research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-hy­dr­oxy­imino-2-(pyridin-2-yl)-N′-[1-(pyridin-2-yl)ethyl­­idene]acetohydrazide

aDepartment of Chemistry, National Taras Shevchenko University, Volodymyrska Street 64, 01601 Kyiv, Ukraine, bDepartment of Chemistry, University of Jyvaskyla, PO Box 35, FI-40014 Jyvaskyla, Finland, and cInorganic Chemistry, Center for Chemistry and Chemical Engineering, Lund University, Box 124, SE-221 00 Lund, Sweden
*Correspondence e-mail: plutenkom@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 14 November 2014; accepted 25 November 2014; online 29 November 2014)

The mol­ecule of the title compound, C14H13N5O2, is approximately planar (r.m.s deviation for all non-H atoms = 0.093 Å), with the planes of the two pyridine rings inclined to one another by 5.51 (7)°. The oxime group is syn to the amide group, probably due to the formation of an intra­molecular N—H⋯N hydrogen bond that forms an S(6) ring motif. In the crystal, mol­ecules are linked by pairs of bifurcated O—H⋯(O,N) hydrogen bonds, forming inversion dimers. The latter are linked via C—H⋯O and C—H⋯N hydrogen bonds, forming sheets lying parallel to (502). The sheets are linked via ππ stacking inter­actions [inter-centroid distance = 3.7588 (9) Å], involving the pyridine rings of inversion-related mol­ecules, forming a three-dimensional structure.

1. Chemical context

Polynuclear oxime-containing ligands have attracted considerable inter­est because of their ability to act as efficient bridging ligands and for their tendency to form polynuclear metal complexes (Penkova et al., 2010[Penkova, L. V., Demeshko, S., Pavlenko, V. A., Dechert, S., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chim. Acta, 363, 3036-3040.]; Pavlishchuk et al., 2010[Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Thompson, L. K., Fritsky, I. O., Addison, A. W. & Hunter, A. D. (2010). Eur. J. Inorg. Chem. 30, 4851-4858.], 2011[Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Shvets, O. V., Fritsky, I. O., Lofland, S. E., Addison, A. W. & Hunter, A. D. (2011). Eur. J. Inorg. Chem. 31, 4826-4836.]). The presence of additional non-oxime donor functions (e.g. hydrazide, azomethine, pyridine) in the ligand mol­ecule favours the formation of metal complexes with strong magnetic exchange inter­actions between the metal ions (Pavlishchuk et al., 2011[Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Shvets, O. V., Fritsky, I. O., Lofland, S. E., Addison, A. W. & Hunter, A. D. (2011). Eur. J. Inorg. Chem. 31, 4826-4836.]), and complexes which efficiently stabilize unusual high oxidation states of 3d metal ions (Kanderal et al., 2005[Kanderal, O. M., Kozłowski, H., Dobosz, A., Świątek-Kozłowska, J., Meyer, F. & Fritsky, I. O. (2005). Dalton Trans. pp. 1428-1437.]; Fritsky et al., 1998[Fritsky, I. O., Kozłowski, H., Sadler, P. J., Yefetova, O. P., Świątek-Kozłowska, J., Kalibabchuk, V. A. & Głowiak, T. (1998). J. Chem. Soc. Dalton Trans. pp. 3269-3274.], 2006[Fritsky, I. O., Kozłowski, H., Kanderal, O. M. M., Świątek-Kozłowska, J., Gumienna-Kontecka, E. & Meyer, F. (2006). Chem. Commun. pp. 4125-4127.]). As a part of our research study, we present the structure of the title compound, which contains several donor functions of a different nature; oxime, hydrazide, and two different pyridine groups.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is illustrated in Fig. 1[link]. The mol­ecule is approximately planar (r.m.s deviation for all non-H atoms = 0.093 Å) with the maximum deviations from the mean plane being 0.255 (1) Å for atom N1, and 0.198 (1) Å for atom O1. The two pyridine rings (N1/C1–C5) and N5/C10–C14) are inclined to one another by 5.51 (7)°. The N2—O1 [1.3691 (14) Å] and C6—N2 [1.2866 (17) Å] bond lengths of the oxime group have typical values (Fritsky et al., 1998[Fritsky, I. O., Kozłowski, H., Sadler, P. J., Yefetova, O. P., Świątek-Kozłowska, J., Kalibabchuk, V. A. & Głowiak, T. (1998). J. Chem. Soc. Dalton Trans. pp. 3269-3274.]). The pyridine N atom, N1, is situated in an anti position with respect to the azomethine group, in accordance with the structures of earlier synthesized ligands of this type (Plutenko et al., 2011[Plutenko, M. O., Lampeka, R. D., Moroz, Y. S., Haukka, M. & Pavlova, S. V. (2011). Acta Cryst. E67, o3282-o3283.], 2013[Plutenko, M. O., Lampeka, R. D., Haukka, M. & Nordlander, E. (2013). Acta Cryst. E69, o765-o766.]).

[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The intra­molecular N—H⋯N hydrogen bond is shown as a dashed line (see Table 1[link] for details).

The N4—N3, N3—C7 and C7—O2 bond lengths of the hydrazide group are 1.3776 (16), 1.3471 (18) and 1.2269 (17) Å, respectively, typical for protonated moieties of this type (Plutenko et al., 2011[Plutenko, M. O., Lampeka, R. D., Moroz, Y. S., Haukka, M. & Pavlova, S. V. (2011). Acta Cryst. E67, o3282-o3283.], 2013[Plutenko, M. O., Lampeka, R. D., Haukka, M. & Nordlander, E. (2013). Acta Cryst. E69, o765-o766.]). The oxime group is situated in a syn position with respect to the amide group, in contrast to earlier synthesized ligands of this type (Plutenko et al., 2012[Plutenko, M. O., Lampeka, R. D., Haukka, M. & Nordlander, E. (2012). Acta Cryst. E68, o3381.], 2013[Plutenko, M. O., Lampeka, R. D., Haukka, M. & Nordlander, E. (2013). Acta Cryst. E69, o765-o766.]). Such a disposition of these moieties is atypical for amide derivatives of 2-hy­droxy­imino­propanoic acid (Onindo et al., 1995[Onindo, C. O., Sliva, T. Yu., Kowalik-Jankowska, T., Fritsky, I. O., Buglyo, P., Pettit, L. D., Kozłowski, H. & Kiss, T. (1995). J. Chem. Soc. Dalton Trans. pp. 3911-3915.]; Sliva et al., 1997[Sliva, T. Yu., Kowalik-Jankowska, T., Amirkhanov, V. M., Głowiak, T., Onindo, C. O., Fritskii, I. O. & Kozłowski, H. (1997). J. Inorg. Biochem. 65, 287-294.]; Duda et al., 1997[Duda, A. M., Karaczyn, A., Kozłowski, H., Fritsky, I. O., Głowiak, T., Prisyazhnaya, E. V., Sliva, T. Yu. & Świątek-Kozłowska, J. (1997). J. Chem. Soc. Dalton Trans. pp. 3853-3859.]). It can be explained by the presence of an intra­molecular N3—H3⋯N1 hydrogen bond in which the azomethine N atom, N3, acts as donor and the pyridine N atom, N1, acts as an acceptor (Fig. 1[link] and Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯N1 0.89 (2) 1.84 (2) 2.6126 (17) 144 (2)
O1—H1⋯O2i 0.93 (2) 1.98 (2) 2.8327 (14) 151 (2)
O1—H1⋯N2i 0.93 (2) 2.13 (2) 2.8489 (16) 133 (2)
C2—H2⋯O2ii 0.95 2.54 3.1985 (15) 127
C3—H3A⋯O1iii 0.95 2.56 3.4755 (15) 163
C13—H13⋯N5iv 0.95 2.46 3.3811 (19) 163
Symmetry codes: (i) -x+1, -y+2, -z; (ii) x, y-1, z; (iii) -x+1, -y+1, -z; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

3. Supra­molecular features

In the crystal, mol­ecules are linked by pairs of bifurcated O—H⋯(O,N) hydrogen bonds forming inversion dimers (Fig. 2[link] and Table 1[link]). The dimers are linked via C—H⋯O and C—H⋯N hydrogen bonds, forming sheets lying parallel to plane (502). The sheets are linked via ππ stacking inter­actions, forming a three-dimensional structure [Cg1⋯Cg2i = 3.7588 (9) Å; Cg1 and Cg2 are the centroids of pyridine rings N1/C1–C5 and N5/C10–C14, respectively; symmetry code: (i) −x + 1, −y + 2, −z + 1].

[Figure 2]
Figure 2
Crystal packing of the title compound viewed along the b axis. Hydrogen bonds are indicated by dashed lines (see Table 1[link] for details). H atoms not involved in hydrogen bonds have been omitted for clarity.

4. Database survey

The crystal structures of two very similar compounds have been reported, viz. 2-hy­droxy­imino-N′-(1-(pyridin-2-yl)ethyl­idene)propano­hydrazide (Moroz et al., 2009[Moroz, Y. S., Konovalova, I. S., Iskenderov, T. S., Pavlova, S. V. & Shishkin, O. V. (2009). Acta Cryst. E65, o2242.]) and two polymorphs of 2-(3,5-dimethyl-1H-pyrazol-1-yl)-2-(hy­droxyimino)-N′-(1-(pyridin-2-yl) ethyl­idene)acetohydrazide (Plutenko et al., 2012[Plutenko, M. O., Lampeka, R. D., Haukka, M. & Nordlander, E. (2012). Acta Cryst. E68, o3381.], 2013[Plutenko, M. O., Lampeka, R. D., Haukka, M. & Nordlander, E. (2013). Acta Cryst. E69, o765-o766.]).

5. Synthesis and crystallization

A solution of 2-hy­droxy­imino-2-(pyridin-2-yl)acetohydrazide (0.36 g, 2 mmol), prepared according to a published procedure (Zyl et al., 1961[Zyl, G. V., Devries, D. L., Decker, R. H. & Niles, E. T. (1961). J. Org. Chem. 26, 3373-3375.]; Kolar et al., 1991[Kolar, P., Petrič, A., Tišler, M. & Felluga, F. (1991). J. Heterocycl. Chem. 28, 1715-1720.]), in methanol (20 ml) was treated with 2-acetyl­pyridine (0.242 g, 2 mmol) and the mixture was heated under reflux for 3 h. After cooling, the solvent was evaporated under vacuum and the resulting product was recrystallized from methanol, giving colourless block-like crystals of the title compound (yield 0.52 g; 92%).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The N—H and O—H hydrogen atoms were located in difference Fourier maps and freely refined. The C-bound H atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.95–0.98 Å, and with Uiso = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C14H13N5O2
Mr 283.29
Crystal system, space group Monoclinic, P21/n
Temperature (K) 123
a, b, c (Å) 11.4319 (9), 9.3598 (4), 12.4297 (9)
β (°) 105.016 (3)
V3) 1284.57 (15)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.27 × 0.15 × 0.14
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.973, 0.986
No. of measured, independent and observed [I > 2σ(I)] reflections 7900, 2850, 2226
Rint 0.032
(sin θ/λ)max−1) 0.651
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.115, 1.05
No. of reflections 2850
No. of parameters 196
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.33, −0.22
Computer programs: APEX2 and SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), DIAMOND (Brandenburg, 2008[Brandenburg, K. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Chemical context top

Polynuclear oxime-containing ligands have attracted considerable inter­est because of their ability to act as efficient bridging ligands and for their tendency to form polynuclear metal complexes (Penkova et al., 2010; Pavlishchuk et al., 2010, 2011). The presence of additional non-oxime donor functions (e.g. hydrazide, azomethine, pyridine) in the ligand molecule favours the formation of metal complexes with strong magnetic exchange inter­actions between the metal ions (Pavlishchuk et al., 2011), and complexes which efficiently stabilize unusual high oxidation states of 3d-metal ions (Kanderal et al., 2005; Fritsky et al., 1998, 2006). As a part of our research study, we present the structure of the title compound, which contains several donor functions of a different nature; oxime, hydrazide, and two different pyridine groups.

Structural commentary top

The molecular structure of the title compound is illustrated in Fig. 1. The molecule is approximately planar (r.m.s deviation for all non-H atoms = 0.093 Å) with the maximum deviations from the mean plane being 0.255 (1) Å for atom N1, and 0.198 (1) Å for atom O1. The two pyridine rings (N1/C1–C5) and N5/C10–C14) are inclined to one another by 5.51 (7)°. The N2—O1 [1.3691 (14) Å] and C6—N2 [1.2866 (17) Å] bond lengths of the oxime group have typical values (Fritsky et al., 1998). The pyridine N atom, N1, is situated in an anti position with respect to the azomethine group, in accordance with the structures of earlier synthesized ligands of this type (Plutenko et al., 2011, 2013).

The N4—N3, N3—C7 and C7—O2 bond lengths of the hydrazide group are 1.3776 (16), 1.3471 (18) and 1.2269 (17) Å, respectively, typical for protonated moieties of this type (Plutenko et al., 2011, 2013). The oxime group is situated in a syn position with respect to the amide group, in contrast to earlier synthesized ligands of this type (Plutenko et al., 2012, 2013). Such a disposition of these moieties is atypical for amide derivatives of 2-hy­droxy­imino­propanoic acid (Onindo et al., 1995; Sliva et al., 1997; Duda et al., 1997). It can be explained by the presence of an intra­molecular N3—H3···N1 hydrogen bond in which the azomethine N atom, N3, acts as donor and the pyridine N atom, N1, acts as an acceptor (Fig. 1 and Table 1).

Supra­molecular features top

In the crystal, molecules are linked by pairs of bifurcated O—H···(O,N) hydrogen bonds forming inversion dimers (Fig. 2 and Table 1). The dimers are linked via C—H···O and C—H···N hydrogen bonds, forming sheets lying parallel to plane (502). The sheets are linked via ππ stacking inter­actions, forming a three-dimensional structure [Cg1···Cg2i = 3.7588 (9) Å; Cg1 and Cg2 are the centroids of pyridine rings N1/C1–C5 and N5/C10–C14, respectively; symmetry code: (i) -x + 1, -y + 2, -z + 1].

Database survey top

The crystal structures of two very similar compounds have been reported, viz. 2-hy­droxy­imino-N'-(1-(pyridin-2-yl)ethyl­idene)propano­hydrazide (Moroz et al., 2009) and two polymorphs of 2-(3,5-di­methyl-1H-pyrazol-1-yl)-2-(hy­droxy­imino)-N'-(1-(pyridin-2-yl) ethyl­idene)acetohydrazide (Plutenko et al., 2012, 2013).

Synthesis and crystallization top

A solution of 2-hy­droxy­imino-2-(pyridin-2-yl)acetohydrazide (0.36 g, 2 mmol), prepared according to a published procedure (Zyl et al., 1961; Kolar et al., 1991), in methanol (20 ml) was treated with 2-acetyl­pyridine (0.242 g, 2 mmol) and the mixture was heated under reflux for 3 h. After cooling, the solvent was evaporated under vacuum and the resulting product was recrystallized from methanol, giving colourless block-like crystals of the title compound (yield 0.52 g; 92%).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The N—H and O—H hydrogen atoms were located in difference Fourier maps and freely refined. The C-bound H atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.95–0.98 Å, and with Uiso = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms.

Related literature top

For use of oxime ligands, see: Penkova et al. (2010); Pavlishchuk et al. (2010, 2011). For use of oximes having additional donor functions as versatile ligands, see: Fritsky et al. (1998, 2004, 2006), Kanderal et al. (2005), Onindo et al. (1995); Sliva et al. (1997). For related structures, see: Duda et al. (1997); Kanderal et al. (2005); Sliva et al. (1997); Penkova et al. (2010); Fritsky et al. (2004).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
A view of the molecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The intramolecular N—H···N hydrogen bond is shown as a dashed line (see Table 1 for details).

Crystal packing of the title compound viewed along the b axis. Hydrogen bonds are indicated by dashed lines (see Table 1 for details). H atoms not involved in hydrogen bonds have been omitted for clarity.
2-Hydroxyimino-2-(pyridin-2-yl)-N'-[1-(pyridin-2-yl)ethylidene]acetohydrazide top
Crystal data top
C14H13N5O2F(000) = 592
Mr = 283.29Dx = 1.465 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 12859 reflections
a = 11.4319 (9) Åθ = 1.0–27.5°
b = 9.3598 (4) ŵ = 0.10 mm1
c = 12.4297 (9) ÅT = 123 K
β = 105.016 (3)°Block, colourless
V = 1284.57 (15) Å30.27 × 0.15 × 0.14 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2850 independent reflections
Radiation source: fine-focus sealed tube2226 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.032
Detector resolution: 16 pixels mm-1θmax = 27.6°, θmin = 3.6°
ϕ scans and ω scans with κ offseth = 147
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1112
Tmin = 0.973, Tmax = 0.986l = 1316
7900 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0444P)2 + 0.5602P]
where P = (Fo2 + 2Fc2)/3
2850 reflections(Δ/σ)max < 0.001
196 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C14H13N5O2V = 1284.57 (15) Å3
Mr = 283.29Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.4319 (9) ŵ = 0.10 mm1
b = 9.3598 (4) ÅT = 123 K
c = 12.4297 (9) Å0.27 × 0.15 × 0.14 mm
β = 105.016 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2850 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2226 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.986Rint = 0.032
7900 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.33 e Å3
2850 reflectionsΔρmin = 0.22 e Å3
196 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.53771 (10)0.81661 (11)0.01882 (9)0.0275 (3)
H10.547 (2)0.873 (3)0.0406 (19)0.061 (7)*
O20.41325 (12)1.10609 (11)0.18548 (9)0.0365 (3)
N10.42020 (13)0.68309 (13)0.29508 (10)0.0269 (3)
N20.49655 (12)0.91005 (12)0.08547 (10)0.0227 (3)
N30.39671 (12)0.95674 (13)0.32531 (10)0.0217 (3)
H30.3983 (18)0.865 (2)0.3433 (16)0.045 (6)*
N40.36523 (11)1.06522 (12)0.38730 (9)0.0211 (3)
N50.27415 (12)1.10442 (13)0.63724 (10)0.0249 (3)
C10.40835 (17)0.54907 (16)0.32784 (14)0.0332 (4)
H1A0.38410.53470.39460.040*
C20.42966 (11)0.43023 (11)0.26956 (9)0.0279 (3)
H20.41950.33630.29460.033*
C30.46609 (11)0.45322 (11)0.17415 (9)0.0261 (3)
H3A0.48180.37420.13200.031*
C40.48006 (15)0.59117 (15)0.13888 (12)0.0258 (3)
H40.50610.60740.07320.031*
C50.45529 (13)0.70606 (14)0.20141 (11)0.0196 (3)
C60.46209 (13)0.85875 (14)0.16827 (11)0.0198 (3)
C70.42130 (14)0.98666 (14)0.22744 (12)0.0225 (3)
C80.33284 (13)1.02516 (14)0.47426 (11)0.0206 (3)
C90.32455 (16)0.87266 (15)0.50997 (13)0.0282 (4)
H9A0.27820.81660.44660.042*
H9B0.28380.86940.57020.042*
H9C0.40620.83270.53630.042*
C100.30190 (13)1.14279 (14)0.54298 (11)0.0200 (3)
C110.30120 (14)1.28513 (15)0.50943 (12)0.0253 (3)
H110.32171.30940.44240.030*
C120.27019 (15)1.39034 (16)0.57523 (13)0.0281 (3)
H120.26901.48790.55390.034*
C130.24098 (14)1.35182 (16)0.67237 (12)0.0257 (3)
H130.21881.42160.71900.031*
C140.24502 (15)1.20881 (16)0.69948 (12)0.0275 (3)
H140.22591.18240.76670.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0449 (7)0.0188 (5)0.0253 (6)0.0028 (4)0.0206 (5)0.0006 (4)
O20.0691 (9)0.0166 (5)0.0338 (6)0.0044 (5)0.0315 (6)0.0034 (4)
N10.0415 (8)0.0172 (6)0.0263 (6)0.0000 (5)0.0165 (6)0.0005 (5)
N20.0321 (7)0.0180 (6)0.0197 (6)0.0003 (5)0.0100 (5)0.0028 (4)
N30.0323 (7)0.0147 (6)0.0213 (6)0.0013 (5)0.0128 (5)0.0003 (4)
N40.0278 (7)0.0173 (6)0.0203 (6)0.0010 (5)0.0102 (5)0.0027 (4)
N50.0344 (7)0.0215 (6)0.0219 (6)0.0003 (5)0.0126 (6)0.0005 (5)
C10.0550 (11)0.0207 (7)0.0314 (8)0.0003 (7)0.0247 (8)0.0026 (6)
C20.0387 (9)0.0165 (7)0.0310 (8)0.0002 (6)0.0136 (7)0.0024 (6)
C30.0354 (9)0.0177 (7)0.0276 (8)0.0000 (6)0.0124 (7)0.0035 (5)
C40.0372 (9)0.0196 (7)0.0242 (7)0.0003 (6)0.0143 (7)0.0020 (5)
C50.0218 (7)0.0174 (7)0.0199 (6)0.0007 (5)0.0062 (5)0.0001 (5)
C60.0251 (7)0.0165 (7)0.0192 (7)0.0003 (5)0.0080 (6)0.0008 (5)
C70.0315 (8)0.0164 (7)0.0218 (7)0.0015 (5)0.0107 (6)0.0018 (5)
C80.0241 (7)0.0177 (7)0.0211 (7)0.0001 (5)0.0079 (6)0.0000 (5)
C90.0432 (10)0.0188 (7)0.0275 (8)0.0003 (6)0.0177 (7)0.0015 (5)
C100.0229 (7)0.0188 (7)0.0190 (7)0.0008 (5)0.0066 (6)0.0008 (5)
C110.0357 (9)0.0201 (7)0.0236 (7)0.0008 (6)0.0138 (7)0.0002 (5)
C120.0365 (9)0.0197 (7)0.0297 (8)0.0017 (6)0.0117 (7)0.0011 (6)
C130.0289 (8)0.0237 (7)0.0257 (7)0.0024 (6)0.0090 (6)0.0063 (6)
C140.0360 (9)0.0277 (8)0.0223 (7)0.0000 (6)0.0141 (7)0.0028 (6)
Geometric parameters (Å, º) top
O1—N21.3691 (14)C4—C51.3981 (19)
O1—H10.93 (2)C4—H40.9500
O2—C71.2269 (17)C5—C61.4950 (18)
N1—C11.3365 (19)C6—C71.5392 (18)
N1—C51.3435 (18)C8—C101.4911 (18)
N2—C61.2866 (17)C8—C91.5051 (19)
N3—C71.3471 (18)C9—H9A0.9800
N3—N41.3776 (16)C9—H9B0.9800
N3—H30.89 (2)C9—H9C0.9800
N4—C81.2858 (18)C10—C111.3954 (19)
N5—C101.3398 (18)C11—C121.3837 (19)
N5—C141.3407 (18)C11—H110.9500
C1—C21.3831 (18)C12—C131.382 (2)
C1—H1A0.9500C12—H120.9500
C2—C31.3719C13—C141.378 (2)
C2—H20.9500C13—H130.9500
C3—C41.3861 (17)C14—H140.9500
C3—H3A0.9500
N2—O1—H1104.1 (14)O2—C7—C6120.28 (12)
C1—N1—C5119.39 (12)N3—C7—C6115.45 (11)
C6—N2—O1118.04 (11)N4—C8—C10115.40 (12)
C7—N3—N4119.85 (12)N4—C8—C9125.33 (12)
C7—N3—H3115.7 (13)C10—C8—C9119.27 (12)
N4—N3—H3124.4 (13)C8—C9—H9A109.5
C8—N4—N3115.41 (12)C8—C9—H9B109.5
C10—N5—C14117.37 (12)H9A—C9—H9B109.5
N1—C1—C2123.35 (13)C8—C9—H9C109.5
N1—C1—H1A118.3H9A—C9—H9C109.5
C2—C1—H1A118.3H9B—C9—H9C109.5
C3—C2—C1117.44 (8)N5—C10—C11122.20 (12)
C3—C2—H2121.3N5—C10—C8116.62 (12)
C1—C2—H2121.3C11—C10—C8121.17 (12)
C2—C3—C4120.34 (7)C12—C11—C10119.04 (13)
C2—C3—H3A119.8C12—C11—H11120.5
C4—C3—H3A119.8C10—C11—H11120.5
C3—C4—C5118.95 (12)C13—C12—C11119.20 (14)
C3—C4—H4120.5C13—C12—H12120.4
C5—C4—H4120.5C11—C12—H12120.4
N1—C5—C4120.51 (12)C14—C13—C12117.83 (13)
N1—C5—C6116.12 (12)C14—C13—H13121.1
C4—C5—C6123.34 (12)C12—C13—H13121.1
N2—C6—C5128.74 (12)N5—C14—C13124.36 (14)
N2—C6—C7106.58 (11)N5—C14—H14117.8
C5—C6—C7124.62 (11)C13—C14—H14117.8
O2—C7—N3124.27 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···N10.89 (2)1.84 (2)2.6126 (17)144 (2)
O1—H1···O2i0.93 (2)1.98 (2)2.8327 (14)151 (2)
O1—H1···N2i0.93 (2)2.13 (2)2.8489 (16)133 (2)
C2—H2···O2ii0.952.543.1985 (15)127
C3—H3A···O1iii0.952.563.4755 (15)163
C13—H13···N5iv0.952.463.3811 (19)163
Symmetry codes: (i) x+1, y+2, z; (ii) x, y1, z; (iii) x+1, y+1, z; (iv) x+1/2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···N10.89 (2)1.84 (2)2.6126 (17)144 (2)
O1—H1···O2i0.93 (2)1.98 (2)2.8327 (14)151 (2)
O1—H1···N2i0.93 (2)2.13 (2)2.8489 (16)133 (2)
C2—H2···O2ii0.952.543.1985 (15)127
C3—H3A···O1iii0.952.563.4755 (15)163
C13—H13···N5iv0.952.463.3811 (19)163
Symmetry codes: (i) x+1, y+2, z; (ii) x, y1, z; (iii) x+1, y+1, z; (iv) x+1/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC14H13N5O2
Mr283.29
Crystal system, space groupMonoclinic, P21/n
Temperature (K)123
a, b, c (Å)11.4319 (9), 9.3598 (4), 12.4297 (9)
β (°) 105.016 (3)
V3)1284.57 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.27 × 0.15 × 0.14
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.973, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
7900, 2850, 2226
Rint0.032
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.115, 1.05
No. of reflections2850
No. of parameters196
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.22

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Acknowledgements

Financial support from the State Fund for Fundamental Researches of Ukraine (grant No. F40.3/041) and the Swedish Institute (Visby Program) is gratefully acknowledged.

References

First citationBrandenburg, K. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDuda, A. M., Karaczyn, A., Kozłowski, H., Fritsky, I. O., Głowiak, T., Prisyazhnaya, E. V., Sliva, T. Yu. & Świątek-Kozłowska, J. (1997). J. Chem. Soc. Dalton Trans. pp. 3853–3859.  CSD CrossRef Web of Science Google Scholar
First citationFritsky, I. O., Kozłowski, H., Kanderal, O. M. M., Świątek-Kozłowska, J., Gumienna-Kontecka, E. & Meyer, F. (2006). Chem. Commun. pp. 4125–4127.  Web of Science CSD CrossRef Google Scholar
First citationFritsky, I. O., Kozłowski, H., Sadler, P. J., Yefetova, O. P., Świątek-Kozłowska, J., Kalibabchuk, V. A. & Głowiak, T. (1998). J. Chem. Soc. Dalton Trans. pp. 3269–3274.  Web of Science CSD CrossRef Google Scholar
First citationKanderal, O. M., Kozłowski, H., Dobosz, A., Świątek-Kozłowska, J., Meyer, F. & Fritsky, I. O. (2005). Dalton Trans. pp. 1428–1437.  Web of Science CrossRef PubMed Google Scholar
First citationKolar, P., Petrič, A., Tišler, M. & Felluga, F. (1991). J. Heterocycl. Chem. 28, 1715–1720.  CrossRef CAS Google Scholar
First citationMoroz, Y. S., Konovalova, I. S., Iskenderov, T. S., Pavlova, S. V. & Shishkin, O. V. (2009). Acta Cryst. E65, o2242.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOnindo, C. O., Sliva, T. Yu., Kowalik-Jankowska, T., Fritsky, I. O., Buglyo, P., Pettit, L. D., Kozłowski, H. & Kiss, T. (1995). J. Chem. Soc. Dalton Trans. pp. 3911–3915.  CrossRef Web of Science Google Scholar
First citationPavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Shvets, O. V., Fritsky, I. O., Lofland, S. E., Addison, A. W. & Hunter, A. D. (2011). Eur. J. Inorg. Chem. 31, 4826–4836.  Web of Science CSD CrossRef Google Scholar
First citationPavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Thompson, L. K., Fritsky, I. O., Addison, A. W. & Hunter, A. D. (2010). Eur. J. Inorg. Chem. 30, 4851–4858.  Web of Science CSD CrossRef Google Scholar
First citationPenkova, L. V., Demeshko, S., Pavlenko, V. A., Dechert, S., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chim. Acta, 363, 3036–3040.  Web of Science CSD CrossRef CAS Google Scholar
First citationPlutenko, M. O., Lampeka, R. D., Haukka, M. & Nordlander, E. (2012). Acta Cryst. E68, o3381.  CSD CrossRef IUCr Journals Google Scholar
First citationPlutenko, M. O., Lampeka, R. D., Haukka, M. & Nordlander, E. (2013). Acta Cryst. E69, o765–o766.  CSD CrossRef IUCr Journals Google Scholar
First citationPlutenko, M. O., Lampeka, R. D., Moroz, Y. S., Haukka, M. & Pavlova, S. V. (2011). Acta Cryst. E67, o3282–o3283.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSliva, T. Yu., Kowalik-Jankowska, T., Amirkhanov, V. M., Głowiak, T., Onindo, C. O., Fritskii, I. O. & Kozłowski, H. (1997). J. Inorg. Biochem. 65, 287–294.  CSD CrossRef CAS Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZyl, G. V., Devries, D. L., Decker, R. H. & Niles, E. T. (1961). J. Org. Chem. 26, 3373–3375.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds