research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of di-μ-chloro­acetato-hexa­kis­(di­methyl­formamide)­tetra­kis­(μ-N,2-dioxido­benzene-1-carboximidato)tetra­manganese(III)disodium di­methyl­formamide disolvate

aDepartment of Chemistry, Shippensburg University, 1871 Old Main Dr., Shippensburg, PA 17257, USA, and bDepartment of Chemistry, Youngstown State University, 1 University Plaza, Youngstown, OH 44555, USA
*Correspondence e-mail: cmzaleski@ship.edu

Edited by S. Parkin, University of Kentucky, USA (Received 14 October 2014; accepted 6 November 2014; online 15 November 2014)

The synthesis, crystal structure, and FT–IR data for the title compound, [Na2Mn4(C2H2ClO2)2(C7H4NO3)4(C3H7NO)6]·2C3H7NO or Na2(O2CCH2Cl)2[12-MCMnIIIN(shi)-4](DMF)6·2DMF, where MC is metallacrown, shi3− is salicyl­hydroximate, and DMF is N,N-di­methyl­formamide, is reported. The macrocyclic metallacrown consists of an –[MnIII—N—O]4– ring repeat unit and the metallacrown captures two Na+ ions in the central cavity above and below the plane of the metallacrown. Each Na+ ion is seven-coordinate and is bridged to two ring MnIII ions, through either a coordinating DMF mol­ecule or a chloro­acetate anion. The ring MnIII ions have either a tetra­gonally distorted octa­hedral geometry or a distorted square-pyramidal geometry. Weak C—H⋯O inter­actions, in addition to pure van der Waals forces, contribute to the overall packing of the mol­ecules. The complete molecule has inversion symmetry and is disordered over two sets of sites with an occupancy ratio of 0.8783 (7):0.1217 (7). The solvent molecule is also disordered over two sets of sites, with an occupancy ratio of 0.615 (5):0.385 (5).

1. Chemical context

Metallacrowns (MCs) are a family of macrocyclic inorganic complexes with structural and functional similarity to crown ethers (Mezei et al., 2007[Mezei, G., Zaleski, C. M. & Pecoraro, V. L. (2007). Chem. Rev. 107, 4933-5003.]). As crown ethers are composed of a –[C—C—O]n– repeat unit, metallacrowns possess an –[M—N—O]n– repeat unit. While metallacrowns can selectively bind alkali metal ions in the central cavity similar to crown ethers, MCs have also found applications as single-mol­ecule magnets, anti­microbial agents, and building blocks for one-, two-, and three-dimensional solids (Mezei et al., 2007[Mezei, G., Zaleski, C. M. & Pecoraro, V. L. (2007). Chem. Rev. 107, 4933-5003.]). The controllable synthesis of macrocyclic inorganic mol­ecules is of importance if the properties of a mol­ecule are to be tailored for a specific application. However, inorganic reactions can be unpredictable due to labile metal–ligand coordination bonds. In addition, the products of many inorganic reactions can be serendipitous in nature (Saalfrank et al., 2008[Saalfrank, R. W., Maid, H. & Scheurer, A. (2008). Angew. Chem. Int. Ed. 47, 8794-8824.]). Thus, the ability to controllably substitute components of a mol­ecular class allow for the fine-tuning of mol­ecular properties.

The 12-MCMnIIIN(shi)-4 class of mol­ecules, with MnIII ions as the ring metal and salicyl­hydroximate (shi3−) ligands composing the MC framework, provide a rich opportunity to perform substitution reactions. These metallacrowns can bind a variety of metal ions in the central cavity such as MnII, Li+, Na+, K+, Ca2+, and LnIII ions (Ln is a lanthanide) (Lah & Pecoraro, 1989[Lah, M. S. & Pecoraro, V. L. (1989). J. Am. Chem. Soc. 111, 7258-7259.], 1991[Lah, M. S. & Pecoraro, V. L. (1991). Inorg. Chem. 30, 878-880.]; Gibney et al., 1996[Gibney, B. R., Wang, H., Kampf, J. W. & Pecoraro, V. L. (1996). Inorg. Chem. 35, 6184-6193.]; Kessissoglou et al., 2002[Kessissoglou, D. P., Bodwin, J. J., Kampf, J., Dendrinou-Samara, C. & Pecoraro, V. L. (2002). Inorg. Chim. Acta, 331, 73-80.]; Koumousi et al., 2011[Koumousi, E. S., Mukherjee, S., Beavers, C. M., Teat, S. J., Christou, G. & Stamatatos, T. C. (2011). Chem. Commun. 47, 11128-11130.]; Azar et al., 2014[Azar, M. R., Boron, T. T., Lutter, J. C., Daly, C. I., Zegalia, K. A., Nimthong, R., Ferrence, G. M., Zeller, M., Kampf, J. W., Pecoraro, V. L. & Zaleski, C. M. (2014). Inorg. Chem. 53, 1729-1742.]). Also, while the MC framework is neutral due to the four MnIII ions and four shi3− ligands, the addition of the central metal ion necessitates counter-anions, which also provide another substitution point. Thus, the 12-MCMnIIIN(shi)-4 structure affords an opportunity to investigate the substitution capability of MCs.

Herein we report the synthesis and crystal structure of Na2(O2CCH2Cl)2[12-MCMnIIIN(shi)-4](DMF)6·2DMF (DMF is N,N-dimethylformamide). This metalla­crown demon­strates the inclusion of chloro­acetate into the 12-MCMnIIIN(shi)-4 structure, which serves as a bridging anion between ring MnIII ions and Na+ captured above and below the central MC cavity.

[Scheme 1]

2. Structural commentary

The title compound consists of the typical 12-MCMnIIIN(shi)-4 framework with four MnIII—N—O repeating units producing an overall square-geometry mol­ecule (Fig. 1[link]). As in other di-sodium 12-MCMnIIIN(shi)-4 complexes (Lah & Pecoraro, 1991[Lah, M. S. & Pecoraro, V. L. (1991). Inorg. Chem. 30, 878-880.]; Gibney et al., 1996[Gibney, B. R., Wang, H., Kampf, J. W. & Pecoraro, V. L. (1996). Inorg. Chem. 35, 6184-6193.]; Kessissoglou et al., 2002[Kessissoglou, D. P., Bodwin, J. J., Kampf, J., Dendrinou-Samara, C. & Pecoraro, V. L. (2002). Inorg. Chim. Acta, 331, 73-80.]; Azar et al., 2014[Azar, M. R., Boron, T. T., Lutter, J. C., Daly, C. I., Zegalia, K. A., Nimthong, R., Ferrence, G. M., Zeller, M., Kampf, J. W., Pecoraro, V. L. & Zaleski, C. M. (2014). Inorg. Chem. 53, 1729-1742.]), an inversion center is located in the central MC cavity produced by the oxime oxygen atoms of the shi3− ligands. In addition, two Na+ ions are captured in the central cavity on opposite faces of the MC (Fig. 2[link]). A chloro­acetate anion bridges each Na+ ion to a ring manganese ion. The entire mol­ecule (metallacrown, chloro­acetate counter-anions, and coordinating DMF mol­ecules) is disordered over two sites with an occupancy ratio of 0.8783 (7):0.1217 (7) (complete refinement details are given below); thus, a description will only be given for the higher occupancy component. The metallacrown is nearly planar, but it can be considered to possess a stepped structure, i.e. the MC is ruffled (Fig. 2[link]). Charge neutrality is maintained for the mol­ecule by the presence of four MnIII and two Na+ cations and four shi3− and two chloro­acetate anions. The oxidation state assignment of the ring MnIII ions is supported by the average bond lengths, bond-valence-sum (BVS) calculations, and the presence of elongated axial bond lengths expected for a high-spin d4 electron configuration (Liu & Thorp, 1993[Liu, W. & Thorp, H. H. (1993). Inorg. Chem. 32, 4102-4105.]). For Mn1, the average bond length is 2.05 Å and the BVS value is 3.06 valence units (v.u.), and for Mn2 the average bond length is 1.96 Å and the BVS value is 2.98  v.u.

[Figure 1]
Figure 1
Molecular structure of Na2(O2CCH2Cl)2[12-MCMnIIIN(shi)-4](DMF)6·2DMF (top view). The displacement ellipsoid plot is at the 50% probability level. Atom labels for all non-H atoms on one asymmetric unit of the 12-MC-4 framework and selected symmetry-equivalent atoms have been provided. For clarity, atom labels for the axial DMF and chloro­acetate ligands have been omitted; those labels may be found in Fig. 2[link]. H atoms and the lattice solvent mol­ecules have been omitted for clarity. Color scheme: green MnIII, yellow Na+, purple chlorine, red oxygen, blue nitro­gen, and gray carbon. [Symmetry code: (ii) −x + 1, −y, −z + 1.]
[Figure 2]
Figure 2
Molecular structure of Na2(O2CCH2Cl)2[12-MCMnIIIN(shi)-4](DMF)6·2DMF (side view). The stepped or ruffled character of the structure is emphasised in this view. Atom labels for all non-hydrogen atoms of the axial DMF and chloro­acetate ligands on one asymmetric unit have been provided. See Fig. 1[link] for display details.

The coordination geometry about Mn1 is best described as a tetra­gonally distorted octa­hedron with the equatorial ligands comprised of an oxime nitro­gen atom and a phenolate oxygen atom from one shi3− ligand and an oxime oxygen atom and carbonyl oxygen atom from a second shi3− ligand. The Jahn–Teller axis is completed by the carbonyl oxygen atoms of two trans DMF mol­ecules (average Mn—OJT = 2.31 Å). The carbonyl oxygen atom (O10) of one of the DMF mol­ecules also serves as a one-atom bridge to the central Na+ ion. For Mn2, the coordination geometry is best described as distorted square-pyramidal with a τ value of 0.05, where τ = 0 for ideal square-pyramidal geometry and τ = 1 for ideal trigonal-bipyramidal geometry (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. G. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]). The basal ligands are comprised of an oxime nitro­gen atom and a phenolate oxygen atom from one shi3− ligand and an oxime oxygen atom and a carbonyl oxygen atom from a second shi3− ligand. The oxygen atom of a chloro­acetate anion binds in the elongated apical direction [Mn2—O7: 2.1202 (15) Å]. The chloro­acetate forms a three-atom bridge to the central Na+ ion. Each Na+ ion is seven coordinate. The four oxime oxygen atoms of the MC cavity form a square face below the Na+ ion, and three oxygen atoms form a triangular face above the ion. The three oxygen atoms are from the bridging chloro­acetate anion, a carbonyl oxygen atom of the bridging DMF mol­ecule, and a carbonyl oxygen atom of a terminal DMF mol­ecule. Lastly two DMF mol­ecules, which are related by the inversion center at (0.5, 0.0, 0.5), are located in the lattice and are disordered over two sites with different orientations with an occupancy ratio of 0.615 (5):0.385 (5).

3. Supra­molecular features

No strong directional inter­molecular inter­actions are observed between the Na2(O2CCH2Cl)2[12-MCMnIIIN(shi)-4](DMF)6 mol­ecules, but a number of weak intra­molecular and inter­molecular C—H⋯O inter­actions exist (Table 1[link]). The intra­molecular inter­actions exist between an oxygen atom of the bridging chloro­acetate anion and a methyl carbon atom of a coordinating DMF mol­ecule and a carbonyl carbon atom of another coordinating DMF mol­ecule, and between the carbonyl oxygen atom of a shi3− ligand and the methyl carbon atom of a coordinating DMF mol­ecule (Fig. 3[link]). The inter­molecular inter­actions exist between the carbonyl oxygen atom of a lattice DMF mol­ecule and the methyl carbon atoms of two different coordinating DMF mol­ecules, between an oxygen atom of a chloro­acetate and a carbonyl carbon atom of a lattice DMF mol­ecule, between a carbonyl oxygen atom of a coordinating DMF mol­ecule and a methyl carbon atom of a coordinating DMF mol­ecule of an adjacent MC, and between a carbonyl oxygen atom of a shi3− ligand and the methyl carbon atom of a coordinating DMF mol­ecule of a neighboring MC (Figs. 3[link] and 4[link]). These weak C—H⋯O inter­actions, in addition to pure van der Waals forces, contribute to the overall packing of the mol­ecules.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18A⋯O11i 0.98 2.63 3.516 (5) 151
C19—H19B⋯O12 0.98 2.33 3.201 (5) 148
C20—H20⋯O8 0.95 2.64 3.279 (3) 125
C21—H21B⋯O2ii 0.98 2.48 3.433 (3) 165
C24—H24B⋯O8 0.98 2.53 3.459 (4) 158
C25—H25B⋯O12iii 0.98 2.55 3.309 (6) 134
C25—H25C⋯O2iii 0.98 2.50 3.423 (5) 157
C26—H26⋯O7 0.95 2.49 3.339 (10) 149
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y, -z+1; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 3]
Figure 3
Intra- and inter­molecular hydrogen bonding within the metallacrown itself and between the MC and the lattice DMF mol­ecule. For clarity, only the H atoms (white) involved in the hydrogen bonding have been included and only the atoms involved in the hydrogen bonding have been labelled. See Fig. 1[link] for display details. [Symmetry code: (ii) −x + 1, −y, −z + 1.]
[Figure 4]
Figure 4
Inter­molecular hydrogen bonding between adjacent metallacrowns and between the MC and the lattice DMF mol­ecule. For clarity, only the H atoms (white) involved in the hydrogen bonding have been included and only the atoms involved in the hydrogen bonding have been labelled. See Fig. 1[link] for display details. [Symmetry codes: (i) −x + [{1\over 2}], y + [{1\over 2}], −z + [{1\over 2}]; (iii) −x + [{1\over 2}], y − [{1\over 2}], −z + [{1\over 2}].]

4. Database survey

The X-ray crystal structures of four other di-sodium 12-MCMnIIIN(shi)-4 complexes have been reported: Na2Cl2[12-MCMnIIIN(shi)-4](DMF)6·3DMF (Lah & Pecoraro, 1991[Lah, M. S. & Pecoraro, V. L. (1991). Inorg. Chem. 30, 878-880.]), Na2Br2[12-MCMnIIIN(shi)-4](DMF)8 (Gibney et al., 1996[Gibney, B. R., Wang, H., Kampf, J. W. & Pecoraro, V. L. (1996). Inorg. Chem. 35, 6184-6193.]), Na2(NCS)2[12-MCMnIIIN(shi)-4](DMF)8, (Kessissoglou et al., 2002[Kessissoglou, D. P., Bodwin, J. J., Kampf, J., Dendrinou-Samara, C. & Pecoraro, V. L. (2002). Inorg. Chim. Acta, 331, 73-80.]) and Na2(O2CCH3)2[12-MCMnIIIN(shi)-4](DMF)6·2DMF·1.60H2O (Azar et al., 2014[Azar, M. R., Boron, T. T., Lutter, J. C., Daly, C. I., Zegalia, K. A., Nimthong, R., Ferrence, G. M., Zeller, M., Kampf, J. W., Pecoraro, V. L. & Zaleski, C. M. (2014). Inorg. Chem. 53, 1729-1742.]). As in the other four structures, the title compound has a ruffled structure and the Na+ ions bind on opposite faces of the MC. In the chloride, bromide, acetate, and chloro­acetate versions, the anion bridges between a ring MnIII ion and the central Na+ ion. However, in the thio­cyanate analogue, the anion does not bridge between the ring MnIII ions and the central Na+ ions. Comparing the two carboxyl­ate anion structures, the metallacrown cavity radius of each 12-MCMnIIIN(shi)-4 is similar with 0.55 Å for the acetate version and 0.56 Å for the chloro­acetate analogue. However, the Na+ ions in the chloro­acetate MC more closely approach the mean plane produced by the manganese(III) ions (MnIIIMP) and the mean plane produced by the oxime oxygen atoms (OoxMP). For the acetate version, the Na+ ion to MnIIIMP distance is approximately 1.65 Å, and the Na+ ion to the OoxMP distance is 1.66 Å. For the chloro­acetate version, the Na+–MnIIIMP distance is 1.62 Å, and the Na+–OoxMP distance is 1.63 Å. Since the Na+ ions of the chloro­acetate version more closely approach the MC, the Na+–-Na+ distance [3.254 (4) Å] is slightly smaller than that observed for the acetate version [3.3364 (9) Å].

5. Synthesis and crystallization

The title compound was synthesized by first dissolving manganese(II) acetate tetra­hydrate (2 mmol) in 4 ml of methanol and 4 ml of DMF, which resulted in a dark-orange solution. Then a mixture of salicyl­hydroxamic acid (2 mmol) and sodium chloro­acetate (2 mmol) in 5 ml of methanol and 5 ml of DMF was added to the manganese(II) acetate solution. The resulting dark-brown solution was stirred overnight and filtered the next day without the recovery of a precipitate. After slow evaporation of the dark-brown filtrate for 7 days, black, block-like crystals suitable for X-ray diffraction were recovered. The percent yield was 41% based on mang­anese(II) acetate tetra­hydrate. Elemental analysis for C56H76Cl2Mn4N12Na2O24 [FW = 1637.92 g mol−1] found % (calculated): C 40.68 (41.06); H 4.58 (4.68); N 9.98 (10.27). FT–IR bands (KBr pellet, cm−1): 1650, 1598, 1567, 1517, 1469, 1434, 1389, 1315, 1256, 1156, 1098, 1035, 935, 862, 771, 757, 687, 649, 611, 583, 477.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The metallacrown mol­ecule, coordinating DMF mol­ecules, and chloro­acetate anion show whole-mol­ecule disorder over two sets of sites. The geometries of the two metallacrowns, coordinating DMF mol­ecules, and the coordinating chloro­acetate anions were restrained to be similar to each other (SAME command in SHELXL, s.u. = 0.02 Å). For the benzene ring carbon atoms (C2–C7, C9–C14 and C2B–C7B, C9B–C14B), oxime oxygen atom (O4 and O4B), and oxime nitro­gen atoms (N1, N2 and N1B, N2B) of the salicyl­hydroximate ligands, equivalent atoms were constrained to have pairwise identical anisotropic displacement parameters (ADPs). The ADPs of the sodium ions (Na1 and Na1B) were also constrained to be identical. For the coordinating DMF mol­ecules, the nitro­gen atoms (N3 and N3B, N4 and N4B, and N5 and N5B) have nearly the same atom positions, leading to highly correlated thermal parameters. To avoid correlation of the thermal parameters, the ADPs of equivalent nitro­gen atoms in the DMF mol­ecules were constrained to be identical. In addition, carbon, oxygen, and chlorine atoms of the chloro­acetate and carbon, oxygen, and nitro­gen atoms of the coordinating DMF mol­ecules were restrained to have similar Uij components of the ADPs (s.u. = 0.04 Å2; SIMU restraint in SHELXL). Anisotropic displacement parameters of all atoms in the minor moiety of the coordinating DMF mol­ecule associated with N5B were restrained using an enhanced rigid-bond restraint for the 1,2- and 1,3 distances [RIGU command in SHELXL, s.u. = 0.004 Å2 for both 1,2- and 1,3 distances (Thorn et al., 2012[Thorn, A., Dittrich, B. & Sheldrick, G. M. (2012). Acta Cryst. A68, 448-451.])]. Additionally, the following sodium–oxygen bond lengths were restrained to be similar (s.u. 0.02 Å): Na1—O1 and Na1B—O1B, Na1—O4 and Na1B—O4B, Na1—O8 and Na1B—O8B, and Na1—O11 and Na1B—O11B. Subject to these conditions, the occupancy ratio of the disordered metallacrown and associated anion and solvent mol­ecules refined to 0.8783 (7):0.1217 (7).

Table 2
Experimental details

Crystal data
Chemical formula [Na2Mn4(C2H2ClO2)2(C7H4NO3)4(C3H7NO)6]·2C3H7NO
Mr 1637.92
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 14.4457 (7), 14.7091 (6), 16.5663 (8)
β (°) 101.8584 (17)
V3) 3444.9 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.89
Crystal size (mm) 0.32 × 0.30 × 0.21
 
Data collection
Diffractometer Bruker AXS D8 Quest CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.645, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 39712, 12392, 9900
Rint 0.030
(sin θ/λ)max−1) 0.757
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.102, 1.06
No. of reflections 12392
No. of parameters 791
No. of restraints 748
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.85, −0.45
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXLE (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

A lattice DMF mol­ecule, associated with N6, is disordered over two sets of sites with different orientations. The geometries of the two DMF mol­ecules were restrained to be similar to each other (SAME command in SHELXL, s.u. = 0.02 Å). The nitro­gen atoms (N6 and N6B) have nearly the same atom positions, leading to highly correlated displacement parameters. To avoid correlation of the displacement parameters, the ADPs of equivalent atoms were constrained to be identical. In addition, carbon, oxygen, and nitro­gen atoms of the DMF mol­ecule were restrained to have similar Uij components of the ADPs (s.u. = 0.04 Å2; SIMU restraint in SHELXL). Subject to these restraints, the occupancy ratio of the disordered DMF mol­ecule refined to 0.615 (5):0.385 (5).

All hydrogen atoms were placed in calculated positions and refined as riding on their carrier atoms with C—H distances of 0.95 Å for sp2 carbon atoms and 0.98 Å for methyl carbon atoms. The Uiso values for hydrogen atoms were set to a multiple of the value of the carrying carbon atom (1.2 times for sp2-hybridized carbon atoms or 1.5 times for methyl carbon atoms and water oxygen atoms). Major disorder component methyl H atoms were allowed to rotate, but not to tip (AFIX 137 command in SHELXL). For the minor disorder component, methyl H atoms, the C—N—C—H torsion angles were constrained, as implemented in the AFIX 33 command in SHELXL.

Supporting information


Chemical context top

Metallacrowns (MCs) are a family of macrocyclic inorganic complexes with structural and functional similarity to crown ethers (Mezei et al., 2007). As crown ethers are composed of a –[C—C—O]n– repeat unit, metallacrowns possess an –[M—N—O]n– repeat unit. While metallacrowns can selectively bind alkali metal ions in the central cavity similar to crown ethers, MCs have also found applications as single-molecule magnets, anti­microbial agents, and building blocks for one-, two-, and three-dimensional solids (Mezei et al., 2007). The controllable synthesis of macrocyclic inorganic molecules is of importance if the properties of a molecule are to be tailored for a specific application. However, inorganic reactions can be unpredi­cta­ble due to labile metal–ligand coordination bonds. In addition, the products of many inorganic reactions can be serendipitous in nature (Saalfrank et al., 2008). Thus, the ability to controllably substitute components of a molecular class allow for the fine-tuning of molecular properties.

The 12-MCMnIIIN(shi)-4 class of molecules with MnIII ions as the ring metal and salicyl­hydroximate (shi3-) ligands composing the MC framework provide a rich opportunity to perform substitution reactions. These metallacrowns can bind a variety of metal ions in the central cavity such as MnII, Li+, Na+, K+, Ca2+, and LnIII ions (Lah & Pecoraro, 1989, 1991; Gibney et al., 1996; Kessissoglou et al., 2002; Koumousi et al., 2011; Azar et al., 2014). Also, while the MC framework is neutral due to the four MnIII ions and four shi3- ligands, the addition of the central metal ion necessitates counter-anions, which also provide another substitution point. Thus, the 12-MCMnIIIN(shi)-4 affords an opportunity to investigate the substitution capability of MCs. Herein we report the synthesis and single-crystal X-ray structure of Na2(O2CCH2Cl)2[12-MCMnIIIN(shi)-4](DMF)6·2DMF. This metallacrown demonstrates the inclusion of chloro­acetate into the 12-MCMnIIIN(shi)-4 structure, which serves as a bridging anion between ring MnIII ions and Na+ captured above and below the central MC cavity.

Structural commentary top

The title compound Na2(O2CCH2Cl)2[12-MCMnIIIN(shi)-4](DMF)6·2DMF consists of the typical 12-MCMnIIIN(shi)-4 framework with four MnIII—N—O repeating units producing an overall square-geometry molecule (Fig. 1). As in other di-sodium 12-MCMnIIIN(shi)-4 complexes (Lah & Pecoraro, 1991; Gibney et al., 1996); Kessissoglou et al., 2002; Azar et al., 2014), an inversion center is located in the central MC cavity produced by the oxime oxygen atoms of the shi3- ligands. In addition, two Na+ ions are captured in the central cavity on opposite faces of the MC (Fig. 2). A chloro­acetate anion bridges each Na+ ion to a ring manganese ion. The entire molecule (metallacrown, chloro­acetate counter-anions, and coordinating DMF molecules) is disordered over two sites with an occupancy ratio of 0.8783 (7):0.1217 (7) (complete refinement details are given below); thus, a description will only be given for the higher occupancy component. The metallacrown is nearly planar, but it can be considered to possess a stepped structure, i.e. the MC is ruffled (Fig. 2). Charge neutrality is maintained for the molecule by the presence of four MnIII and two Na+ cations and four shi3- and two chloro­acetate anions. The oxidation state assignment of the ring MnIII ions is supported by the average bond lengths, bond-valence-sum (BVS) calculations, and the presence of the elongated axial bond lengths expected for a high spin d4 electron configuration (Liu & Thorp, 1993). For Mn1, the average bond length is 2.05 Å and the BVS value is 3.06, and for Mn2 the average bond length is 1.96 Å and the BVS value is 2.98.

The coordination geometry about Mn1 is best described as a tetra­gonally distorted o­cta­hedron with the equatorial ligands comprised of an oxime nitro­gen atom and a phenolate oxygen atom from one shi3- ligand and an oxime oxygen atom and carbonyl oxygen atom from a second shi3- ligand. The Jahn–Teller axis is completed by the carbonyl oxygen atoms of two trans DMF molecules (average Mn—OJT = 2.31 Å). The carbonyl oxygen atom (O10) of one of the DMF molecules also serves as a one-atom bridge to the central Na+ ion. For Mn2, the coordination geometry is best described as distorted square-pyramidal with a τ value of 0.05, where τ = 0 for ideal square-pyramidal geometry and τ = 1 for ideal trigonal-bipyramidal geometry (Addison et al., 1984). The basal ligands are comprised of an oxime nitro­gen atom and a phenolate oxygen atom from one shi3- ligand and an oxime oxygen atom and a carbonyl oxygen atom from a second shi3- ligand. The oxygen atom of a chloro­acetate anion binds in the elongated apical direction [Mn2—O7: 2.1202 (15) Å]. The chloro­acetate forms a three-atom bridge to the central Na+ ion. Each Na+ ion is seven coordinate. The four oxime oxygen atoms of the MC cavity form a square face below the Na+ ion, and three oxygen atoms form a triangular face above the ion. The three oxygen atoms are from the bridging chloro­acetate anion, a carbonyl oxygen atom of the bridging DMF molecule, and a carbonyl oxygen atom of a terminal DMF molecule. Lastly two DMF molecules, which are related by the inversion center at (0.5, 0.0, 0.5), are located in the lattice and are disordered over two sites with different orientations with an occupancy ratio of 0.615 (5):0.385 (5).

Supra­molecular features top

No strong directional inter­molecular inter­actions are observed between the Na2(O2CCH2Cl)2[12-MCMnIIIN(shi)-4](DMF)6 molecules, but a number of weak intra­molecular and inter­molecular C—H···O inter­actions exist (Table 1). The intra­molecular inter­actions exist between an oxygen atom of the bridging chloro­acetate anion and a methyl carbon atom of a coordinating DMF molecule and a carbonyl carbon atom of another coordinating DMF molecule, and between the carbonyl oxygen atom of a shi3- ligand and the methyl carbon atom of a coordinating DMF molecule (Fig. 3). The inter­molecular inter­actions exist between the carbonyl oxygen atom of a lattice DMF molecule and the methyl carbon atoms of two different coordinating DMF molecules, between an oxygen atom of a chloro­acetate and a carbonyl carbon atom of a lattice DMF molecule, between a carbonyl oxygen atom of a coordinating DMF molecule and a methyl carbon atom of a coordinating DMF molecule of an adjacent MC, and between a carbonyl oxygen atom of a shi3- ligand and the methyl carbon atom of a coordinating DMF molecule of a neighboring MC (Figs. 3 and 4). These weak C—H···O inter­actions, in addition to pure van der Waals forces, contribute to the overall packing of the molecules.

Database survey top

\ The X-ray crystal structures of four other di-sodium 12-MCMnIIIN(shi)-4 complexes have been reported: Na2Cl2[12-MCMnIIIN(shi)-4](DMF)6·3DMF (Lah & Pecoraro, 1991), Na2Br2[12-MCMnIIIN(shi)-4](DMF)8 (Gibney et al., 1996), Na2(NCS)2[12-MCMnIIIN(shi)-4](DMF)8, (Kessissoglou et al., 2002) and Na2(O2CCH3)2[12-MCMnIIIN(shi)-4](DMF)\ 6·2DMF·1.60H2O (Azar et al., 2014). As in the other four structures, the title compound has a similar ruffled structure and the Na+ ions bind on opposite faces of the MC. In the chloride, bromide, acetate, and chloro­acetate versions, the anion bridges between a ring MnIII ion and the central Na+ ion. However, in the thio­cyanate analogue, the anion does not bridge between the ring MnIII ions and the central Na+ ions. Comparing the two carboxyl­ate anion structures, the metallacrown cavity radius of each 12-MCMnIIIN(shi)-4 is similar with 0.55 Å for the acetate version and 0.56 Å for the chloro­acetate analogue. However, the Na+ ions in the chloro­acetate MC more closely approach the mean plane produced by the manganese(III) ions (MnIIIMP) and the mean plane produced by the oxime oxygen atoms (OoxMP). For the acetate version, the Na+ ion to MnIIIMP distance is approximately 1.65 Å, and the Na+ ion to the OoxMP distance is 1.66 Å. For the chloro­acetate version, the Na+–MnIIIMP distance is 1.62 Å, and the Na+–OoxMP distance is 1.63 Å. Since the Na+ ions of the chloro­acetate version more closely approach the MC, the Na+–Na+ distance [3.254 (4) Å] is slightly smaller than that observed for the acetate version [3.3364 (9) Å].

Synthesis and crystallization top

The title compound was synthesized by first dissolving manganese(II) acetate tetra­hydrate (2 mmol) in 4 ml of methanol and 4 ml of DMF, which resulted in a dark-orange solution. Then a mixture of salicyl­hydroxamic acid (2 mmol) and sodium chloro­acetate (2 mmol) in 5 ml of methanol and 5 ml of DMF was added to the manganese(II) acetate solution. The resulting dark-brown solution was stirred overnight and filtered the next day without the recovery of a precipitate. After slow evaporation of the dark-brown filtrate for 7 days, black, block-like crystals suitable for X-ray diffraction were recovered. The percent yield was 41% based on manganese(II) acetate tetra­hydrate. Elemental analysis for C56H76Cl2Mn4N12Na2O24 [FW = 1637.92 g mol-1] found % (calculated): C 40.68 (41.06); H 4.58 (4.68); N 9.98 (10.27). FT–IR bands (KBr pellet, cm-1): 1650, 1598, 1567, 1517, 1469, 1434, 1389, 1315, 1256, 1156, 1098, 1035, 935, 862, 771, 757, 687, 649, 611, 583, 477.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The metallacrown molecule, coordinating DMF molecules, and chloro­acetate anion show whole-molecule disorder over two sites. The geometries of the two metallacrowns, coordinating DMF molecules, and the coordinating chloro­acetate anions were restrained to be similar to each other (SAME command in SHELXL, s.u. = 0.02 Å). For the benzene ring carbon atoms (C2–C7, C9–C14 and C2B–C7B, C9B–C14B), oxime oxygen atom (O4 and O4B), and oxime nitro­gen atoms (N1, N2 and N1B, N2B) of the salicyl­hydroximate ligands, equivalent atoms were constrained to have pairwise identical anisotropic displacement parameters (ADPs). The ADPs of the sodium ions (Na1 and Na1B) were also constrained to be identical. For the coordinating DMF molecules, the nitro­gen atoms (N3 and N3B, N4 and N4B, and N5 and N5B) have nearly the same atom positions, leading to highly correlated thermal parameters. To avoid correlation of the thermal parameters, the ADPs of equivalent nitro­gen atoms in the DMF molecules were constrained to be identical. In addition, carbon, oxygen, and chlorine atoms of the chloro­acetate and carbon, oxygen, and nitro­gen atoms of the coordinating DMF molecules were restrained to have similar Uij components of the ADPs (s.u. = 0.04 Å2; SIMU restraint in SHELXL). Anisotropic displacement parameters of all atoms in the minor moiety of the coordinating DMF molecule associated with N5B were restrained using an enhanced rigid-bond restraint for the 1,2- and 1,3 distances [RIGU command in SHELXL, s.u. = 0.004 Å2 for both 1,2- and 1,3 distances (Thorn et al., 2012)]. Additionally, the following sodium–oxygen bond distances were restrained to be similar (s.u. 0.02 Å): Na1—O1 and Na1B—O1B, Na1—O4 and Na1B—O4B, Na1—O8 and Na1B—O8B, and Na1—O11 and Na1B—O11B. Subject to these conditions, the occupancy ratio of the disordered metallacrown and associated anion and solvent molecules refined to 0.8783 (7):0.1217 (7).

A lattice DMF molecule, associated with N6, is disordered over two sites with different orientations. The geometries of the two DMF molecules were restrained to be similar to each other (SAME command in SHELXL, s.u. = 0.02 Å). The nitro­gen atoms (N6 and N6B) have nearly the same atom positions, leading to highly correlated thermal parameters. To avoid correlation of the thermal parameters, the ADPs of equivalent atoms were constrained to be identical. In addition, carbon, oxygen, and nitro­gen atoms of the DMF molecule were restrained to have similar Uij components of the ADPs (s.u. = 0.04 Å2; SIMU restraint in SHELXL). Subject to these restraints, the occupancy ratio of the disordered DMF molecule refined to 0.615 (5):0.385 (5).

All hydrogen atoms were placed in calculated positions and refined as riding on their carrier atoms with C—H distances of 0.95 Å for sp2 carbon atoms and 0.98 Å for methyl carbon atoms. The Uiso values for hydrogen atoms were set to a multiple of the value of the carrying carbon atom (1.2 times for sp2-hybridized carbon atoms or 1.5 times for methyl carbon atoms and water oxygen atoms). Major disorder component methyl H atoms were allowed to rotate, but not to tip (AFIX 137 command in SHELXL). For the minor disorder component, methyl H atoms, the C—N—C—-H torsion angles were constrained, as implemented in the AFIX 33 command in SHELXL.

Related literature top

For related literature, see: Addison et al. (1984); Azar et al. (2014); Gibney et al. (1996); Kessissoglou et al. (2002); Koumousi et al. (2011); Lah & Pecoraro (1989, 1991); Liu & Thorp (1993); Mezei et al. (2007); Saalfrank et al. (2008); Thorn et al. (2012).

Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008) and SHELXLE (Hübschle et al., 2011); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
Single-crystal X-ray structure of Na2(O2CCH2Cl)2[12-MCMnIIIN(shi)-4](DMF)6·2DMF (top view). The displacement ellipsoid plot is at the 50% probability level. Atom labels for all non-H atoms on one asymmetric unit of the 12-MC-4 framework and select symmetry-equivalent atoms have been provided. For clarity, atom labels for the axial DMF and chloroacetate ligands have been omitted; those labels may be found in Fig. 2. H atoms and the lattice solvent molecules have been omitted for clarity. Color scheme: green MnIII, yellow Na+, purple chlorine, red oxygen, blue nitrogen, and gray carbon. [Symmetry code: (ii) -x+1, -y, -z+1.]

Single-crystal X-ray structure of Na2(O2CCH2Cl)2[12-MCMnIIIN(shi)-4](DMF)6·2DMF (side view). The stepped or ruffled character of the structure is emphasised in this view. Atom labels for all non-hydrogen atoms of the axial DMF and chloroacetate ligands on one asymmetric unit have been provided. See Fig. 1 for display details.

Intra- and intermolecular hydrogen bonding within the metallacrown itself and between the MC and the lattice DMF molecule. For clarity, only the H atoms (white) involved in the hydrogen bonding have been included and only the atoms involved in the hydrogen bonding have been labelled. See Fig. 1 for display details. [Symmetry code: (ii) -x+1, -y, -z+1.]

Intermolecular hydrogen bonding between adjacent metallacrowns and between the MC and the lattice DMF molecule. For clarity, only the H atoms (white) involved in the hydrogen bonding have been included and only the atoms involved in the hydrogen bonding have been labelled. See Fig. 1 for display details. [Symmetry codes: (i) -x+1/2, y+1/2, -z+1/2; (iii) -x+1/2, y-1/2, -z+1/2.]
Di-µ-chloroacetato-hexakis(dimethylformamide)tetrakis(µ-N,2-dioxidobenzene-1-carboximidato)tetramanganese(III)disodium dimethylformamide disolvate top
Crystal data top
[Na2Mn4(C2H2ClO2)2(C7H4NO3)4(C3H7NO)6]·2C3H7NOF(000) = 1688
Mr = 1637.92Dx = 1.579 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 14.4457 (7) ÅCell parameters from 9986 reflections
b = 14.7091 (6) Åθ = 2.5–32.6°
c = 16.5663 (8) ŵ = 0.89 mm1
β = 101.8584 (17)°T = 100 K
V = 3444.9 (3) Å3Block, black
Z = 20.32 × 0.30 × 0.21 mm
Data collection top
Bruker AXS D8 Quest CMOS
diffractometer
12392 independent reflections
Radiation source: I-mu-S microsource X-ray tube9900 reflections with I > 2σ(I)
Laterally graded multilayer (Goebel) mirror monochromatorRint = 0.030
ω and ϕ scansθmax = 32.6°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 1821
Tmin = 0.645, Tmax = 0.746k = 1622
39712 measured reflectionsl = 2524
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0286P)2 + 3.6909P]
where P = (Fo2 + 2Fc2)/3
12392 reflections(Δ/σ)max = 0.001
791 parametersΔρmax = 0.85 e Å3
748 restraintsΔρmin = 0.45 e Å3
Crystal data top
[Na2Mn4(C2H2ClO2)2(C7H4NO3)4(C3H7NO)6]·2C3H7NOV = 3444.9 (3) Å3
Mr = 1637.92Z = 2
Monoclinic, P21/nMo Kα radiation
a = 14.4457 (7) ŵ = 0.89 mm1
b = 14.7091 (6) ÅT = 100 K
c = 16.5663 (8) Å0.32 × 0.30 × 0.21 mm
β = 101.8584 (17)°
Data collection top
Bruker AXS D8 Quest CMOS
diffractometer
12392 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
9900 reflections with I > 2σ(I)
Tmin = 0.645, Tmax = 0.746Rint = 0.030
39712 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.046748 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.06Δρmax = 0.85 e Å3
12392 reflectionsΔρmin = 0.45 e Å3
791 parameters
Special details top

Experimental. The metallacrown molecule, coordinating DMF molecules, and chloroacetate anion show whole molecule disorder over two sites. The geometries of the two metallacrowns, coordinating DMF molecules, and the coordinating chloroacetate anions were restrained to be similar to each other (SAME command in SHELXL, e.s.d. = 0.02 Angstrom). For the benzene ring carbon atoms (C2—C7, C9—C14 and C2B—C7B, C9B—C14B), oxime oxygen atom (O4 and O4b), and oxime nitrogen atoms (N1, N2 and N1B, N2B) of the salicylhydroximate ligands, equivalent atoms were constrained to have pairwise identical anisotropic displacement parameters (ADPs). The ADPs of the sodium ions (Na1 and Na1B) were also constrained to be identical. For the coordinating DMF molecules, the nitrogen atoms (N3 and N3B, N4 and N4B, and N5 and N5B) have nearly the same atom positions leading to highly correlated thermal parameters. To avoid correlation of the thermal parameters, the ADPs of equivalent nitrogen atoms in the DMF molecules were constrained to be identical. In addition, carbon, oxygen, and chlorine atoms of the chloroacetate and carbon, oxygen, and nitrogen atoms of the coordinating DMF molecules were restrained to have similar Uij components of the ADPs (e.s.d. = 0.04 Angstrom squared; SIMU restraint in Shexl). Anisotropic displacement parameters of all atoms in the minor moiety of the coordinating DMF molecule associated with N5B were restrained using an enhanced rigid bond restraint for the 1,2- and 1,3 distances [RIGU command in SHELXL, e.s.d. = 0.004 Angstrom squared for both 1,2- and 1,3 distances [Thorn, Dittrich & Sheldrick, Acta Cryst. A68 (2012) 448–451]. Additionally, the following sodium-oxygen bond distances were restrained to be similar (e.s.d. 0.02 Angstrom): Na1—O1 and Na1B—O1B, Na1—O4 and Na1B—O4B, Na1—O8 and Na1B—O8B, and Na1—O11 and Na1B—O11B. Subject to these conditions, the occupancy ratio of the disordered metallacrown and associated anion and solvent molecules refined to 0.8783 (7) to 0.1217 (7).

A lattice DMF molecule, associated with N6, is disordered over two sites with different orientations. The geometries of the two DMF molecules were restrained to be similar to each other (SAME command in SHELXL, e.s.d. = 0.02 Angstrom). The nitrogen atoms (N6 and N6B) have nearly the same atom positions leading to highly correlated thermal parameters. To avoid correlation of the thermal parameters, the ADPs of equivalent atoms were constrained to be identical. In addition, carbon, oxygen, and nitrogen atoms of the DMF molecule were restrained to have similar Uij components of the ADPs (e.s.d. = 0.04 Angstrom squared; SIMU restraint in Shexltl). Subject to these restraints, the occupancy ratio of the disordered DMF molecule refined to 0.615 (5) to 0.385 (5).

All hydrogen atoms were placed in calculated positions and refined as riding on their carrier atoms with C—H distances of 0.95 Angstrom for sp2 carbon atoms and 0.98 Angstrom for methyl carbon atoms. The Uiso values for hydrogen atoms were set to a multiple of the value of the carrying carbon atom (1.2 times for sp2-hybridized carbon atoms or 1.5 times for methyl carbon atoms and water oxygen atoms). Major moiety methyl H atoms were allowed to rotate, but not to tip (AFIX 137 command in SHELXL). For the minor moiety methyl H atoms the C—N—C—H dihedral angle were constrained as implemented in the AFIX 33 command in SHELXL.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn10.38268 (2)0.19054 (2)0.48930 (2)0.01265 (6)0.8783 (7)
O10.48341 (8)0.12275 (8)0.46364 (8)0.0142 (2)0.8783 (7)
N10.56296 (11)0.17545 (11)0.45959 (11)0.0136 (3)0.8783 (7)
O20.46659 (9)0.29180 (9)0.47696 (8)0.0149 (2)0.8783 (7)
C10.54901 (12)0.26267 (12)0.46741 (10)0.0139 (3)0.8783 (7)
C20.62548 (13)0.32778 (13)0.46514 (10)0.0136 (3)0.8783 (7)
C30.60694 (14)0.41995 (14)0.47522 (11)0.0175 (3)0.8783 (7)
H30.54610.43760.48290.021*0.8783 (7)
C40.67519 (16)0.48657 (13)0.47437 (13)0.0205 (4)0.8783 (7)
H40.66220.54880.48260.025*0.8783 (7)
C50.76359 (16)0.45917 (14)0.46097 (13)0.0191 (4)0.8783 (7)
H50.81100.50350.45950.023*0.8783 (7)
C60.78298 (14)0.36865 (14)0.44988 (12)0.0173 (3)0.8783 (7)
H60.84300.35200.43950.021*0.8783 (7)
C70.71570 (14)0.30050 (12)0.45363 (11)0.0160 (3)0.8783 (7)
O30.74222 (10)0.21471 (9)0.44710 (10)0.0231 (3)0.8783 (7)
Mn20.67670 (2)0.10591 (2)0.44892 (2)0.01554 (6)0.8783 (7)
O40.61678 (8)0.00007 (8)0.47493 (8)0.0141 (2)0.8783 (7)
N20.67577 (13)0.07555 (11)0.48657 (12)0.0138 (3)0.8783 (7)
O50.78646 (9)0.02562 (9)0.46738 (9)0.0189 (3)0.8783 (7)
C80.76264 (12)0.05796 (12)0.48044 (11)0.0149 (3)0.8783 (7)
C90.83091 (13)0.13234 (13)0.48468 (11)0.0153 (3)0.8783 (7)
C100.92497 (15)0.10935 (14)0.48404 (13)0.0209 (4)0.8783 (7)
H100.94230.04700.48490.025*0.8783 (7)
C110.99360 (13)0.17516 (16)0.48220 (13)0.0209 (4)0.8783 (7)
H111.05710.15840.48200.025*0.8783 (7)
C120.96701 (15)0.26643 (15)0.48067 (13)0.0203 (4)0.8783 (7)
H121.01270.31240.47880.024*0.8783 (7)
C130.87446 (15)0.29064 (14)0.48182 (12)0.0188 (4)0.8783 (7)
H130.85800.35320.48140.023*0.8783 (7)
C140.80446 (12)0.22480 (14)0.48360 (11)0.0145 (3)0.8783 (7)
O60.71625 (9)0.25443 (9)0.48067 (8)0.0174 (2)0.8783 (7)
O70.64832 (11)0.08643 (10)0.31936 (9)0.0242 (3)0.8783 (7)
C150.57616 (16)0.05246 (14)0.27175 (12)0.0207 (4)0.8783 (7)
O80.50242 (16)0.02543 (15)0.28940 (14)0.0240 (4)0.8783 (7)
C160.5892 (2)0.05038 (19)0.18215 (16)0.0289 (5)0.8783 (7)
H16A0.65310.02650.18140.035*0.8783 (7)
H16B0.58610.11350.16090.035*0.8783 (7)
Cl10.50475 (7)0.01609 (8)0.11496 (5)0.03164 (18)0.8783 (7)
O90.30672 (10)0.19411 (10)0.36021 (8)0.0209 (3)0.8783 (7)
C170.3478 (3)0.1934 (4)0.30087 (16)0.0224 (6)0.8783 (7)
H170.41500.19250.31320.027*0.8783 (7)
N30.30499 (17)0.1939 (2)0.22187 (14)0.0249 (5)0.8783 (7)
C180.2023 (3)0.1873 (3)0.1979 (2)0.0359 (8)0.8783 (7)
H18A0.17650.24520.17410.054*0.8783 (7)
H18B0.17610.17340.24660.054*0.8783 (7)
H18C0.18530.13880.15700.054*0.8783 (7)
C190.3584 (3)0.1960 (2)0.15659 (18)0.0419 (7)0.8783 (7)
H19A0.35140.13770.12730.063*0.8783 (7)
H19B0.42540.20670.18050.063*0.8783 (7)
H19C0.33440.24510.11790.063*0.8783 (7)
O100.52243 (13)0.17570 (11)0.37299 (12)0.0215 (3)0.8783 (7)
C200.51607 (16)0.19688 (14)0.30007 (12)0.0254 (4)0.8783 (7)
H200.49690.15100.25970.031*0.8783 (7)
N40.5339 (5)0.2784 (3)0.27374 (16)0.0343 (6)0.8783 (7)
C210.56354 (19)0.35315 (15)0.33013 (14)0.0335 (5)0.8783 (7)
H21A0.53500.40980.30550.050*0.8783 (7)
H21B0.54310.34170.38210.050*0.8783 (7)
H21C0.63260.35850.34090.050*0.8783 (7)
C220.5273 (3)0.2964 (2)0.18536 (15)0.0533 (8)0.8783 (7)
H22A0.50820.24070.15380.080*0.8783 (7)
H22B0.48030.34410.16720.080*0.8783 (7)
H22C0.58900.31630.17620.080*0.8783 (7)
O110.30119 (13)0.08465 (15)0.36626 (13)0.0387 (4)0.8783 (7)
C230.22369 (18)0.0752 (2)0.31880 (17)0.0360 (6)0.8783 (7)
H230.16930.07240.34260.043*0.8783 (7)
N50.21038 (14)0.06854 (16)0.23725 (14)0.0315 (5)0.8783 (7)
C240.2894 (2)0.0710 (3)0.1945 (2)0.0418 (7)0.8783 (7)
H24A0.29450.13210.17210.063*0.8783 (7)
H24B0.34820.05600.23340.063*0.8783 (7)
H24C0.27850.02670.14940.063*0.8783 (7)
C250.1168 (2)0.0650 (4)0.1845 (3)0.0375 (8)0.8783 (7)
H25A0.10910.00740.15410.056*0.8783 (7)
H25B0.06880.06940.21850.056*0.8783 (7)
H25C0.10930.11580.14540.056*0.8783 (7)
O120.5406 (3)0.3039 (3)0.2524 (2)0.0614 (12)0.615 (5)
C260.6199 (6)0.2984 (7)0.2465 (6)0.054 (3)0.615 (5)
H260.64450.23840.25260.065*0.615 (5)
N60.6808 (5)0.3594 (9)0.2330 (7)0.0392 (13)0.615 (5)
C270.6502 (4)0.4538 (4)0.2260 (4)0.0418 (12)0.615 (5)
H27A0.68840.48760.19360.063*0.615 (5)
H27B0.65830.48060.28110.063*0.615 (5)
H27C0.58340.45670.19840.063*0.615 (5)
C280.7754 (4)0.3437 (4)0.2271 (4)0.0364 (10)0.615 (5)
H28A0.78370.27940.21500.055*0.615 (5)
H28B0.81750.35970.27950.055*0.615 (5)
H28C0.79080.38120.18280.055*0.615 (5)
Na10.45845 (14)0.03121 (17)0.40525 (15)0.0144 (3)0.8783 (7)
Mn1B0.53392 (15)0.21852 (16)0.52400 (15)0.0230 (6)0.1217 (7)
O1B0.5784 (6)0.1004 (6)0.5135 (8)0.031 (3)0.1217 (7)
N1B0.6691 (9)0.0984 (7)0.4957 (11)0.0136 (3)0.1217 (7)
O2B0.6646 (6)0.2498 (6)0.5139 (7)0.024 (2)0.1217 (7)
C1B0.7104 (8)0.1782 (8)0.4991 (8)0.022 (3)0.1217 (7)
C2B0.8093 (8)0.1823 (9)0.4893 (8)0.0136 (3)0.1217 (7)
C3B0.8439 (10)0.2697 (9)0.4897 (9)0.0175 (3)0.1217 (7)
H3B0.80460.31950.49690.021*0.1217 (7)
C4B0.9345 (11)0.2855 (10)0.4799 (10)0.0205 (4)0.1217 (7)
H4B0.95620.34580.47510.025*0.1217 (7)
C5B0.9925 (11)0.2138 (10)0.4770 (9)0.0191 (4)0.1217 (7)
H5B1.05670.22400.47420.023*0.1217 (7)
C6B0.9591 (10)0.1264 (9)0.4780 (9)0.0173 (3)0.1217 (7)
H6B1.00050.07690.47490.021*0.1217 (7)
C7B0.8662 (9)0.1092 (8)0.4833 (9)0.0160 (3)0.1217 (7)
O3B0.8362 (7)0.0222 (7)0.4853 (9)0.036 (3)0.1217 (7)
Mn2B0.71495 (16)0.02477 (16)0.47156 (17)0.0271 (6)0.1217 (7)
O4B0.5938 (5)0.0704 (5)0.4741 (5)0.0141 (2)0.1217 (7)
N2B0.5901 (8)0.1646 (8)0.4702 (10)0.0138 (3)0.1217 (7)
O5B0.7458 (6)0.1546 (6)0.4723 (6)0.020 (2)0.1217 (7)
C8B0.6726 (8)0.2053 (6)0.4709 (8)0.016 (2)0.1217 (7)
C9B0.6754 (9)0.3048 (7)0.4653 (9)0.0153 (3)0.1217 (7)
C10B0.7640 (10)0.3387 (10)0.4594 (10)0.0209 (4)0.1217 (7)
H10B0.81430.29800.45670.025*0.1217 (7)
C11B0.7784 (11)0.4302 (11)0.4576 (12)0.0209 (4)0.1217 (7)
H11B0.83860.45300.45300.025*0.1217 (7)
C12B0.7064 (10)0.4895 (11)0.4625 (11)0.0203 (4)0.1217 (7)
H12B0.71700.55320.46260.024*0.1217 (7)
C13B0.6189 (10)0.4560 (9)0.4672 (10)0.0188 (4)0.1217 (7)
H13B0.56870.49720.46940.023*0.1217 (7)
C14B0.6026 (8)0.3642 (9)0.4689 (8)0.0145 (3)0.1217 (7)
O6B0.5143 (6)0.3336 (7)0.4750 (7)0.024 (2)0.1217 (7)
O7B0.6868 (9)0.0206 (12)0.3389 (8)0.050 (4)0.1217 (7)
C15B0.6092 (12)0.012 (2)0.2877 (10)0.053 (5)0.1217 (7)
O8B0.5302 (12)0.0067 (17)0.2989 (12)0.056 (6)0.1217 (7)
C16B0.6179 (15)0.025 (2)0.1987 (9)0.047 (6)0.1217 (7)
H16C0.66970.01440.18880.056*0.1217 (7)
H16D0.63870.08900.19330.056*0.1217 (7)
Cl1B0.5184 (11)0.0057 (9)0.1177 (8)0.089 (5)0.1217 (7)
O9B0.4183 (9)0.2152 (10)0.3374 (8)0.041 (3)0.1217 (7)
C17B0.3316 (17)0.197 (4)0.3084 (17)0.051 (9)0.1217 (7)
H17B0.29270.19420.34800.061*0.1217 (7)
N3B0.2873 (14)0.182 (2)0.2305 (12)0.0249 (5)0.1217 (7)
C18B0.331 (2)0.162 (3)0.1623 (17)0.082 (11)0.1217 (7)
H18D0.34230.21790.13450.123*0.1217 (7)
H18E0.28870.12210.12340.123*0.1217 (7)
H18F0.39100.13030.18250.123*0.1217 (7)
C19B0.1873 (19)0.208 (3)0.207 (3)0.076 (14)0.1217 (7)
H19D0.17730.24580.15740.115*0.1217 (7)
H19E0.16950.24280.25230.115*0.1217 (7)
H19F0.14830.15330.19660.115*0.1217 (7)
O10B0.5012 (15)0.2125 (15)0.3797 (10)0.061 (5)0.1217 (7)
C20B0.5396 (19)0.2697 (16)0.3421 (11)0.063 (6)0.1217 (7)
H20B0.58400.30880.37550.076*0.1217 (7)
N4B0.527 (4)0.283 (3)0.2608 (13)0.0343 (6)0.1217 (7)
C21B0.483 (3)0.2153 (19)0.2022 (16)0.090 (10)0.1217 (7)
H21D0.52160.20700.16030.135*0.1217 (7)
H21E0.47950.15760.23100.135*0.1217 (7)
H21F0.41960.23500.17570.135*0.1217 (7)
C22B0.552 (3)0.371 (2)0.228 (2)0.119 (12)0.1217 (7)
H22D0.49520.39960.19490.179*0.1217 (7)
H22E0.57910.41160.27390.179*0.1217 (7)
H22F0.59850.36120.19330.179*0.1217 (7)
O11B0.2936 (11)0.0372 (12)0.3615 (12)0.064 (5)0.1217 (7)
C23B0.2075 (15)0.039 (2)0.3243 (12)0.060 (5)0.1217 (7)
H23B0.16000.02550.35470.072*0.1217 (7)
N5B0.1823 (11)0.0571 (14)0.2475 (10)0.0315 (5)0.1217 (7)
C24B0.2643 (17)0.074 (3)0.2090 (19)0.061 (8)0.1217 (7)
H24D0.24320.10460.15600.091*0.1217 (7)
H24E0.31050.11190.24550.091*0.1217 (7)
H24F0.29370.01560.19990.091*0.1217 (7)
C25B0.0969 (18)0.054 (4)0.188 (2)0.057 (10)0.1217 (7)
H25D0.07040.00700.18540.086*0.1217 (7)
H25E0.05170.09760.20330.086*0.1217 (7)
H25F0.10940.07100.13390.086*0.1217 (7)
O12B0.5372 (4)0.4724 (3)0.1987 (3)0.0521 (16)0.385 (5)
C26B0.6174 (7)0.4520 (8)0.1999 (6)0.055 (3)0.385 (5)
H26B0.65490.49720.18110.066*0.385 (5)
N6B0.6610 (10)0.3739 (15)0.2242 (13)0.0392 (13)0.385 (5)
C27B0.6083 (12)0.2978 (7)0.2465 (9)0.059 (6)0.385 (5)
H27D0.56960.31820.28520.088*0.385 (5)
H27E0.65230.25060.27260.088*0.385 (5)
H27F0.56720.27310.19690.088*0.385 (5)
C28B0.7558 (11)0.3431 (16)0.2255 (12)0.164 (10)0.385 (5)
H28D0.76630.34010.16900.246*0.385 (5)
H28E0.76470.28250.25060.246*0.385 (5)
H28F0.80100.38560.25780.246*0.385 (5)
Na1B0.4601 (11)0.0206 (15)0.4096 (11)0.0144 (3)0.1217 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.01043 (12)0.01275 (12)0.01532 (11)0.00049 (9)0.00393 (9)0.00080 (9)
O10.0105 (5)0.0142 (6)0.0192 (6)0.0027 (4)0.0058 (4)0.0008 (4)
N10.0092 (7)0.0135 (7)0.0184 (7)0.0026 (6)0.0037 (6)0.0004 (5)
O20.0128 (6)0.0144 (6)0.0181 (6)0.0003 (5)0.0049 (5)0.0004 (4)
C10.0134 (8)0.0147 (7)0.0130 (7)0.0007 (6)0.0015 (6)0.0001 (6)
C20.0141 (8)0.0123 (7)0.0143 (7)0.0015 (6)0.0022 (6)0.0002 (6)
C30.0193 (9)0.0133 (8)0.0198 (8)0.0013 (7)0.0035 (7)0.0016 (7)
C40.0241 (11)0.0139 (8)0.0233 (9)0.0023 (8)0.0047 (8)0.0006 (7)
C50.0231 (11)0.0142 (9)0.0203 (8)0.0071 (8)0.0048 (7)0.0000 (7)
C60.0151 (8)0.0167 (9)0.0199 (8)0.0038 (7)0.0032 (7)0.0009 (7)
C70.0146 (8)0.0141 (8)0.0185 (8)0.0016 (7)0.0017 (7)0.0005 (6)
O30.0154 (6)0.0137 (6)0.0424 (8)0.0033 (5)0.0106 (6)0.0013 (6)
Mn20.01122 (12)0.01245 (12)0.02429 (13)0.00198 (9)0.00678 (10)0.00102 (10)
O40.0106 (5)0.0126 (5)0.0194 (6)0.0003 (4)0.0038 (4)0.0012 (4)
N20.0117 (7)0.0118 (7)0.0183 (8)0.0000 (6)0.0038 (5)0.0001 (6)
O50.0115 (6)0.0164 (6)0.0294 (7)0.0023 (5)0.0058 (5)0.0011 (5)
C80.0115 (7)0.0164 (8)0.0164 (7)0.0025 (6)0.0021 (6)0.0022 (6)
C90.0100 (8)0.0165 (8)0.0195 (8)0.0018 (6)0.0028 (6)0.0030 (6)
C100.0124 (9)0.0204 (9)0.0294 (10)0.0012 (7)0.0033 (7)0.0027 (7)
C110.0107 (8)0.0226 (9)0.0297 (10)0.0021 (8)0.0049 (7)0.0019 (8)
C120.0137 (9)0.0224 (10)0.0250 (9)0.0023 (7)0.0042 (8)0.0052 (7)
C130.0147 (9)0.0185 (9)0.0230 (9)0.0016 (7)0.0037 (7)0.0036 (7)
C140.0125 (8)0.0157 (8)0.0157 (7)0.0002 (7)0.0036 (6)0.0024 (6)
O60.0128 (6)0.0160 (6)0.0247 (6)0.0020 (5)0.0066 (5)0.0047 (5)
O70.0267 (7)0.0260 (7)0.0218 (7)0.0027 (6)0.0093 (6)0.0023 (6)
C150.0280 (11)0.0176 (9)0.0180 (8)0.0052 (8)0.0085 (8)0.0034 (7)
O80.0250 (10)0.0292 (9)0.0193 (8)0.0006 (7)0.0082 (8)0.0026 (6)
C160.0369 (15)0.0344 (14)0.0173 (11)0.0031 (11)0.0102 (10)0.0017 (9)
Cl10.0360 (3)0.0417 (5)0.0176 (2)0.0055 (3)0.0061 (2)0.0036 (2)
O90.0189 (7)0.0273 (7)0.0159 (6)0.0006 (5)0.0022 (5)0.0007 (5)
C170.0214 (13)0.0291 (13)0.0151 (9)0.0059 (12)0.0002 (9)0.0028 (9)
N30.0268 (12)0.0304 (12)0.0163 (9)0.0042 (9)0.0020 (8)0.0004 (8)
C180.0307 (16)0.042 (2)0.0287 (12)0.0022 (15)0.0091 (11)0.0058 (11)
C190.050 (2)0.0576 (19)0.0213 (11)0.0117 (15)0.0139 (12)0.0021 (12)
O100.0248 (8)0.0208 (7)0.0176 (7)0.0027 (6)0.0015 (6)0.0011 (6)
C200.0302 (11)0.0241 (10)0.0198 (8)0.0007 (8)0.0000 (8)0.0004 (7)
N40.0543 (18)0.0287 (10)0.0173 (12)0.0036 (11)0.0016 (16)0.0043 (10)
C210.0516 (15)0.0197 (10)0.0267 (10)0.0012 (9)0.0022 (10)0.0030 (8)
C220.094 (3)0.0424 (15)0.0203 (10)0.0123 (16)0.0050 (13)0.0054 (10)
O110.0237 (8)0.0439 (11)0.0427 (10)0.0017 (8)0.0069 (7)0.0132 (9)
C230.0228 (11)0.0398 (15)0.0442 (14)0.0028 (10)0.0039 (10)0.0168 (11)
N50.0170 (10)0.0357 (11)0.0400 (11)0.0012 (9)0.0020 (8)0.0107 (8)
C240.0299 (16)0.0556 (19)0.0413 (16)0.0018 (14)0.0102 (12)0.0035 (13)
C250.0255 (16)0.0374 (16)0.0443 (16)0.0018 (15)0.0048 (13)0.0028 (12)
O120.048 (2)0.092 (3)0.0470 (19)0.0248 (19)0.0183 (16)0.0003 (17)
C260.039 (3)0.091 (6)0.033 (4)0.012 (3)0.008 (3)0.011 (3)
N60.038 (4)0.052 (4)0.027 (3)0.001 (3)0.006 (3)0.004 (2)
C270.044 (3)0.036 (2)0.048 (3)0.001 (2)0.014 (2)0.010 (2)
C280.0304 (19)0.051 (2)0.031 (2)0.0138 (18)0.0140 (16)0.0121 (18)
Na10.0126 (3)0.0148 (8)0.0162 (4)0.0019 (3)0.0036 (3)0.0017 (4)
Mn1B0.0105 (9)0.0238 (11)0.0355 (12)0.0024 (8)0.0064 (8)0.0051 (9)
O1B0.013 (5)0.021 (5)0.065 (8)0.008 (4)0.020 (5)0.009 (5)
N1B0.0092 (7)0.0135 (7)0.0184 (7)0.0026 (6)0.0037 (6)0.0004 (5)
O2B0.022 (5)0.013 (4)0.038 (6)0.001 (4)0.007 (4)0.001 (4)
C1B0.014 (6)0.035 (8)0.018 (6)0.000 (5)0.004 (5)0.004 (5)
C2B0.0141 (8)0.0123 (7)0.0143 (7)0.0015 (6)0.0022 (6)0.0002 (6)
C3B0.0193 (9)0.0133 (8)0.0198 (8)0.0013 (7)0.0035 (7)0.0016 (7)
C4B0.0241 (11)0.0139 (8)0.0233 (9)0.0023 (8)0.0047 (8)0.0006 (7)
C5B0.0231 (11)0.0142 (9)0.0203 (8)0.0071 (8)0.0048 (7)0.0000 (7)
C6B0.0151 (8)0.0167 (9)0.0199 (8)0.0038 (7)0.0032 (7)0.0009 (7)
C7B0.0146 (8)0.0141 (8)0.0185 (8)0.0016 (7)0.0017 (7)0.0005 (6)
O3B0.022 (6)0.021 (5)0.071 (9)0.005 (5)0.024 (6)0.004 (5)
Mn2B0.0174 (11)0.0202 (11)0.0469 (15)0.0021 (8)0.0138 (10)0.0014 (10)
O4B0.0106 (5)0.0126 (5)0.0194 (6)0.0003 (4)0.0038 (4)0.0012 (4)
N2B0.0117 (7)0.0118 (7)0.0183 (8)0.0000 (6)0.0038 (5)0.0001 (6)
O5B0.012 (4)0.027 (5)0.022 (5)0.008 (4)0.003 (4)0.007 (4)
C8B0.018 (6)0.010 (5)0.021 (6)0.003 (4)0.004 (5)0.003 (4)
C9B0.0100 (8)0.0165 (8)0.0195 (8)0.0018 (6)0.0028 (6)0.0030 (6)
C10B0.0124 (9)0.0204 (9)0.0294 (10)0.0012 (7)0.0033 (7)0.0027 (7)
C11B0.0107 (8)0.0226 (9)0.0297 (10)0.0021 (8)0.0049 (7)0.0019 (8)
C12B0.0137 (9)0.0224 (10)0.0250 (9)0.0023 (7)0.0042 (8)0.0052 (7)
C13B0.0147 (9)0.0185 (9)0.0230 (9)0.0016 (7)0.0037 (7)0.0036 (7)
C14B0.0125 (8)0.0157 (8)0.0157 (7)0.0002 (7)0.0036 (6)0.0024 (6)
O6B0.008 (4)0.020 (5)0.045 (6)0.005 (4)0.011 (4)0.001 (4)
O7B0.043 (7)0.076 (10)0.032 (6)0.019 (7)0.011 (6)0.013 (7)
C15B0.049 (11)0.078 (13)0.035 (9)0.008 (10)0.015 (8)0.005 (10)
O8B0.042 (12)0.097 (19)0.029 (8)0.036 (11)0.005 (8)0.003 (11)
C16B0.045 (12)0.062 (14)0.025 (9)0.011 (10)0.012 (8)0.018 (9)
Cl1B0.120 (10)0.048 (6)0.115 (9)0.002 (5)0.064 (7)0.001 (5)
O9B0.030 (6)0.049 (7)0.041 (7)0.004 (5)0.003 (5)0.014 (6)
C17B0.021 (11)0.046 (13)0.079 (16)0.004 (10)0.006 (11)0.003 (14)
N3B0.0268 (12)0.0304 (12)0.0163 (9)0.0042 (9)0.0020 (8)0.0004 (8)
C18B0.049 (17)0.14 (3)0.061 (17)0.038 (17)0.025 (13)0.056 (18)
C19B0.035 (14)0.06 (2)0.12 (3)0.023 (13)0.026 (16)0.003 (18)
O10B0.070 (12)0.095 (14)0.016 (6)0.009 (11)0.000 (7)0.001 (9)
C20B0.078 (13)0.063 (12)0.038 (9)0.009 (11)0.014 (10)0.000 (9)
N4B0.0543 (18)0.0287 (10)0.0173 (12)0.0036 (11)0.0016 (16)0.0043 (10)
C21B0.13 (2)0.072 (18)0.056 (15)0.014 (18)0.013 (16)0.007 (13)
C22B0.20 (3)0.09 (2)0.070 (19)0.00 (2)0.02 (2)0.021 (17)
O11B0.061 (8)0.035 (8)0.076 (9)0.007 (7)0.033 (6)0.016 (8)
C23B0.058 (8)0.064 (13)0.049 (5)0.005 (8)0.009 (5)0.020 (6)
N5B0.0170 (10)0.0357 (11)0.0400 (11)0.0012 (9)0.0020 (8)0.0107 (8)
C24B0.033 (8)0.078 (19)0.067 (11)0.005 (8)0.005 (7)0.019 (11)
C25B0.019 (7)0.09 (3)0.055 (10)0.012 (8)0.012 (7)0.024 (11)
O12B0.062 (3)0.047 (3)0.053 (3)0.008 (2)0.026 (2)0.012 (2)
C26B0.056 (6)0.063 (5)0.046 (5)0.003 (5)0.008 (4)0.024 (4)
N6B0.038 (4)0.052 (4)0.027 (3)0.001 (3)0.006 (3)0.004 (2)
C27B0.126 (15)0.018 (4)0.028 (6)0.020 (6)0.007 (7)0.005 (4)
C28B0.114 (14)0.31 (2)0.063 (9)0.087 (14)0.002 (9)0.069 (12)
Na1B0.0126 (3)0.0148 (8)0.0162 (4)0.0019 (3)0.0036 (3)0.0017 (4)
Geometric parameters (Å, º) top
Mn1—O6i1.8616 (13)Mn1B—O1B1.873 (9)
Mn1—O11.8831 (12)Mn1B—N2Bi1.980 (12)
Mn1—O21.9574 (13)Mn1B—O2B1.983 (9)
Mn1—N2i1.9678 (15)Mn1B—O9Bi2.258 (13)
Mn1—O92.1945 (14)Mn1B—O10B2.342 (16)
Mn1—O10i2.4179 (19)Mn1B—Na1B3.52 (2)
Mn1—Na1i3.488 (3)Mn1B—Na1Bi3.68 (2)
O1—N11.3991 (19)O1B—N1B1.401 (13)
O1—Na12.460 (3)O1B—Na1Bi2.32 (2)
O1—Na1i2.547 (3)O1B—Na1B2.460 (18)
N1—C11.309 (2)N1B—C1B1.312 (14)
N1—Mn21.9740 (16)N1B—Mn2B1.997 (10)
O2—C11.305 (2)O2B—C1B1.295 (12)
C1—C21.468 (2)C1B—C2B1.471 (13)
C2—C31.399 (3)C2B—C7B1.369 (14)
C2—C71.414 (3)C2B—C3B1.379 (14)
C3—C41.392 (3)C3B—C4B1.371 (15)
C3—H30.9500C3B—H3B0.9500
C4—C51.400 (3)C4B—C5B1.354 (14)
C4—H40.9500C4B—H4B0.9500
C5—C61.381 (3)C5B—C6B1.374 (15)
C5—H50.9500C5B—H5B0.9500
C6—C71.406 (3)C6B—C7B1.388 (14)
C6—H60.9500C6B—H6B0.9500
C7—O31.330 (2)C7B—O3B1.353 (12)
O3—Mn21.8627 (14)O3B—Mn2B1.853 (9)
Mn2—O41.8756 (12)Mn2B—O4B1.882 (8)
Mn2—O51.9501 (14)Mn2B—O5B1.960 (9)
Mn2—O72.1202 (15)Mn2B—O7B2.152 (13)
Mn2—Na1i3.577 (3)Mn2B—Na1Bi3.51 (2)
Mn2—Na13.6869 (19)Mn2B—Na1B3.674 (14)
O4—N21.389 (2)O4B—N2B1.387 (12)
O4—Na12.385 (2)O4B—Na1Bi2.34 (2)
O4—Na1i2.494 (3)O4B—Na1B2.412 (15)
N2—C81.306 (2)N2B—C8B1.331 (13)
N2—Mn1i1.9679 (15)N2B—Mn1Bi1.980 (12)
O5—C81.307 (2)O5B—C8B1.291 (12)
C8—C91.465 (2)C8B—C9B1.468 (12)
C9—C101.402 (3)C9B—C14B1.378 (14)
C9—C141.412 (3)C9B—C10B1.395 (14)
C10—C111.390 (3)C10B—C11B1.363 (15)
C10—H100.9500C10B—H10B0.9500
C11—C121.395 (3)C11B—C12B1.373 (15)
C11—H110.9500C11B—H11B0.9500
C12—C131.387 (3)C12B—C13B1.373 (14)
C12—H120.9500C12B—H12B0.9500
C13—C141.405 (3)C13B—C14B1.373 (14)
C13—H130.9500C13B—H13B0.9500
C14—O61.338 (2)C14B—O6B1.375 (12)
O6—Mn1i1.8616 (13)O6B—Mn1Bi1.832 (10)
O7—C151.273 (3)O7B—C15B1.266 (15)
C15—O81.227 (3)C15B—O8B1.223 (16)
C15—C161.535 (3)C15B—C16B1.519 (16)
O8—Na12.298 (3)O8B—Na1B2.280 (17)
C16—Cl11.768 (3)C16B—Cl1B1.777 (16)
C16—H16A0.9900C16B—H16C0.9900
C16—H16B0.9900C16B—H16D0.9900
O9—C171.248 (4)O9B—C17B1.273 (19)
C17—N31.328 (3)O9B—Mn1Bi2.258 (13)
C17—H170.9500C17B—N3B1.335 (17)
N3—C191.452 (4)C17B—H17B0.9500
N3—C181.458 (4)N3B—C18B1.434 (17)
C18—H18A0.9800N3B—C19B1.466 (18)
C18—H18B0.9800C18B—H18D0.9800
C18—H18C0.9800C18B—H18E0.9800
C19—H19A0.9800C18B—H18F0.9800
C19—H19B0.9800C19B—H19D0.9800
C19—H19C0.9800C19B—H19E0.9800
O10—C201.233 (3)C19B—H19F0.9800
O10—Mn1i2.4178 (19)O10B—C20B1.243 (17)
O10—Na12.421 (3)O10B—Na1B2.95 (3)
C20—N41.319 (4)C20B—N4B1.336 (17)
C20—H200.9500C20B—H20B0.9500
N4—C211.449 (5)N4B—C21B1.44 (2)
N4—C221.472 (4)N4B—C22B1.481 (18)
C21—H21A0.9800C21B—H21D0.9800
C21—H21B0.9800C21B—H21E0.9800
C21—H21C0.9800C21B—H21F0.9800
C22—H22A0.9800C22B—H22D0.9800
C22—H22B0.9800C22B—H22E0.9800
C22—H22C0.9800C22B—H22F0.9800
O11—C231.237 (3)O11B—C23B1.270 (17)
O11—Na12.365 (2)O11B—Na1B2.386 (15)
C23—N51.328 (3)C23B—N5B1.278 (16)
C23—H230.9500C23B—H23B0.9500
N5—C251.452 (3)N5B—C25B1.413 (16)
N5—C241.462 (4)N5B—C24B1.477 (17)
C24—H24A0.9800C24B—H24D0.9800
C24—H24B0.9800C24B—H24E0.9800
C24—H24C0.9800C24B—H24F0.9800
C25—H25A0.9800C25B—H25D0.9800
C25—H25B0.9800C25B—H25E0.9800
C25—H25C0.9800C25B—H25F0.9800
O12—C261.172 (9)O12B—C26B1.193 (11)
C26—N61.308 (14)C26B—N6B1.333 (18)
C26—H260.9500C26B—H26B0.9500
N6—C281.409 (7)N6B—C28B1.439 (13)
N6—C271.453 (12)N6B—C27B1.44 (2)
C27—H27A0.9800C27B—H27D0.9800
C27—H27B0.9800C27B—H27E0.9800
C27—H27C0.9800C27B—H27F0.9800
C28—H28A0.9800C28B—H28D0.9800
C28—H28B0.9800C28B—H28E0.9800
C28—H28C0.9800C28B—H28F0.9800
Na1—O4i2.494 (3)Na1B—O1Bi2.32 (2)
Na1—O1i2.547 (3)Na1B—O4Bi2.34 (2)
Na1—Na1i3.254 (4)Na1B—Na1Bi3.04 (3)
Na1—Mn1i3.488 (3)Na1B—Mn2Bi3.51 (2)
Na1—Mn2i3.577 (3)Na1B—Mn1Bi3.68 (2)
Mn1B—O6Bi1.832 (10)
O6i—Mn1—O1177.26 (6)O2B—Mn1B—O9Bi89.6 (5)
O6i—Mn1—O299.77 (6)O6Bi—Mn1B—O10B92.7 (7)
O1—Mn1—O281.69 (5)O1B—Mn1B—O10B82.6 (7)
O6i—Mn1—N2i89.69 (7)N2Bi—Mn1B—O10B92.3 (7)
O1—Mn1—N2i88.54 (6)O2B—Mn1B—O10B85.3 (6)
O2—Mn1—N2i167.43 (7)O9Bi—Mn1B—O10B173.1 (6)
O6i—Mn1—O989.47 (6)O6Bi—Mn1B—Na1B134.1 (4)
O1—Mn1—O992.73 (5)O1B—Mn1B—Na1B41.8 (4)
O2—Mn1—O994.38 (5)N2Bi—Mn1B—Na1B61.1 (5)
N2i—Mn1—O993.96 (7)O2B—Mn1B—Na1B109.6 (4)
O6i—Mn1—O10i96.37 (6)O9Bi—Mn1B—Na1B121.7 (5)
O1—Mn1—O10i81.41 (6)O10B—Mn1B—Na1B56.2 (6)
O2—Mn1—O10i85.64 (5)O6Bi—Mn1B—Na1Bi150.0 (4)
N2i—Mn1—O10i85.09 (7)O1B—Mn1B—Na1Bi32.2 (5)
O9—Mn1—O10i174.07 (6)N2Bi—Mn1B—Na1Bi64.4 (4)
O6i—Mn1—Na1i131.88 (6)O2B—Mn1B—Na1Bi106.4 (4)
O1—Mn1—Na1i45.40 (6)O9Bi—Mn1B—Na1Bi72.1 (5)
O2—Mn1—Na1i101.88 (5)O10B—Mn1B—Na1Bi104.8 (6)
N2i—Mn1—Na1i65.56 (6)Na1B—Mn1B—Na1Bi49.9 (5)
O9—Mn1—Na1i130.54 (5)N1B—O1B—Mn1B113.1 (7)
O10i—Mn1—Na1i43.91 (6)N1B—O1B—Na1Bi116.1 (9)
N1—O1—Mn1113.44 (10)Mn1B—O1B—Na1Bi122.3 (7)
N1—O1—Na1123.14 (11)N1B—O1B—Na1B112.8 (10)
Mn1—O1—Na1121.24 (8)Mn1B—O1B—Na1B107.8 (7)
N1—O1—Na1i101.75 (10)Na1Bi—O1B—Na1B78.9 (7)
Mn1—O1—Na1i102.84 (8)C1B—N1B—O1B114.1 (9)
Na1—O1—Na1i81.06 (8)C1B—N1B—Mn2B130.8 (9)
C1—N1—O1113.17 (15)O1B—N1B—Mn2B115.1 (8)
C1—N1—Mn2131.64 (13)C1B—O2B—Mn1B111.1 (7)
O1—N1—Mn2115.10 (11)O2B—C1B—N1B119.4 (10)
C1—O2—Mn1111.27 (11)O2B—C1B—C2B122.2 (10)
O2—C1—N1119.77 (16)N1B—C1B—C2B118.4 (10)
O2—C1—C2119.92 (16)C7B—C2B—C3B120.6 (10)
N1—C1—C2120.31 (16)C7B—C2B—C1B125.9 (11)
C3—C2—C7119.72 (16)C3B—C2B—C1B113.4 (11)
C3—C2—C1117.76 (18)C4B—C3B—C2B120.8 (12)
C7—C2—C1122.53 (17)C4B—C3B—H3B119.6
C4—C3—C2121.85 (18)C2B—C3B—H3B119.6
C4—C3—H3119.1C5B—C4B—C3B119.0 (13)
C2—C3—H3119.1C5B—C4B—H4B120.5
C3—C4—C5118.04 (18)C3B—C4B—H4B120.5
C3—C4—H4121.0C4B—C5B—C6B120.5 (13)
C5—C4—H4121.0C4B—C5B—H5B119.8
C6—C5—C4121.04 (18)C6B—C5B—H5B119.8
C6—C5—H5119.5C5B—C6B—C7B121.2 (12)
C4—C5—H5119.5C5B—C6B—H6B119.4
C5—C6—C7121.36 (19)C7B—C6B—H6B119.4
C5—C6—H6119.3O3B—C7B—C2B122.8 (11)
C7—C6—H6119.3O3B—C7B—C6B119.5 (12)
O3—C7—C6117.35 (18)C2B—C7B—C6B117.7 (10)
O3—C7—C2124.71 (17)C7B—O3B—Mn2B130.4 (9)
C6—C7—C2117.93 (16)O3B—Mn2B—O4B171.7 (5)
C7—O3—Mn2131.17 (13)O3B—Mn2B—O5B98.9 (4)
O3—Mn2—O4167.89 (6)O4B—Mn2B—O5B82.2 (3)
O3—Mn2—O597.09 (6)O3B—Mn2B—N1B88.9 (5)
O4—Mn2—O581.92 (5)O4B—Mn2B—N1B88.4 (4)
O3—Mn2—N189.50 (6)O5B—Mn2B—N1B165.2 (5)
O4—Mn2—N188.75 (6)O3B—Mn2B—O7B95.2 (6)
O5—Mn2—N1164.73 (7)O4B—Mn2B—O7B93.0 (5)
O3—Mn2—O795.33 (6)O5B—Mn2B—O7B91.7 (5)
O4—Mn2—O796.77 (6)N1B—Mn2B—O7B100.2 (7)
O5—Mn2—O793.37 (6)O3B—Mn2B—Na1Bi134.1 (5)
N1—Mn2—O799.75 (7)O4B—Mn2B—Na1Bi38.2 (4)
O3—Mn2—Na1i128.65 (6)O5B—Mn2B—Na1Bi101.7 (5)
O4—Mn2—Na1i41.22 (5)N1B—Mn2B—Na1Bi64.2 (5)
O5—Mn2—Na1i104.30 (6)O7B—Mn2B—Na1Bi124.4 (4)
N1—Mn2—Na1i61.24 (6)O3B—Mn2B—Na1B146.5 (5)
O7—Mn2—Na1i128.56 (5)O4B—Mn2B—Na1B35.7 (4)
O3—Mn2—Na1152.09 (6)O5B—Mn2B—Na1B113.1 (4)
O4—Mn2—Na134.32 (5)N1B—Mn2B—Na1B62.4 (5)
O5—Mn2—Na1109.54 (6)O7B—Mn2B—Na1B75.0 (5)
N1—Mn2—Na166.86 (6)Na1Bi—Mn2B—Na1B50.0 (5)
O7—Mn2—Na175.39 (6)N2B—O4B—Mn2B112.5 (7)
Na1i—Mn2—Na153.21 (6)N2B—O4B—Na1Bi109.6 (10)
N2—O4—Mn2113.41 (10)Mn2B—O4B—Na1Bi112.0 (6)
N2—O4—Na1114.44 (12)N2B—O4B—Na1B120.9 (9)
Mn2—O4—Na1119.36 (9)Mn2B—O4B—Na1B117.1 (6)
N2—O4—Na1i113.10 (12)Na1Bi—O4B—Na1B79.6 (7)
Mn2—O4—Na1i109.07 (8)C8B—N2B—O4B115.0 (10)
Na1—O4—Na1i83.64 (8)C8B—N2B—Mn1Bi129.5 (9)
C8—N2—O4113.77 (14)O4B—N2B—Mn1Bi115.1 (8)
C8—N2—Mn1i130.21 (13)C8B—O5B—Mn2B112.2 (7)
O4—N2—Mn1i116.02 (11)O5B—C8B—N2B118.0 (9)
C8—O5—Mn2111.26 (11)O5B—C8B—C9B123.0 (10)
N2—C8—O5119.30 (16)N2B—C8B—C9B119.0 (10)
N2—C8—C9119.78 (17)C14B—C9B—C10B119.7 (11)
O5—C8—C9120.87 (16)C14B—C9B—C8B126.8 (11)
C10—C9—C14119.49 (17)C10B—C9B—C8B113.5 (11)
C10—C9—C8117.61 (18)C11B—C10B—C9B120.1 (12)
C14—C9—C8122.75 (17)C11B—C10B—H10B120.0
C11—C10—C9121.92 (19)C9B—C10B—H10B120.0
C11—C10—H10119.0C10B—C11B—C12B120.3 (14)
C9—C10—H10119.0C10B—C11B—H11B119.8
C10—C11—C12118.38 (18)C12B—C11B—H11B119.8
C10—C11—H11120.8C11B—C12B—C13B119.6 (14)
C12—C11—H11120.8C11B—C12B—H12B120.2
C13—C12—C11120.62 (18)C13B—C12B—H12B120.2
C13—C12—H12119.7C14B—C13B—C12B121.1 (13)
C11—C12—H12119.7C14B—C13B—H13B119.4
C12—C13—C14121.54 (19)C12B—C13B—H13B119.4
C12—C13—H13119.2C13B—C14B—O6B119.2 (11)
C14—C13—H13119.2C13B—C14B—C9B119.2 (11)
O6—C14—C13117.32 (18)O6B—C14B—C9B121.5 (11)
O6—C14—C9124.57 (17)C14B—O6B—Mn1Bi131.5 (8)
C13—C14—C9118.05 (16)C15B—O7B—Mn2B130.0 (11)
C14—O6—Mn1i127.12 (12)O8B—C15B—O7B130.3 (17)
C15—O7—Mn2130.06 (13)O8B—C15B—C16B116.2 (15)
O8—C15—O7128.3 (2)O7B—C15B—C16B113.4 (14)
O8—C15—C16120.6 (2)C15B—O8B—Na1B136.3 (15)
O7—C15—C16111.06 (19)C15B—C16B—Cl1B119.7 (14)
C15—O8—Na1135.95 (19)C15B—C16B—H16C107.4
C15—C16—Cl1114.45 (18)Cl1B—C16B—H16C107.4
C15—C16—H16A108.6C15B—C16B—H16D107.4
Cl1—C16—H16A108.6Cl1B—C16B—H16D107.4
C15—C16—H16B108.6H16C—C16B—H16D106.9
Cl1—C16—H16B108.6C17B—O9B—Mn1Bi117.4 (16)
H16A—C16—H16B107.6O9B—C17B—N3B130 (3)
C17—O9—Mn1122.96 (17)O9B—C17B—H17B115.2
O9—C17—N3125.2 (3)N3B—C17B—H17B115.2
O9—C17—H17117.4C17B—N3B—C18B127 (2)
N3—C17—H17117.4C17B—N3B—C19B118 (2)
C17—N3—C19121.6 (3)C18B—N3B—C19B115 (2)
C17—N3—C18120.6 (3)N3B—C18B—H18D109.5
C19—N3—C18117.7 (2)N3B—C18B—H18E109.5
N3—C18—H18A109.5H18D—C18B—H18E109.5
N3—C18—H18B109.5N3B—C18B—H18F109.5
H18A—C18—H18B109.5H18D—C18B—H18F109.5
N3—C18—H18C109.5H18E—C18B—H18F109.5
H18A—C18—H18C109.5N3B—C19B—H19D109.5
H18B—C18—H18C109.5N3B—C19B—H19E109.5
N3—C19—H19A109.5H19D—C19B—H19E109.5
N3—C19—H19B109.5N3B—C19B—H19F109.5
H19A—C19—H19B109.5H19D—C19B—H19F109.5
N3—C19—H19C109.5H19E—C19B—H19F109.5
H19A—C19—H19C109.5C20B—O10B—Mn1B118.0 (15)
H19B—C19—H19C109.5C20B—O10B—Na1B149.2 (19)
C20—O10—Mn1i144.64 (16)Mn1B—O10B—Na1B82.5 (7)
C20—O10—Na1118.91 (16)O10B—C20B—N4B128 (2)
Mn1i—O10—Na192.24 (8)O10B—C20B—H20B115.8
O10—C20—N4125.0 (2)N4B—C20B—H20B115.8
O10—C20—H20117.5C20B—N4B—C21B122 (2)
N4—C20—H20117.5C20B—N4B—C22B120 (2)
C20—N4—C21121.9 (2)C21B—N4B—C22B118 (2)
C20—N4—C22121.0 (3)N4B—C21B—H21D109.5
C21—N4—C22117.1 (3)N4B—C21B—H21E109.5
N4—C21—H21A109.5H21D—C21B—H21E109.5
N4—C21—H21B109.5N4B—C21B—H21F109.5
H21A—C21—H21B109.5H21D—C21B—H21F109.5
N4—C21—H21C109.5H21E—C21B—H21F109.5
H21A—C21—H21C109.5N4B—C22B—H22D109.5
H21B—C21—H21C109.5N4B—C22B—H22E109.5
N4—C22—H22A109.5H22D—C22B—H22E109.5
N4—C22—H22B109.5N4B—C22B—H22F109.5
H22A—C22—H22B109.5H22D—C22B—H22F109.5
N4—C22—H22C109.5H22E—C22B—H22F109.5
H22A—C22—H22C109.5C23B—O11B—Na1B169.6 (19)
H22B—C22—H22C109.5O11B—C23B—N5B122 (2)
C23—O11—Na1146.1 (2)O11B—C23B—H23B118.8
O11—C23—N5125.3 (3)N5B—C23B—H23B118.8
O11—C23—H23117.4C23B—N5B—C25B136 (2)
N5—C23—H23117.4C23B—N5B—C24B112.0 (17)
C23—N5—C25122.4 (3)C25B—N5B—C24B111.5 (19)
C23—N5—C24121.8 (2)N5B—C24B—H24D109.5
C25—N5—C24115.7 (3)N5B—C24B—H24E109.5
N5—C24—H24A109.5H24D—C24B—H24E109.5
N5—C24—H24B109.5N5B—C24B—H24F109.5
H24A—C24—H24B109.5H24D—C24B—H24F109.5
N5—C24—H24C109.5H24E—C24B—H24F109.5
H24A—C24—H24C109.5N5B—C25B—H25D109.5
H24B—C24—H24C109.5N5B—C25B—H25E109.5
N5—C25—H25A109.5H25D—C25B—H25E109.5
N5—C25—H25B109.5N5B—C25B—H25F109.5
H25A—C25—H25B109.5H25D—C25B—H25F109.5
N5—C25—H25C109.5H25E—C25B—H25F109.5
H25A—C25—H25C109.5O12B—C26B—N6B128.2 (13)
H25B—C25—H25C109.5O12B—C26B—H26B115.9
O12—C26—N6132.1 (10)N6B—C26B—H26B115.9
O12—C26—H26113.9C26B—N6B—C28B131.7 (19)
N6—C26—H26113.9C26B—N6B—C27B120.3 (11)
C26—N6—C28126.6 (9)C28B—N6B—C27B107.6 (17)
C26—N6—C27117.7 (7)N6B—C27B—H27D109.5
C28—N6—C27115.7 (9)N6B—C27B—H27E109.5
N6—C27—H27A109.5H27D—C27B—H27E109.5
N6—C27—H27B109.5N6B—C27B—H27F109.5
H27A—C27—H27B109.5H27D—C27B—H27F109.5
N6—C27—H27C109.5H27E—C27B—H27F109.5
H27A—C27—H27C109.5N6B—C28B—H28D109.5
H27B—C27—H27C109.5N6B—C28B—H28E109.5
N6—C28—H28A109.5H28D—C28B—H28E109.5
N6—C28—H28B109.5N6B—C28B—H28F109.5
H28A—C28—H28B109.5H28D—C28B—H28F109.5
N6—C28—H28C109.5H28E—C28B—H28F109.5
H28A—C28—H28C109.5O8B—Na1B—O1Bi124.7 (12)
H28B—C28—H28C109.5O8B—Na1B—O4Bi165.7 (13)
O8—Na1—O11107.89 (12)O1Bi—Na1B—O4Bi68.3 (7)
O8—Na1—O486.13 (10)O8B—Na1B—O11B108.9 (9)
O11—Na1—O4165.43 (14)O1Bi—Na1B—O11B85.6 (9)
O8—Na1—O1087.15 (10)O4Bi—Na1B—O11B76.1 (7)
O11—Na1—O1092.11 (10)O8B—Na1B—O4B81.9 (8)
O4—Na1—O1084.48 (9)O1Bi—Na1B—O4B65.9 (6)
O8—Na1—O187.21 (11)O4Bi—Na1B—O4B100.4 (7)
O11—Na1—O1117.93 (12)O11B—Na1B—O4B150.0 (12)
O4—Na1—O165.44 (6)O8B—Na1B—O1B104.2 (10)
O10—Na1—O1149.69 (10)O1Bi—Na1B—O1B101.1 (7)
O8—Na1—O4i146.95 (14)O4Bi—Na1B—O1B64.9 (6)
O11—Na1—O4i74.18 (9)O11B—Na1B—O1B133.8 (10)
O4—Na1—O4i96.35 (8)O4B—Na1B—O1B65.0 (4)
O10—Na1—O4i125.89 (12)O8B—Na1B—O10B79.2 (10)
O1—Na1—O4i64.52 (7)O1Bi—Na1B—O10B154.9 (10)
O8—Na1—O1i143.57 (12)O4Bi—Na1B—O10B87.2 (8)
O11—Na1—O1i100.78 (11)O11B—Na1B—O10B94.0 (9)
O4—Na1—O1i64.75 (7)O4B—Na1B—O10B115.8 (8)
O10—Na1—O1i69.52 (9)O1B—Na1B—O10B61.7 (7)
O1—Na1—O1i98.94 (8)O8B—Na1B—Na1Bi129.3 (10)
O4i—Na1—O1i62.61 (7)O1Bi—Na1B—Na1Bi52.6 (7)
O8—Na1—Na1i126.36 (13)O4Bi—Na1B—Na1Bi51.3 (6)
O11—Na1—Na1i120.03 (14)O11B—Na1B—Na1Bi120.1 (12)
O4—Na1—Na1i49.60 (6)O4B—Na1B—Na1Bi49.2 (5)
O10—Na1—Na1i112.26 (13)O1B—Na1B—Na1Bi48.5 (6)
O1—Na1—Na1i50.63 (7)O10B—Na1B—Na1Bi107.9 (11)
O4i—Na1—Na1i46.75 (7)O8B—Na1B—Mn2Bi160.6 (8)
O1i—Na1—Na1i48.30 (7)O1Bi—Na1B—Mn2Bi54.8 (5)
O8—Na1—Mn1i113.30 (10)O4Bi—Na1B—Mn2Bi29.8 (3)
O11—Na1—Mn1i114.19 (10)O11B—Na1B—Mn2Bi52.6 (6)
O4—Na1—Mn1i54.53 (6)O4B—Na1B—Mn2Bi111.4 (7)
O10—Na1—Mn1i43.85 (6)O1B—Na1B—Mn2Bi94.4 (6)
O1—Na1—Mn1i113.17 (7)O10B—Na1B—Mn2Bi105.7 (7)
O4i—Na1—Mn1i94.29 (8)Na1Bi—Na1B—Mn2Bi67.8 (7)
O1i—Na1—Mn1i31.77 (4)O8B—Na1B—Mn1B111.8 (10)
Na1i—Na1—Mn1i68.41 (8)O1Bi—Na1B—Mn1B114.8 (8)
O8—Na1—Mn2i163.39 (10)O4Bi—Na1B—Mn1B54.0 (5)
O11—Na1—Mn2i57.00 (7)O11B—Na1B—Mn1B105.6 (7)
O4—Na1—Mn2i109.53 (9)O4B—Na1B—Mn1B95.4 (5)
O10—Na1—Mn2i99.53 (9)O1B—Na1B—Mn1B30.5 (4)
O1—Na1—Mn2i94.21 (8)O10B—Na1B—Mn1B41.3 (4)
O4i—Na1—Mn2i29.71 (4)Na1Bi—Na1B—Mn1B67.8 (8)
O1i—Na1—Mn2i52.53 (5)Mn2Bi—Na1B—Mn1B81.8 (4)
Na1i—Na1—Mn2i65.13 (8)O8B—Na1B—Mn2B67.9 (6)
Mn1i—Na1—Mn2i81.35 (6)O1Bi—Na1B—Mn2B92.7 (5)
O8—Na1—Mn266.03 (8)O4Bi—Na1B—Mn2B108.1 (6)
O11—Na1—Mn2165.96 (12)O11B—Na1B—Mn2B174.5 (9)
O4—Na1—Mn226.32 (4)O4B—Na1B—Mn2B27.1 (3)
O10—Na1—Mn2100.00 (8)O1B—Na1B—Mn2B51.6 (3)
O1—Na1—Mn250.87 (4)O10B—Na1B—Mn2B89.8 (6)
O4i—Na1—Mn2103.76 (7)Na1Bi—Na1B—Mn2B62.2 (5)
O1i—Na1—Mn290.17 (6)Mn2Bi—Na1B—Mn2B130.0 (5)
Na1i—Na1—Mn261.66 (6)Mn1B—Na1B—Mn2B79.9 (4)
Mn1i—Na1—Mn279.70 (4)O8B—Na1B—Mn1Bi99.7 (9)
Mn2i—Na1—Mn2126.79 (6)O1Bi—Na1B—Mn1Bi25.5 (4)
O6Bi—Mn1B—O1B175.2 (6)O4Bi—Na1B—Mn1Bi92.6 (7)
O6Bi—Mn1B—N2Bi91.2 (4)O11B—Na1B—Mn1Bi99.1 (8)
O1B—Mn1B—N2Bi87.9 (4)O4B—Na1B—Mn1Bi50.9 (4)
O6Bi—Mn1B—O2B99.0 (4)O1B—Na1B—Mn1Bi106.1 (6)
O1B—Mn1B—O2B81.8 (4)O10B—Na1B—Mn1Bi166.4 (6)
N2Bi—Mn1B—O2B169.7 (4)Na1Bi—Na1B—Mn1Bi62.3 (8)
O6Bi—Mn1B—O9Bi92.7 (5)Mn2Bi—Na1B—Mn1Bi79.9 (5)
O1B—Mn1B—O9Bi92.0 (6)Mn1B—Na1B—Mn1Bi130.1 (5)
N2Bi—Mn1B—O9Bi91.9 (6)Mn2B—Na1B—Mn1Bi77.4 (3)
O2—Mn1—O1—N16.79 (11)O12—C26—N6—C272.2 (19)
N2i—Mn1—O1—N1165.28 (12)N2Bi—Mn1B—O1B—N1B172.2 (12)
O9—Mn1—O1—N1100.83 (11)O2B—Mn1B—O1B—N1B6.7 (11)
O10i—Mn1—O1—N180.02 (11)O9Bi—Mn1B—O1B—N1B96.0 (11)
Na1i—Mn1—O1—N1109.06 (13)O10B—Mn1B—O1B—N1B79.6 (12)
O2—Mn1—O1—Na1156.91 (10)Na1B—Mn1B—O1B—N1B125.4 (14)
N2i—Mn1—O1—Na131.02 (11)Na1Bi—Mn1B—O1B—N1B146.7 (17)
O9—Mn1—O1—Na162.87 (10)N2Bi—Mn1B—O1B—Na1Bi41.1 (9)
O10i—Mn1—O1—Na1116.28 (10)O2B—Mn1B—O1B—Na1Bi140.0 (9)
Na1i—Mn1—O1—Na187.24 (10)O9Bi—Mn1B—O1B—Na1Bi50.7 (9)
O2—Mn1—O1—Na1i115.85 (7)O10B—Mn1B—O1B—Na1Bi133.7 (10)
N2i—Mn1—O1—Na1i56.22 (8)Na1B—Mn1B—O1B—Na1Bi87.9 (9)
O9—Mn1—O1—Na1i150.11 (7)N2Bi—Mn1B—O1B—Na1B46.8 (8)
O10i—Mn1—O1—Na1i29.04 (7)O2B—Mn1B—O1B—Na1B132.1 (8)
Mn1—O1—N1—C15.53 (18)O9Bi—Mn1B—O1B—Na1B138.6 (7)
Na1—O1—N1—C1157.82 (13)O10B—Mn1B—O1B—Na1B45.8 (8)
Na1i—O1—N1—C1115.26 (15)Na1Bi—Mn1B—O1B—Na1B87.9 (9)
Mn1—O1—N1—Mn2171.55 (7)Mn1B—O1B—N1B—C1B7.5 (18)
Na1—O1—N1—Mn225.10 (17)Na1Bi—O1B—N1B—C1B141.3 (13)
Na1i—O1—N1—Mn261.82 (12)Na1B—O1B—N1B—C1B130.2 (13)
Mn1—O2—C1—N16.2 (2)Mn1B—O1B—N1B—Mn2B173.6 (7)
Mn1—O2—C1—C2174.07 (12)Na1Bi—O1B—N1B—Mn2B37.5 (16)
O1—N1—C1—O20.7 (2)Na1B—O1B—N1B—Mn2B51.0 (14)
Mn2—N1—C1—O2177.10 (12)Mn1B—O2B—C1B—N1B2.3 (18)
O1—N1—C1—C2179.60 (14)Mn1B—O2B—C1B—C2B179.6 (10)
Mn2—N1—C1—C23.1 (3)O1B—N1B—C1B—O2B3 (2)
O2—C1—C2—C31.3 (2)Mn2B—N1B—C1B—O2B178.0 (12)
N1—C1—C2—C3178.93 (17)O1B—N1B—C1B—C2B174.2 (13)
O2—C1—C2—C7178.96 (16)Mn2B—N1B—C1B—C2B4 (2)
N1—C1—C2—C70.8 (3)O2B—C1B—C2B—C7B171.8 (14)
C7—C2—C3—C40.1 (3)N1B—C1B—C2B—C7B6 (2)
C1—C2—C3—C4179.67 (17)O2B—C1B—C2B—C3B5.7 (19)
C2—C3—C4—C51.6 (3)N1B—C1B—C2B—C3B176.9 (14)
C3—C4—C5—C60.7 (3)C7B—C2B—C3B—C4B3 (2)
C4—C5—C6—C71.6 (3)C1B—C2B—C3B—C4B178.9 (14)
C5—C6—C7—O3176.11 (18)C2B—C3B—C4B—C5B6 (2)
C5—C6—C7—C23.0 (3)C3B—C4B—C5B—C6B5 (2)
C3—C2—C7—O3176.88 (17)C4B—C5B—C6B—C7B1 (2)
C1—C2—C7—O32.8 (3)C3B—C2B—C7B—O3B177.8 (14)
C3—C2—C7—C62.2 (3)C1B—C2B—C7B—O3B0 (2)
C1—C2—C7—C6178.07 (16)C3B—C2B—C7B—C6B0 (2)
C6—C7—O3—Mn2179.96 (14)C1B—C2B—C7B—C6B177.3 (13)
C2—C7—O3—Mn20.9 (3)C5B—C6B—C7B—O3B179.1 (14)
C7—O3—Mn2—O479.8 (3)C5B—C6B—C7B—C2B1 (2)
C7—O3—Mn2—O5164.35 (17)C2B—C7B—O3B—Mn2B16 (2)
C7—O3—Mn2—N11.83 (18)C6B—C7B—O3B—Mn2B166.3 (12)
C7—O3—Mn2—O7101.57 (18)C7B—O3B—Mn2B—O5B173.7 (14)
C7—O3—Mn2—Na1i49.6 (2)C7B—O3B—Mn2B—N1B19.0 (15)
C7—O3—Mn2—Na133.0 (3)C7B—O3B—Mn2B—O7B81.2 (15)
O3—Mn2—O4—N290.4 (3)C7B—O3B—Mn2B—Na1Bi70.4 (17)
O5—Mn2—O4—N24.27 (12)C7B—O3B—Mn2B—Na1B11 (2)
N1—Mn2—O4—N2172.15 (12)O5B—Mn2B—O4B—N2B3.5 (9)
O7—Mn2—O4—N288.19 (12)N1B—Mn2B—O4B—N2B172.1 (10)
Na1i—Mn2—O4—N2127.01 (14)O7B—Mn2B—O4B—N2B87.7 (10)
Na1—Mn2—O4—N2139.54 (16)Na1Bi—Mn2B—O4B—N2B124.0 (12)
O3—Mn2—O4—Na1130.1 (3)Na1B—Mn2B—O4B—N2B146.7 (12)
O5—Mn2—O4—Na1143.81 (10)O5B—Mn2B—O4B—Na1Bi120.4 (7)
N1—Mn2—O4—Na148.31 (10)N1B—Mn2B—O4B—Na1Bi48.1 (8)
O7—Mn2—O4—Na151.35 (10)O7B—Mn2B—O4B—Na1Bi148.3 (8)
Na1i—Mn2—O4—Na193.45 (11)Na1B—Mn2B—O4B—Na1Bi89.3 (8)
O3—Mn2—O4—Na1i36.6 (3)O5B—Mn2B—O4B—Na1B150.3 (7)
O5—Mn2—O4—Na1i122.74 (8)N1B—Mn2B—O4B—Na1B41.2 (8)
N1—Mn2—O4—Na1i45.14 (8)O7B—Mn2B—O4B—Na1B59.0 (8)
O7—Mn2—O4—Na1i144.80 (8)Na1Bi—Mn2B—O4B—Na1B89.3 (8)
Na1—Mn2—O4—Na1i93.45 (11)Mn2B—O4B—N2B—C8B4.2 (16)
Mn2—O4—N2—C82.5 (2)Na1Bi—O4B—N2B—C8B121.1 (12)
Na1—O4—N2—C8144.12 (15)Na1B—O4B—N2B—C8B149.6 (11)
Na1i—O4—N2—C8122.34 (15)Mn2B—O4B—N2B—Mn1Bi178.2 (6)
Mn2—O4—N2—Mn1i178.17 (8)Na1Bi—O4B—N2B—Mn1Bi52.9 (11)
Na1—O4—N2—Mn1i36.57 (17)Na1B—O4B—N2B—Mn1Bi36.5 (14)
Na1i—O4—N2—Mn1i56.96 (15)Mn2B—O5B—C8B—N2B0.7 (16)
O4—N2—C8—O52.3 (3)Mn2B—O5B—C8B—C9B175.7 (10)
Mn1i—N2—C8—O5176.91 (14)O4B—N2B—C8B—O5B2 (2)
O4—N2—C8—C9175.10 (15)Mn1Bi—N2B—C8B—O5B175.2 (11)
Mn1i—N2—C8—C95.7 (3)O4B—N2B—C8B—C9B178.8 (12)
Mn2—O5—C8—N25.7 (2)Mn1Bi—N2B—C8B—C9B8 (2)
Mn2—O5—C8—C9171.64 (13)O5B—C8B—C9B—C14B175.5 (13)
N2—C8—C9—C10175.29 (18)N2B—C8B—C9B—C14B8 (2)
O5—C8—C9—C107.4 (3)O5B—C8B—C9B—C10B2 (2)
N2—C8—C9—C149.2 (3)N2B—C8B—C9B—C10B174.7 (14)
O5—C8—C9—C14168.17 (17)C14B—C9B—C10B—C11B0 (2)
C14—C9—C10—C110.1 (3)C8B—C9B—C10B—C11B177.0 (15)
C8—C9—C10—C11175.56 (18)C9B—C10B—C11B—C12B1 (3)
C9—C10—C11—C120.2 (3)C10B—C11B—C12B—C13B2 (3)
C10—C11—C12—C130.7 (3)C11B—C12B—C13B—C14B1 (3)
C11—C12—C13—C140.7 (3)C12B—C13B—C14B—O6B179.0 (14)
C12—C13—C14—O6176.92 (17)C12B—C13B—C14B—C9B0 (2)
C12—C13—C14—C90.3 (3)C10B—C9B—C14B—C13B1 (2)
C10—C9—C14—O6177.13 (17)C8B—C9B—C14B—C13B176.4 (14)
C8—C9—C14—O61.7 (3)C10B—C9B—C14B—O6B179.8 (13)
C10—C9—C14—C130.1 (3)C8B—C9B—C14B—O6B3 (2)
C8—C9—C14—C13175.39 (17)C13B—C14B—O6B—Mn1Bi178.1 (11)
C13—C14—O6—Mn1i161.57 (13)C9B—C14B—O6B—Mn1Bi3 (2)
C9—C14—O6—Mn1i21.4 (2)Mn2B—O7B—C15B—O8B9 (5)
Mn2—O7—C15—O83.2 (3)Mn2B—O7B—C15B—C16B171.9 (17)
Mn2—O7—C15—C16178.50 (15)O7B—C15B—O8B—Na1B10 (6)
O7—C15—O8—Na126.3 (4)C16B—C15B—O8B—Na1B172 (2)
C16—C15—O8—Na1155.5 (2)O8B—C15B—C16B—Cl1B5 (4)
O8—C15—C16—Cl113.9 (3)O7B—C15B—C16B—Cl1B174 (2)
O7—C15—C16—Cl1167.63 (17)Mn1Bi—O9B—C17B—N3B173 (4)
Mn1—O9—C17—N3178.7 (3)O9B—C17B—N3B—C18B16 (8)
O9—C17—N3—C19178.0 (4)O9B—C17B—N3B—C19B150 (5)
O9—C17—N3—C185.4 (7)Mn1B—O10B—C20B—N4B175 (4)
Mn1i—O10—C20—N442.6 (6)Na1B—O10B—C20B—N4B58 (6)
Na1—O10—C20—N4168.6 (5)O10B—C20B—N4B—C21B18 (9)
O10—C20—N4—C210.1 (9)O10B—C20B—N4B—C22B159 (4)
O10—C20—N4—C22178.0 (4)Na1B—O11B—C23B—N5B42 (12)
Na1—O11—C23—N549.5 (5)O11B—C23B—N5B—C25B171 (4)
O11—C23—N5—C25174.8 (3)O11B—C23B—N5B—C24B1 (4)
O11—C23—N5—C240.6 (5)O12B—C26B—N6B—C28B178.1 (18)
O12—C26—N6—C28179.9 (10)O12B—C26B—N6B—C27B6 (3)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18A···O11ii0.982.633.516 (5)151
C19—H19B···O120.982.333.201 (5)148
C20—H20···O80.952.643.279 (3)125
C21—H21B···O2i0.982.483.433 (3)165
C24—H24B···O80.982.533.459 (4)158
C25—H25B···O12iii0.982.553.309 (6)134
C25—H25C···O2iii0.982.503.423 (5)157
C26—H26···O70.952.493.339 (10)149
Symmetry codes: (i) x+1, y, z+1; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18A···O11i0.982.633.516 (5)151.0
C19—H19B···O120.982.333.201 (5)148.0
C20—H20···O80.952.643.279 (3)125.0
C21—H21B···O2ii0.982.483.433 (3)164.5
C24—H24B···O80.982.533.459 (4)157.8
C25—H25B···O12iii0.982.553.309 (6)134.0
C25—H25C···O2iii0.982.503.423 (5)157.1
C26—H26···O70.952.493.339 (10)148.9
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y, z+1; (iii) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Na2Mn4(C2H2ClO2)2(C7H4NO3)4(C3H7NO)6]·2C3H7NO
Mr1637.92
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)14.4457 (7), 14.7091 (6), 16.5663 (8)
β (°) 101.8584 (17)
V3)3444.9 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.89
Crystal size (mm)0.32 × 0.30 × 0.21
Data collection
DiffractometerBruker AXS D8 Quest CMOS
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2014)
Tmin, Tmax0.645, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
39712, 12392, 9900
Rint0.030
(sin θ/λ)max1)0.757
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.102, 1.06
No. of reflections12392
No. of parameters791
No. of restraints748
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.85, 0.45

Computer programs: APEX2 (Bruker, 2014), SAINT (Bruker, 2014), SHELXS97 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2008) and SHELXLE (Hübschle et al., 2011), Mercury (Macrae et al., 2006), publCIF (Westrip, 2010).

 

Acknowledgements

This work was funded by the Pennsylvania State System of Higher Education FPDC grant 2014-SU-04 to CID and CMZ. The X-ray diffractometer was funded by NSF grant 1337296.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. G. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationAzar, M. R., Boron, T. T., Lutter, J. C., Daly, C. I., Zegalia, K. A., Nimthong, R., Ferrence, G. M., Zeller, M., Kampf, J. W., Pecoraro, V. L. & Zaleski, C. M. (2014). Inorg. Chem. 53, 1729–1742.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBruker (2014). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGibney, B. R., Wang, H., Kampf, J. W. & Pecoraro, V. L. (1996). Inorg. Chem. 35, 6184–6193.  CSD CrossRef CAS Web of Science Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKessissoglou, D. P., Bodwin, J. J., Kampf, J., Dendrinou-Samara, C. & Pecoraro, V. L. (2002). Inorg. Chim. Acta, 331, 73–80.  Web of Science CSD CrossRef CAS Google Scholar
First citationKoumousi, E. S., Mukherjee, S., Beavers, C. M., Teat, S. J., Christou, G. & Stamatatos, T. C. (2011). Chem. Commun. 47, 11128–11130.  Web of Science CSD CrossRef CAS Google Scholar
First citationLah, M. S. & Pecoraro, V. L. (1989). J. Am. Chem. Soc. 111, 7258–7259.  CSD CrossRef CAS Web of Science Google Scholar
First citationLah, M. S. & Pecoraro, V. L. (1991). Inorg. Chem. 30, 878–880.  CSD CrossRef CAS Web of Science Google Scholar
First citationLiu, W. & Thorp, H. H. (1993). Inorg. Chem. 32, 4102–4105.  CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMezei, G., Zaleski, C. M. & Pecoraro, V. L. (2007). Chem. Rev. 107, 4933–5003.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSaalfrank, R. W., Maid, H. & Scheurer, A. (2008). Angew. Chem. Int. Ed. 47, 8794–8824.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThorn, A., Dittrich, B. & Sheldrick, G. M. (2012). Acta Cryst. A68, 448–451.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds