organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of fenpropathrin

aDepartment of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 660-701, Republic of Korea
*Correspondence e-mail: thkim@gnu.ac.kr

Edited by P. C. Healy, Griffith University, Australia (Received 4 November 2014; accepted 11 November 2014; online 19 November 2014)

In the title compound [systematic name: cyano­(3-phen­oxy­phen­yl)methyl 2,2,3,3-tetra­methyl­cyclo­propane­carboxyl­ate], C22H23NO3, which is the pyrethroid insecticide fenpropathrin, the dihedral angle between the cyclo­propane ring plane and the carboxyl­ate group plane is 88.25 (11)°. The dihedral angle between the benzene and phenyl rings in the phen­oxy­benzyl group is 82.99 (4)°. In the crystal, C—H⋯N hydrogen bonds and weak C—H⋯π inter­actions link adjacent mol­ecules, forming loop chains along the b-axis direction.

1. Related literature

For information on the toxicity and insecticidal properties of the title compound, see: Wu et al. (1999[Wu, W. Z., Xu, Y., Schramm, K.-W. & Kettrup, A. (1999). Ecotox. Environ. Safe. 42, 203-206.]); Hall & Nguyen (2010[Hall, D. G. & Nguyen, R. (2010). BioControl, 55, 601-611.]). For related crystal structures, see: Baert & Guelzim (1991[Baert, F. & Guelzim, A. (1991). Acta Cryst. C47, 606-608.]); Yang et al. (2011[Yang, H., Kim, T. H., Park, K.-M. & Kim, J. (2011). Acta Cryst. E67, o1275.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C22H23NO3

  • Mr = 349.41

  • Monoclinic, P 21 /n

  • a = 16.2578 (4) Å

  • b = 6.4799 (1) Å

  • c = 19.2475 (4) Å

  • β = 112.453 (1)°

  • V = 1873.99 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 173 K

  • 0.50 × 0.20 × 0.03 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.960, Tmax = 0.998

  • 30999 measured reflections

  • 4279 independent reflections

  • 3703 reflections with I > 2σ(I)

  • Rint = 0.029

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.105

  • S = 1.05

  • 4279 reflections

  • 239 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C17–C22 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯N1i 0.95 2.62 3.2715 (17) 126
C14—H14⋯Cg1i 0.95 2.87 3.6234 (15) 137
Symmetry code: (i) x, y-1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Fenpropathrin, C22H23NO3, is a member of the pyrethroid insecticides and it has been used for controlling insect pests in staple crops such as cereals, potatoes, tobacco, cotton, and fruit (Wu et al., 1999; Hall & Nguyen, 2010). its crystal structure is reported herein. In this compound (Scheme 1, Fig. 1), the dihedral angle between the cyclopropane ring plane and the carboxylate group plane is 88.25 (11)°. The dihedral angle between the benzene and phenyl ring planes in the phenoxybenzyl group is 82.99 (4)°. All bond lengths and bond angles are normal and comparable to those observed in the crystal structure of a similar compound (Baert & Guelzim, 1991; Yang et al., 2011).

In the crystal structure (Fig. 2, Table 1), C12—H12···N1 hydrogen bonds and weak intermolecular C14—H14···Cg1 (Cg1 is the centroid of the C17–C22 ring) interactions link adjacent molecules, forming loop chains along the b-axis direction.

Related literature top

For information on the toxicity and insecticidal properties of the title compound, see: Wu et al. (1999); Hall & Nguyen (2010). For related crystal structures, see: Baert & Guelzim (1991); Yang et al. (2011).

Experimental top

The title compound was purchased from the Dr. Ehrenstorfer GmbH Company. Slow evaporation of a solution in CH3OH gave single crystals suitable for X-ray analysis.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.98 Å, Uiso = 1.5Ueq(C) for methyl group, d(C—H) = 0.95 Å, Uiso = 1.2Ueq(C) for aromatic C—H, and d(C—H) = 1.00 Å, Uiso = 1.5Ueq(C) for Csp3—H.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
Fig. 1. The asymmetric unit of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius.

Fig. 2. Crystal packing of the title compound with C—H···N hydrogen bonds and weak intermolecular C—H···π interactions are shown as dashed lines. H atoms bonded to C atoms have been omitted for clarity, except H atoms of interactions.
Cyano(3-phenoxyphenyl)methyl 2,2,3,3-tetramethylcyclopropanecarboxylate top
Crystal data top
C22H23NO3F(000) = 744
Mr = 349.41Dx = 1.238 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9894 reflections
a = 16.2578 (4) Åθ = 2.7–27.5°
b = 6.4799 (1) ŵ = 0.08 mm1
c = 19.2475 (4) ÅT = 173 K
β = 112.453 (1)°Block, colourless
V = 1873.99 (7) Å30.50 × 0.20 × 0.03 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
4279 independent reflections
Radiation source: fine-focus sealed tube3703 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2121
Tmin = 0.960, Tmax = 0.998k = 88
30999 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.044P)2 + 0.8901P]
where P = (Fo2 + 2Fc2)/3
4279 reflections(Δ/σ)max < 0.001
239 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C22H23NO3V = 1873.99 (7) Å3
Mr = 349.41Z = 4
Monoclinic, P21/nMo Kα radiation
a = 16.2578 (4) ŵ = 0.08 mm1
b = 6.4799 (1) ÅT = 173 K
c = 19.2475 (4) Å0.50 × 0.20 × 0.03 mm
β = 112.453 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
4279 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3703 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.998Rint = 0.029
30999 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.05Δρmax = 0.28 e Å3
4279 reflectionsΔρmin = 0.24 e Å3
239 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.25941 (6)0.19890 (17)0.14087 (5)0.0316 (2)
O20.11426 (5)0.23376 (13)0.12141 (5)0.01977 (19)
O30.11802 (6)0.44803 (17)0.26198 (5)0.0300 (2)
N10.13768 (10)0.73437 (19)0.16331 (8)0.0395 (3)
C10.27819 (9)0.1836 (2)0.01169 (8)0.0265 (3)
H1A0.31410.16970.04210.040*
H1B0.26740.33010.02460.040*
H1C0.31010.12200.04070.040*
C20.12837 (9)0.1063 (2)0.11154 (7)0.0291 (3)
H2A0.15230.03460.14460.044*
H2B0.12360.25410.12310.044*
H2C0.06930.05100.11950.044*
C30.27228 (8)0.2137 (2)0.06589 (7)0.0239 (3)
H3A0.30720.27800.04000.036*
H3B0.25760.31750.09640.036*
H3C0.30710.10270.09850.036*
C40.12233 (9)0.2931 (2)0.03358 (8)0.0271 (3)
H4A0.06560.23020.06530.041*
H4B0.11270.38700.00250.041*
H4C0.14670.37050.06510.041*
C50.19010 (8)0.07394 (19)0.03022 (7)0.0202 (2)
C60.18727 (8)0.12554 (19)0.00844 (6)0.0193 (2)
C70.14512 (8)0.06898 (19)0.02724 (7)0.0203 (2)
H70.07860.07090.00400.024*
C80.18266 (8)0.16961 (19)0.10115 (7)0.0203 (2)
C90.14081 (8)0.33957 (19)0.19286 (7)0.0196 (2)
H90.20320.29900.22490.024*
C100.13830 (9)0.5631 (2)0.17713 (7)0.0256 (3)
C110.07965 (8)0.27541 (18)0.23146 (6)0.0181 (2)
C120.09429 (8)0.08420 (19)0.26710 (7)0.0222 (3)
H120.14210.00020.26720.027*
C130.03936 (9)0.0168 (2)0.30239 (7)0.0277 (3)
H130.04980.11360.32680.033*
C140.03081 (9)0.1380 (2)0.30238 (7)0.0279 (3)
H140.06890.09140.32620.034*
C150.04459 (8)0.3284 (2)0.26703 (7)0.0227 (3)
C160.01002 (8)0.39989 (19)0.23177 (6)0.0193 (2)
H160.00010.53150.20820.023*
C170.11112 (8)0.5735 (2)0.32213 (7)0.0226 (3)
C180.03504 (8)0.5875 (2)0.38729 (7)0.0227 (3)
H180.01600.50680.39320.027*
C190.03484 (9)0.7219 (2)0.44377 (7)0.0245 (3)
H190.01700.73320.48850.029*
C200.10902 (9)0.8391 (2)0.43572 (7)0.0263 (3)
H200.10810.93070.47460.032*
C210.18498 (9)0.8219 (2)0.37035 (8)0.0278 (3)
H210.23630.90130.36480.033*
C220.18637 (8)0.6899 (2)0.31336 (7)0.0269 (3)
H220.23820.67890.26870.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0183 (4)0.0463 (6)0.0292 (5)0.0037 (4)0.0081 (4)0.0172 (4)
O20.0177 (4)0.0230 (4)0.0189 (4)0.0006 (3)0.0073 (3)0.0055 (3)
O30.0168 (4)0.0493 (6)0.0232 (5)0.0028 (4)0.0069 (4)0.0090 (4)
N10.0650 (9)0.0256 (6)0.0429 (7)0.0082 (6)0.0374 (7)0.0051 (5)
C10.0277 (7)0.0259 (7)0.0297 (7)0.0020 (5)0.0152 (5)0.0014 (5)
C20.0331 (7)0.0301 (7)0.0209 (6)0.0069 (6)0.0069 (5)0.0019 (5)
C30.0224 (6)0.0271 (7)0.0220 (6)0.0045 (5)0.0082 (5)0.0016 (5)
C40.0294 (7)0.0242 (7)0.0274 (7)0.0033 (5)0.0104 (5)0.0072 (5)
C50.0210 (6)0.0215 (6)0.0179 (6)0.0025 (5)0.0071 (5)0.0019 (5)
C60.0191 (5)0.0206 (6)0.0183 (5)0.0009 (5)0.0074 (4)0.0030 (5)
C70.0159 (5)0.0233 (6)0.0210 (6)0.0009 (4)0.0064 (4)0.0047 (5)
C80.0185 (6)0.0213 (6)0.0224 (6)0.0004 (5)0.0093 (5)0.0031 (5)
C90.0195 (6)0.0208 (6)0.0189 (6)0.0014 (4)0.0077 (5)0.0048 (5)
C100.0319 (7)0.0261 (7)0.0259 (6)0.0057 (5)0.0190 (5)0.0069 (5)
C110.0182 (5)0.0196 (6)0.0157 (5)0.0024 (4)0.0054 (4)0.0035 (4)
C120.0241 (6)0.0191 (6)0.0203 (6)0.0001 (5)0.0050 (5)0.0032 (5)
C130.0346 (7)0.0217 (6)0.0230 (6)0.0064 (5)0.0067 (5)0.0015 (5)
C140.0275 (7)0.0355 (7)0.0219 (6)0.0117 (6)0.0107 (5)0.0017 (5)
C150.0162 (6)0.0329 (7)0.0180 (6)0.0017 (5)0.0055 (4)0.0057 (5)
C160.0195 (6)0.0213 (6)0.0161 (5)0.0001 (5)0.0056 (4)0.0011 (4)
C170.0203 (6)0.0295 (7)0.0215 (6)0.0032 (5)0.0118 (5)0.0003 (5)
C180.0193 (6)0.0266 (6)0.0233 (6)0.0004 (5)0.0093 (5)0.0027 (5)
C190.0257 (6)0.0254 (6)0.0215 (6)0.0037 (5)0.0081 (5)0.0017 (5)
C200.0308 (7)0.0250 (7)0.0275 (7)0.0035 (5)0.0162 (5)0.0015 (5)
C210.0242 (6)0.0306 (7)0.0329 (7)0.0021 (5)0.0158 (6)0.0015 (6)
C220.0188 (6)0.0370 (7)0.0255 (6)0.0004 (5)0.0091 (5)0.0008 (6)
Geometric parameters (Å, º) top
O1—C81.2036 (15)C7—H71.0000
O2—C81.3758 (14)C9—C101.4773 (18)
O2—C91.4472 (14)C9—C111.5093 (16)
O3—C171.3838 (15)C9—H91.0000
O3—C151.3953 (15)C11—C161.3919 (16)
N1—C101.1402 (18)C11—C121.3919 (17)
C1—C51.5143 (17)C12—C131.3833 (18)
C1—H1A0.9800C12—H120.9500
C1—H1B0.9800C13—C141.385 (2)
C1—H1C0.9800C13—H130.9500
C2—C51.5170 (17)C14—C151.3852 (19)
C2—H2A0.9800C14—H140.9500
C2—H2B0.9800C15—C161.3869 (17)
C2—H2C0.9800C16—H160.9500
C3—C61.5139 (16)C17—C181.3879 (17)
C3—H3A0.9800C17—C221.3916 (18)
C3—H3B0.9800C18—C191.3918 (18)
C3—H3C0.9800C18—H180.9500
C4—C61.5150 (17)C19—C201.3831 (19)
C4—H4A0.9800C19—H190.9500
C4—H4B0.9800C20—C211.3905 (19)
C4—H4C0.9800C20—H200.9500
C5—C61.5009 (17)C21—C221.3843 (19)
C5—C71.5416 (16)C21—H210.9500
C6—C71.5423 (16)C22—H220.9500
C7—C81.4691 (16)
C8—O2—C9115.62 (9)O1—C8—C7129.17 (11)
C17—O3—C15118.32 (9)O2—C8—C7109.07 (10)
C5—C1—H1A109.5O2—C9—C10107.16 (10)
C5—C1—H1B109.5O2—C9—C11108.90 (9)
H1A—C1—H1B109.5C10—C9—C11113.52 (10)
C5—C1—H1C109.5O2—C9—H9109.1
H1A—C1—H1C109.5C10—C9—H9109.1
H1B—C1—H1C109.5C11—C9—H9109.1
C5—C2—H2A109.5N1—C10—C9177.69 (14)
C5—C2—H2B109.5C16—C11—C12120.00 (11)
H2A—C2—H2B109.5C16—C11—C9122.16 (11)
C5—C2—H2C109.5C12—C11—C9117.84 (11)
H2A—C2—H2C109.5C13—C12—C11120.14 (12)
H2B—C2—H2C109.5C13—C12—H12119.9
C6—C3—H3A109.5C11—C12—H12119.9
C6—C3—H3B109.5C12—C13—C14120.46 (12)
H3A—C3—H3B109.5C12—C13—H13119.8
C6—C3—H3C109.5C14—C13—H13119.8
H3A—C3—H3C109.5C13—C14—C15118.95 (12)
H3B—C3—H3C109.5C13—C14—H14120.5
C6—C4—H4A109.5C15—C14—H14120.5
C6—C4—H4B109.5C14—C15—C16121.61 (12)
H4A—C4—H4B109.5C14—C15—O3120.16 (11)
C6—C4—H4C109.5C16—C15—O3118.11 (12)
H4A—C4—H4C109.5C15—C16—C11118.83 (11)
H4B—C4—H4C109.5C15—C16—H16120.6
C6—C5—C1119.52 (10)C11—C16—H16120.6
C6—C5—C2119.80 (11)O3—C17—C18123.63 (11)
C1—C5—C2111.82 (11)O3—C17—C22115.50 (11)
C6—C5—C760.90 (8)C18—C17—C22120.87 (12)
C1—C5—C7120.39 (10)C17—C18—C19118.82 (12)
C2—C5—C7115.78 (10)C17—C18—H18120.6
C5—C6—C3119.66 (10)C19—C18—H18120.6
C5—C6—C4119.97 (10)C20—C19—C18120.95 (12)
C3—C6—C4112.04 (11)C20—C19—H19119.5
C5—C6—C760.86 (8)C18—C19—H19119.5
C3—C6—C7120.03 (10)C19—C20—C21119.50 (12)
C4—C6—C7115.43 (10)C19—C20—H20120.3
C8—C7—C5123.36 (10)C21—C20—H20120.3
C8—C7—C6122.17 (10)C22—C21—C20120.44 (12)
C5—C7—C658.24 (7)C22—C21—H21119.8
C8—C7—H7114.0C20—C21—H21119.8
C5—C7—H7114.0C21—C22—C17119.42 (12)
C6—C7—H7114.0C21—C22—H22120.3
O1—C8—O2121.77 (11)C17—C22—H22120.3
C1—C5—C6—C30.51 (16)O2—C9—C11—C16101.40 (12)
C2—C5—C6—C3145.25 (12)C10—C9—C11—C1617.88 (16)
C7—C5—C6—C3109.99 (12)O2—C9—C11—C1278.15 (13)
C1—C5—C6—C4145.25 (11)C10—C9—C11—C12162.58 (11)
C2—C5—C6—C40.52 (17)C16—C11—C12—C130.47 (17)
C7—C5—C6—C4104.24 (12)C9—C11—C12—C13179.08 (11)
C1—C5—C6—C7110.50 (12)C11—C12—C13—C140.28 (19)
C2—C5—C6—C7104.76 (12)C12—C13—C14—C150.53 (19)
C6—C5—C7—C8110.01 (13)C13—C14—C15—C160.04 (19)
C1—C5—C7—C80.90 (18)C13—C14—C15—O3175.92 (11)
C2—C5—C7—C8138.72 (12)C17—O3—C15—C1484.56 (15)
C1—C5—C7—C6109.10 (12)C17—O3—C15—C1699.42 (13)
C2—C5—C7—C6111.28 (12)C14—C15—C16—C110.69 (18)
C5—C6—C7—C8112.01 (13)O3—C15—C16—C11175.27 (10)
C3—C6—C7—C82.61 (17)C12—C11—C16—C150.94 (17)
C4—C6—C7—C8136.39 (12)C9—C11—C16—C15178.59 (10)
C3—C6—C7—C5109.39 (12)C15—O3—C17—C180.13 (18)
C4—C6—C7—C5111.60 (12)C15—O3—C17—C22179.54 (11)
C9—O2—C8—O10.52 (17)O3—C17—C18—C19178.79 (12)
C9—O2—C8—C7179.00 (10)C22—C17—C18—C190.60 (19)
C5—C7—C8—O130.9 (2)C17—C18—C19—C200.34 (19)
C6—C7—C8—O139.8 (2)C18—C19—C20—C210.21 (19)
C5—C7—C8—O2148.58 (11)C19—C20—C21—C220.5 (2)
C6—C7—C8—O2140.71 (11)C20—C21—C22—C170.3 (2)
C8—O2—C9—C1094.85 (12)O3—C17—C22—C21179.15 (12)
C8—O2—C9—C11141.98 (10)C18—C17—C22—C210.3 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C17–C22 ring.
D—H···AD—HH···AD···AD—H···A
C12—H12···N1i0.952.623.2715 (17)126
C14—H14···Cg1i0.952.873.6234 (15)137
Symmetry code: (i) x, y1, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C17–C22 ring.
D—H···AD—HH···AD···AD—H···A
C12—H12···N1i0.952.623.2715 (17)126.4
C14—H14···Cg1i0.952.873.6234 (15)137.0
Symmetry code: (i) x, y1, z.
 

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2012R1A1B3003337).

References

First citationBaert, F. & Guelzim, A. (1991). Acta Cryst. C47, 606–608.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHall, D. G. & Nguyen, R. (2010). BioControl, 55, 601–611.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, W. Z., Xu, Y., Schramm, K.-W. & Kettrup, A. (1999). Ecotox. Environ. Safe. 42, 203–206.  Web of Science CrossRef CAS Google Scholar
First citationYang, H., Kim, T. H., Park, K.-M. & Kim, J. (2011). Acta Cryst. E67, o1275.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds