (Table 2) and  $\pi$ – $\pi$  [Cg2···Cg2<sup>i</sup> distance = 3.896 (3)Å; (i) -x,2-y,-z; Cg2 is the centroid of the C9—C14 ring] interactions to form a three dimensional network.

#### S3. Synthesis and crystallization

2-Phenylethylamine (1.26 g) and 4-nitrophenol (1.39 g) were dissolved in methanol and colourless blocks of the title compound were grown by slow evaporation.

#### S4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. The C-bound H atoms were positioned geometrically and refined using riding model, with C—H = 0.93 and 0.97 Å for  $CH_{aromatic}$  and  $CH_2$ , respectively with  $U_{iso}(H) = 1.2Ueq(C)$ . The H atoms bound to O and N atoms were found in a difference map and refined isotropically, with  $U_{iso}(H) = 1.5Ueq(O)$  and distance restraints: O—H = 0.82 (1)Å and N—H = 0.88 (1)Å. The components of the anisotropic displacement parameters in the direction of the bond between C3 and C4 were restrained to be equal within an effective standard deviation of 0.001 using the DELU command in SHELXL97 (Sheldrick, 2008).



## Figure 1

The molecular structure of (I), with 30% probability displacement ellipsoids for non-H atoms.



### Figure 2

The packing of (I), viewed down b axis. Intermolecular Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.

### 2-Phenylethylaminium 4-nitrophenol monohydrate

| Crystal data                                 |                                                       |
|----------------------------------------------|-------------------------------------------------------|
| $C_8H_{12}N^+ \cdot C_6H_4NO_3^- \cdot H_2O$ | V = 2947 (2) Å <sup>3</sup>                           |
| $M_r = 278.30$                               | Z = 8                                                 |
| Monoclinic, $C2/c$                           | F(000) = 1184                                         |
| Hall symbol: -C 2yc                          | $D_{\rm x} = 1.254 {\rm ~Mg} {\rm ~m}^{-3}$           |
| a = 30.381 (5)  Å                            | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| b = 6.100 (4)  Å                             | Cell parameters from 359 reflections                  |
| c = 21.357 (5)  Å                            | $\theta = 1.8 - 28.4^{\circ}$                         |
| $\beta = 131.876 \ (5)^{\circ}$              | $\mu = 0.09 \text{ mm}^{-1}$                          |
|                                              |                                                       |

#### T = 295 KBlock, colourless

Data collection

| Dulu concerton                            |                                                                     |
|-------------------------------------------|---------------------------------------------------------------------|
| Bruker Kappa APEXII CCD<br>diffractometer | 14174 measured reflections<br>3675 independent reflections          |
| Radiation source: fine-focus sealed tube  | 2748 reflections with $I > 2\sigma(I)$                              |
| Graphite monochromator                    | $R_{\rm int}=0.021$                                                 |
| $\omega$ and $\varphi$ scan               | $\theta_{\rm max} = 28.4^{\circ}, \ \theta_{\rm min} = 1.8^{\circ}$ |
| Absorption correction: multi-scan         | $h = -38 \rightarrow 40$                                            |
| (SADABS; Sheldrick, 1996)                 | $k = -7 \longrightarrow 8$                                          |
| $T_{\min} = 0.976, \ T_{\max} = 0.982$    | $l = -28 \rightarrow 28$                                            |
| Refinement                                |                                                                     |
| Refinement on $F^2$                       | Hydrogen site location: inferred from                               |
| Least-squares matrix: full                | neighbouring sites                                                  |
| $R[F^2 > 2\sigma(F^2)] = 0.043$           | H atoms treated by a mixture of independe                           |
| $wR(F^2) = 0.124$                         | and constrained refinement                                          |
| S = 1.03                                  | $w = 1/[\sigma^2(F_o^2) + (0.0561P)^2 + 0.954P]$                    |
| 3675 reflections                          | where $P = (F_0^2 + 2F_c^2)/3$                                      |

30/3 reflectionswhere  $r = (r_0 + 2r_c)$ 200 parameters $(\Delta/\sigma)_{max} < 0.001$ 6 restraints $\Delta\rho_{max} = 0.21 \text{ e } \text{Å}^{-3}$ Primary atom site location: structure-invariant<br/>direct methods $\Delta\rho_{min} = -0.19 \text{ e } \text{Å}^{-3}$ Secondary atom site location: difference Fourier<br/>map2008), Fc\*=kFc[1+0.0<br/>Extinction coefficient: 0

neighbouring sites H atoms treated by a mixture of independent and constrained refinement  $w = 1/[\sigma^2(F_o^2) + (0.0561P)^2 + 0.954P]$ where  $P = (F_o^2 + 2F_c^2)/3$   $(\Delta/\sigma)_{max} < 0.001$   $\Delta\rho_{max} = 0.21$  e Å<sup>-3</sup>  $\Delta\rho_{min} = -0.19$  e Å<sup>-3</sup> Extinction correction: *SHELXL97* (Sheldrick, 2008), Fc\*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0031 (5)

 $0.26 \times 0.24 \times 0.20 \text{ mm}$ 

#### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted R-factor wR and goodness of fit S are based on  $F^2$ , conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2$ sigma( $F^2$ ) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$  are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|    | x            | У          | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|----|--------------|------------|--------------|-----------------------------|--|
| C1 | 0.32367 (5)  | 0.9073 (2) | 0.49756 (8)  | 0.0480 (3)                  |  |
| C2 | 0.31910 (8)  | 1.1138 (3) | 0.51903 (11) | 0.0709 (4)                  |  |
| H2 | 0.2885       | 1.2063     | 0.4777       | 0.085*                      |  |
| C3 | 0.35989 (10) | 1.1848 (3) | 0.60213 (13) | 0.0850 (5)                  |  |
| Н3 | 0.3564       | 1.3244     | 0.6159       | 0.102*                      |  |
| C4 | 0.40509 (9)  | 1.0511 (4) | 0.66371 (11) | 0.0837 (5)                  |  |
| H4 | 0.4322       | 1.0990     | 0.7192       | 0.100*                      |  |
| C5 | 0.41005 (7)  | 0.8477 (4) | 0.64310 (10) | 0.0770 (5)                  |  |
| Н5 | 0.4407       | 0.7560     | 0.6846       | 0.092*                      |  |
| C6 | 0.36972 (6)  | 0.7765 (3) | 0.56068 (9)  | 0.0579 (3)                  |  |
| H6 | 0.3738       | 0.6369     | 0.5476       | 0.070*                      |  |
| C7 | 0.28038 (6)  | 0.8233 (3) | 0.40816 (8)  | 0.0578 (3)                  |  |

| H7A | 0.2783       | 0.9273       | 0.3719       | 0.069*     |
|-----|--------------|--------------|--------------|------------|
| H7B | 0.2949       | 0.6856       | 0.4052       | 0.069*     |
| C8  | 0.21941 (6)  | 0.7889 (3)   | 0.37618 (9)  | 0.0606 (4) |
| H8A | 0.2214       | 0.6890       | 0.4133       | 0.073*     |
| H8B | 0.2039       | 0.9276       | 0.3763       | 0.073*     |
| С9  | 0.12653 (5)  | 1.0077 (2)   | 0.10944 (7)  | 0.0446 (3) |
| C10 | 0.10095 (6)  | 0.8472 (2)   | 0.04638 (8)  | 0.0530 (3) |
| H10 | 0.1191       | 0.7110       | 0.0601       | 0.064*     |
| C11 | 0.04981 (6)  | 0.8868 (2)   | -0.03490 (8) | 0.0567 (3) |
| H11 | 0.0334       | 0.7782       | -0.0756      | 0.068*     |
| C12 | 0.02310 (5)  | 1.0891 (2)   | -0.05554 (7) | 0.0498 (3) |
| C13 | 0.04662 (5)  | 1.2508 (2)   | 0.00428 (8)  | 0.0521 (3) |
| H13 | 0.0281       | 1.3867       | -0.0105      | 0.062*     |
| C14 | 0.09722 (6)  | 1.2110 (2)   | 0.08547 (8)  | 0.0515 (3) |
| H14 | 0.1126       | 1.3203       | 0.1257       | 0.062*     |
| N1  | 0.17925 (5)  | 0.6981 (2)   | 0.28992 (7)  | 0.0575 (3) |
| H1A | 0.1771 (8)   | 0.784 (3)    | 0.2537 (9)   | 0.081 (5)* |
| H1B | 0.1421 (5)   | 0.687 (3)    | 0.2687 (10)  | 0.079 (5)* |
| H1C | 0.1932 (8)   | 0.567 (2)    | 0.2897 (12)  | 0.087 (6)* |
| N2  | -0.03040 (5) | 1.1357 (3)   | -0.14047 (8) | 0.0693 (4) |
| 01  | 0.17576 (4)  | 0.97214 (16) | 0.18676 (5)  | 0.0576 (3) |
| O2  | -0.05190 (5) | 1.3215 (3)   | -0.15745 (8) | 0.0901 (4) |
| O3  | -0.05367 (6) | 0.9919 (3)   | -0.19366 (8) | 0.1055 (5) |
| O4  | 0.23008 (5)  | 1.3211 (2)   | 0.29355 (7)  | 0.0714 (3) |
| H4A | 0.2588 (7)   | 1.359 (4)    | 0.2990 (14)  | 0.107*     |
| H4B | 0.2130 (9)   | 1.221 (3)    | 0.2576 (11)  | 0.107*     |
|     |              |              |              |            |

Atomic displacement parameters  $(\mathring{A}^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$    | $U^{13}$    | $U^{23}$    |  |
|-----|-------------|-------------|-------------|-------------|-------------|-------------|--|
| C1  | 0.0467 (6)  | 0.0555 (7)  | 0.0463 (6)  | -0.0004 (5) | 0.0329 (6)  | 0.0024 (5)  |  |
| C2  | 0.0845 (11) | 0.0564 (9)  | 0.0748 (10) | 0.0107 (8)  | 0.0544 (10) | 0.0094 (7)  |  |
| C3  | 0.1192 (15) | 0.0617 (10) | 0.0949 (12) | -0.0177 (8) | 0.0801 (11) | -0.0224 (8) |  |
| C4  | 0.0833 (11) | 0.1073 (15) | 0.0598 (9)  | -0.0306 (9) | 0.0474 (9)  | -0.0248 (8) |  |
| C5  | 0.0545 (8)  | 0.1111 (14) | 0.0486 (8)  | 0.0072 (9)  | 0.0275 (7)  | 0.0073 (9)  |  |
| C6  | 0.0506 (7)  | 0.0676 (9)  | 0.0533 (8)  | 0.0079 (6)  | 0.0337 (7)  | 0.0011 (6)  |  |
| C7  | 0.0457 (7)  | 0.0815 (10) | 0.0448 (7)  | 0.0011 (7)  | 0.0296 (6)  | 0.0002 (6)  |  |
| C8  | 0.0491 (7)  | 0.0805 (10) | 0.0542 (8)  | 0.0003 (7)  | 0.0353 (7)  | -0.0014 (7) |  |
| C9  | 0.0342 (5)  | 0.0487 (7)  | 0.0426 (6)  | -0.0014 (5) | 0.0222 (5)  | 0.0067 (5)  |  |
| C10 | 0.0499 (7)  | 0.0454 (7)  | 0.0563 (7)  | 0.0011 (5)  | 0.0324 (6)  | 0.0035 (6)  |  |
| C11 | 0.0539 (7)  | 0.0599 (8)  | 0.0485 (7)  | -0.0108 (6) | 0.0310 (6)  | -0.0067 (6) |  |
| C12 | 0.0355 (5)  | 0.0668 (8)  | 0.0396 (6)  | -0.0029 (5) | 0.0220 (5)  | 0.0074 (6)  |  |
| C13 | 0.0403 (6)  | 0.0557 (7)  | 0.0517 (7)  | 0.0098 (5)  | 0.0273 (6)  | 0.0100 (6)  |  |
| C14 | 0.0434 (6)  | 0.0512 (7)  | 0.0461 (7)  | 0.0006 (5)  | 0.0242 (6)  | -0.0023 (5) |  |
| N1  | 0.0390 (6)  | 0.0707 (8)  | 0.0471 (6)  | 0.0026 (5)  | 0.0222 (5)  | 0.0091 (6)  |  |
| N2  | 0.0460 (6)  | 0.1001 (11) | 0.0440 (6)  | -0.0063 (7) | 0.0227 (6)  | 0.0111 (7)  |  |
| O1  | 0.0395 (5)  | 0.0603 (6)  | 0.0456 (5)  | 0.0021 (4)  | 0.0170 (4)  | 0.0098 (4)  |  |
| O2  | 0.0524 (6)  | 0.1087 (10) | 0.0654 (7)  | 0.0168 (6)  | 0.0211 (6)  | 0.0326 (7)  |  |
|     |             |             |             |             |             |             |  |

# supporting information

| O3 | 0.0852 (9) | 0.1324 (13) | 0.0444 (6) | -0.0151 (9) | 0.0207 (6) | -0.0103 (7) |
|----|------------|-------------|------------|-------------|------------|-------------|
| O4 | 0.0561 (6) | 0.0691 (7)  | 0.0702 (7) | -0.0085 (5) | 0.0344 (6) | -0.0119 (5) |

Geometric parameters (Å, °)

| C1—C6     | 1.3761 (19) | C9—C10      | 1.4066 (19) |
|-----------|-------------|-------------|-------------|
| C1—C2     | 1.379 (2)   | C9—C14      | 1.4084 (19) |
| C1—C7     | 1.5116 (18) | C10—C11     | 1.3729 (19) |
| C2—C3     | 1.392 (3)   | C10—H10     | 0.9300      |
| C2—H2     | 0.9300      | C11—C12     | 1.378 (2)   |
| C3—C4     | 1.367 (3)   | C11—H11     | 0.9300      |
| С3—Н3     | 0.9300      | C12—C13     | 1.377 (2)   |
| C4—C5     | 1.358 (3)   | C12—N2      | 1.4410 (17) |
| C4—H4     | 0.9300      | C13—C14     | 1.3677 (18) |
| C5—C6     | 1.382 (2)   | C13—H13     | 0.9300      |
| С5—Н5     | 0.9300      | C14—H14     | 0.9300      |
| С6—Н6     | 0.9300      | N1—H1A      | 0.901 (9)   |
| С7—С8     | 1.5010 (19) | N1—H1B      | 0.895 (9)   |
| C7—H7A    | 0.9700      | N1—H1C      | 0.908 (9)   |
| С7—Н7В    | 0.9700      | N2—O3       | 1.220 (2)   |
| C8—N1     | 1.4795 (19) | N2—O2       | 1.235 (2)   |
| C8—H8A    | 0.9700      | O4—H4A      | 0.834 (9)   |
| C8—H8B    | 0.9700      | O4—H4B      | 0.836 (10)  |
| C9—O1     | 1.3091 (14) |             |             |
|           |             |             |             |
| C6—C1—C2  | 117.79 (14) | H8A—C8—H8B  | 108.0       |
| C6—C1—C7  | 119.94 (13) | O1—C9—C10   | 121.89 (12) |
| C2—C1—C7  | 122.27 (13) | O1—C9—C14   | 121.15 (12) |
| C1—C2—C3  | 120.45 (16) | C10—C9—C14  | 116.96 (11) |
| C1—C2—H2  | 119.8       | C11—C10—C9  | 121.59 (13) |
| С3—С2—Н2  | 119.8       | C11—C10—H10 | 119.2       |
| C4—C3—C2  | 120.58 (17) | C9—C10—H10  | 119.2       |
| С4—С3—Н3  | 119.7       | C10—C11—C12 | 119.33 (13) |
| С2—С3—Н3  | 119.7       | C10—C11—H11 | 120.3       |
| C5—C4—C3  | 119.38 (16) | C12—C11—H11 | 120.3       |
| С5—С4—Н4  | 120.3       | C13—C12—C11 | 120.97 (12) |
| C3—C4—H4  | 120.3       | C13—C12—N2  | 118.50 (13) |
| C4—C5—C6  | 120.29 (17) | C11—C12—N2  | 120.53 (13) |
| C4—C5—H5  | 119.9       | C14—C13—C12 | 119.79 (13) |
| С6—С5—Н5  | 119.9       | C14—C13—H13 | 120.1       |
| C1—C6—C5  | 121.51 (15) | C12—C13—H13 | 120.1       |
| С1—С6—Н6  | 119.2       | C13—C14—C9  | 121.35 (12) |
| С5—С6—Н6  | 119.2       | C13—C14—H14 | 119.3       |
| C8—C7—C1  | 113.03 (10) | C9—C14—H14  | 119.3       |
| C8—C7—H7A | 109.0       | C8—N1—H1A   | 112.1 (12)  |
| C1—C7—H7A | 109.0       | C8—N1—H1B   | 111.8 (11)  |
| С8—С7—Н7В | 109.0       | H1A—N1—H1B  | 105.3 (16)  |
| С1—С7—Н7В | 109.0       | C8—N1—H1C   | 109.7 (12)  |

| H7A—C7—H7B<br>N1—C8—C7<br>N1—C8—H8A<br>C7—C8—H8A<br>N1—C8—H8B<br>C7—C8—H8B | 107.8<br>111.13 (11)<br>109.4<br>109.4<br>109.4<br>109.4 | H1A—N1—H1C<br>H1B—N1—H1C<br>O3—N2—O2<br>O3—N2—C12<br>O2—N2—C12<br>H4A—O4—H4B | 106.2 (16)<br>111.6 (17)<br>121.46 (14)<br>119.74 (16)<br>118.79 (14)<br>106 (2) |
|----------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
|                                                                            | 10,11                                                    |                                                                              | 100 (2)                                                                          |
| C6—C1—C2—C3                                                                | -0.3 (2)                                                 | C9—C10—C11—C12                                                               | 0.6 (2)                                                                          |
| C7—C1—C2—C3                                                                | 179.97 (14)                                              | C10-C11-C12-C13                                                              | -0.67 (19)                                                                       |
| C1—C2—C3—C4                                                                | 0.0 (3)                                                  | C10-C11-C12-N2                                                               | 179.62 (12)                                                                      |
| C2—C3—C4—C5                                                                | 0.2 (3)                                                  | C11—C12—C13—C14                                                              | 0.01 (19)                                                                        |
| C3—C4—C5—C6                                                                | -0.1 (3)                                                 | N2-C12-C13-C14                                                               | 179.73 (11)                                                                      |
| C2-C1-C6-C5                                                                | 0.4 (2)                                                  | C12—C13—C14—C9                                                               | 0.8 (2)                                                                          |
| C7—C1—C6—C5                                                                | -179.87 (13)                                             | O1—C9—C14—C13                                                                | 178.27 (12)                                                                      |
| C4—C5—C6—C1                                                                | -0.2 (2)                                                 | C10-C9-C14-C13                                                               | -0.82 (19)                                                                       |
| C6—C1—C7—C8                                                                | 112.74 (15)                                              | C13—C12—N2—O3                                                                | -176.42 (14)                                                                     |
| C2-C1-C7-C8                                                                | -67.52 (18)                                              | C11—C12—N2—O3                                                                | 3.3 (2)                                                                          |
| C1C7C8N1                                                                   | -177.62 (13)                                             | C13—C12—N2—O2                                                                | 3.03 (18)                                                                        |
| O1-C9-C10-C11                                                              | -178.94 (12)                                             | C11—C12—N2—O2                                                                | -177.25 (13)                                                                     |
| C14—C9—C10—C11                                                             | 0.15 (18)                                                |                                                                              |                                                                                  |

Hydrogen-bond geometry (Å, °)

| D—H···A                           | D—H      | H···A    | $D \cdots A$ | D—H···A  |
|-----------------------------------|----------|----------|--------------|----------|
| N1—H1A…O1                         | 0.90(1)  | 1.81 (1) | 2.7108 (17)  | 176 (18) |
| O4—H4 <i>B</i> …O1                | 0.84 (1) | 1.90(1)  | 2.7262 (18)  | 173 (2)  |
| N1—H1 <i>B</i> ···O2 <sup>i</sup> | 0.90(1)  | 2.11 (1) | 2.8937 (17)  | 145 (15) |
| N1—H1C····O4 <sup>ii</sup>        | 0.91 (1) | 1.84 (1) | 2.742 (2)    | 172 (18) |
| O4—H4A···O1 <sup>iii</sup>        | 0.83 (1) | 1.93 (1) | 2.7574 (16)  | 175 (2)  |
|                                   |          |          |              |          |

Symmetry codes: (i) -*x*, -*y*+2, -*z*; (ii) *x*, *y*-1, *z*; (iii) -*x*+1/2, *y*+1/2, -*z*+1/2.